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Abstract 

The real-time estimation of polar motion (PM) is needed for the navigation of Earth satellite and interplanetary space-

craft. However, it is impossible to have real-time information due to the complexity of the measurement model and 

data processing. Various prediction methods have been developed. However, the accuracy of PM prediction is still 

not satisfactory even for a few days in the future. Therefore, new techniques or a combination of the existing methods 

need to be investigated for improving the accuracy of the predicted PM. There is a well-introduced method called 

Copula, and we want to combine it with singular spectrum analysis (SSA) method for PM prediction. In this study, first, 

we model the predominant trend of PM time series using SSA. Then, the difference between PM time series and its 

SSA estimation is modeled using Copula-based analysis. Multiple sets of PM predictions which range between 1 and 

365 days have been performed based on an IERS 08 C04 time series to assess the capability of our hybrid model. Our 

results illustrate that the proposed method can efficiently predict PM. The improvement in PM prediction accuracy up 

to 365 days in the future is found to be around 40% on average and up to 65 and 46% in terms of success rate for the 

PMx and PMy , respectively.
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Introduction
Polar motion (PM) describes the movement of the Earth’s 

rotation axis w.r.t the Earth surface. �e study of PM pro-

vides valuable information for studying many geophysical 

and meteorological phenomena (Barnes et al. 1983; Wahr 

1982, 1983; Mathews et al. 1991; Gross et al. 2003; Chen 

and Wilson 2005; Gross 2015; Seitz and Schuh 2010; 

Schuh and Böhm 2011).

Since the 1960s, highly accurate PM coordinates can 

be obtained by different space geodesy techniques. �ese 

techniques include: Satellite Laser Ranging (SLR) (Cou-

lot et al. 2010), Lunar Laser Ranging (LLR) (Dickey et al. 

1985), Doppler Orbitography and Radiopositioning Inte-

grated by Satellite (DORIS) (Angermann et  al. 2010), 

Global Navigation Satellite Systems (GNSS) (Dow et  al. 

2009; Byram and Hackman 2012), and very-long-baseline 

interferometry (VLBI) (Schuh and Schmitz-Hübsch 2000; 

Nilsson et al. 2010, 2011, 2014).

Accurate real-time PM is needed for high-precision 

satellite navigation and positioning and spacecraft track-

ing (Kalarus et al. 2010; Stamatakos 2017). However, the 

PM is not provided in real time due to the complexity of 

the measurement model and data processing; PM coordi-

nates are available with a delay of hours to days (Bizouard 

and Gambis 2009; Schuh and Behrend 2012). �erefore, 

it is essential to predict the PM parameters precisely.

Different methods and means have been investigated and 

applied for PM prediction such as least squares (LS) colloca-

tion (Włodzimierz 1990), spectral analysis and LS extrapo-

lation method (Akulenko et al. 2002), LS extrapolation of a 

harmonic model and autoregressive (AR) prediction (Kosek 

et al. 1998, 2007; Xu et al. 2012), wavelets and fuzzy infer-

ence systems (Akyilmaz and Kutterer 2004; Akyilmaz 

et  al. 2011) modeling and forecasting excitation functions 
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(Chin et al. 2004), Kalman filter with atmospheric angular 

momentum forecasts (Freedman et  al. 1994), and artifi-

cial neural network (ANN) (Schuh et al. 2002; Kalarus and 

Kosek 2004). �e Earth orientation parameters prediction 

comparison campaign (EOP PCC) took place within (2005–

2009), and the results demonstrate that there is no particular 

method superior to other for all prediction intervals (Kala-

rus et  al. 2010). Among these methods, the combination 

of LS and AR process is considered to be one of the most 

effective for PM prediction (Kalarus et al. 2010). �e men-

tioned combination method achieved reasonable results for 

short-term forecasting. However, due to the complexity of 

the PM excitation model, it is not able to reproduce the time 

variation of the periodic terms that influence the long-term 

predictive accuracy of PM. Consequently, a new prediction 

method is required that could bring us significantly closer 

to meeting the accuracy goals pursued by the Global Geo-

detic Observing System (GGOS) of the International Asso-

ciation of Geodesy (IAG), i.e., 1 mm accuracy and 0.1 mm/

year stability on global scales in terms of the ITRF defining 

parameters (Plag and Pearlman 2009). �erefore new tech-

niques or a combination of the existing methods need to be 

investigated for improving the efficiency of the predicted 

PM considering the time variation of the periodic terms and 

the trend. In this study, we examined the combination of 

singular spectrum analysis (SSA) and Copula-based analy-

sis to predict PM. SSA is not constrained by the assump-

tions of using predetermined functions such as sine wave 

as the base; it rather exploits data-driven base functions for 

extracting fundamental components of the time series and 

applies a classification method to explore the relationship 

between the derived elements (Broomhead and King 1986; 

Vautard et al. 1992; Zotov 2005). �e Copula method oper-

ates linear and nonlinear dependency between variables, 

and it is a potent and efficient tool for dealing with multi-

dimensional data and modeling the relationship between 

parameters (Joe 1997). �e combination of SSA and Cop-

ula-based methods will be applied for the first time as a 

novel stochastic tool for PM determination.

PM is the sum of two statistically independent parts: 

trend and undulation. �is hybrid model consists of a 

deterministic annual and the Chandler component as well 

as long-term lower-frequency parts which are estimated by 

SSA. �e difference between the deterministic solution and 

the PM data is then used in a Copula-based model to pre-

dict stochastic processes. �en, the final PM prediction is a 

combination of the deterministic prediction (derived from 

the SSA solution) and the stochastic prediction (obtained 

from the Copula solution). To this end, first, the time series 

of PM from EOP 08 C04 were analyzed, and the trend is 

modeled and separated by SSA. �en, a Copula prediction 

model is made based on the SSA-separated time series. 

Finally, the accuracy of the proposed combined method is 

verified through different sets of PM prediction tests.

Methodology
In this study, we developed and explored the integration of 

Copula-based analysis and SSA for precisely predicting PM.

Singular spectrum analysis

To maximize the prediction performance, we need a 

mathematical tool to retrieve all time-correlated infor-

mation from the time series. As a matter of fact, the 

existence of excitations of PM can profoundly affect the 

forecasting procedure, particularly in longer intervals. 

�erefore, the exploitation of efficient techniques is cru-

cial to minimize the risk of having gross errors.

SSA is a nonparametric spectral estimation method 

which can be used for decomposing a time series into the 

sum of interpretable components, e.g., trend, periodic 

components, and noise, without a priori assumption about 

the constituent components (Golyandina et al. 2001).

SSA is able to remove redundancies and groups uncor-

related information into informative empirical functions 

which can reveal main aspects of the time series. �e 

mentioned functions are used as bases of a subspace in 

which the time series is a member of and can be exploited 

for modeling the time series in a desired level of details. 

�erefore, the model can simulate the future entries of 

the time series using these base functions.

�e SSA method for trend extraction can be succinctly 

expressed as two stages:

Decomposition First the time series is embedded in an 

L-dimensional vector space. �e outcome of this stage 

will be a trajectory matrix ( X ) which consists of L rows. 

�e matrix has been simply formed using L-element 

lagged vectors taken from the time series by sliding a 

window of size L.

(1)

window →
︷ ︸︸ ︷

x1, x2, . . . , xL, xL+1, . . . , xN ⇒ X
T
1 = (x1, x2, . . . , xL)

(2)

x1,

window →
︷ ︸︸ ︷

x2, . . . , xL, xL+1, . . . , xN ⇒ X
T
2 = (x2, x3, . . . , xL+1)

(3)

X = [X1 X2 X3 . . . XK ] =
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being 1 < L < K  and K = N − L + 1.

Having the trajectory matrix formed, singular value 

decomposition (SVD) is applied to factorize X in the 

form of U�V
T in order to retrieve its principal compo-

nents (PC).

where U and V are the left and right singular vectors, 

respectively, and � is a diagonal matrix consisting of sin-

gular values of X which reflect the importance of each 

corresponding pair of left–right singular vectors. �e 

decomposition step can be performed using calculation 

of eigenvalues and eigenvectors of the matrix S = XX
T.

Let �1 ≥ �2 ≥ · · · ≥ �L ≥ 0 denote diagonal entries of � 

(the eigenvalues of S ) and U1,U2, . . . ,UL indicate the cor-

responding eigenvectors of S which are also called empir-

ical orthogonal functions (EOF) of X . �e right singular 

vectors of X are eigenvectors of XT
X calculated by:

Now, the trajectory matrix can be written as:

Reconstruction �is stage aims to rebuild the time series 

using the reconstructed version of trajectory matrix. So, a 

subset of A = {X1,X2, . . . ,Xd} can be chosen for recon-

struction of the trajectory matrix. �e choice of PCs of X 

defines how smooth would be the reconstructed version 

of the time series and how much detail of the original 

time series would be captured. Having a proper selection 

of PCs, a representative trend is extracted by applying 

diagonal averaging to the reconstructed trajectory matrix 

( X̂) . Let L < K  , and then, the trend of the time series 

G = (g1, g2, . . . , gN ) is:

(4)X = U�V
T

XX
T

= (U�V
T)(U�V

T)T = U�2
U

T
= U�U

T

(5)Vi = X
T
Ui/

√

�i,

{

d = max{i | �i > 0}

i = 1, 2, . . . , d

(6)X = X1 + X2 + · · · + Xd, Xi =

√

�iUiV
T
i

(7)

gi =




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





1

i

i
�

m=1

x̂m,i−m+1 1 ≤ i < L

1
L

L
�

m=1

x̂m,i−m+1 L ≤ i ≤ K

1

N−i+1

N−K+1
�

m=i−K+1

x̂m,i−m+1 K < i ≤ N

Copula‑based analysis

�ere is a well-introduced method called Copula that can 

be applied for polar motion modeling, estimation, and 

prediction. �e word of Copula is a Latin noun that means 

a link or tie. �e Copula method exploits linear and non-

linear dependency between variables. It is a potent and 

efficient tool for dealing with multi-dimensional data and 

modeling the relation between parameters based on the 

marginal distribution functions of the variables (Embre-

chts et al. 2002). Copula appeared in the context for the 

first time by Sklar (1959). Sklar’s theorem indicates that a 

Copula function C connects a given multivariate distribu-

tion function with its univariate marginal. For bivariate 

distribution, there is a bivariate Copula C which models 

the joint cumulative probability distribution function of 

two variables X and Y based on the marginal cumulative 

distribution functions FX (x) and FY (y).

where C describes the joint distribution function 

FX ,Y (x, y).u and v are transformed of X and Y to uniform 

distribution, respectively. �en, Joe (1997) and Nelsen 

(2007) developed the idea of the Copula. For many 

years, the Copula method has been used for modeling 

the dependence structure between random variables in 

different types of studies, e.g., economics (Rachev and 

Mittnik 2000; Patton 2006, 2009), biomedicine (Wang 

and Wells 2000; Escarela and Carriere 2003), hydrology 

(Bárdossy and Li 2008; Bárdossy and Pegram 2009; Ver-

hoest et  al. 2015), meteorology (Laux et  al. 2011; Vogl 

et  al. 2012), hydro-geodesy (Modiri et  al. 2015). A brief 

introduction to the concept of copula function is given in 

the next subsections.

Characteristic of Copulas

In the bivariate case, a Copula is represented as a func-

tion C from [0, 1]2 to [0, 1] so that ∀u, v ∈ [0, 1] (Genest 

and Rivest 1993; Jaworski et al. 2010):

Copula is an increasing function. It implies that 

∀u1,u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2 holds

(8)

P(X ≤ x,Y ≤ y) = FX ,Y (x, y) = C(FX (x), FY (y))

= C(u, v)

(9)C(u, 0) = C(0, v) = 0,

(10)C(u, 1) = u and C(1, v) = v.

(11)
C(u2, v2) − C(u2, v1) − C(u1, v2) − C(u1, v1) ≥ 0
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Copula is a continuous function:

�e Copula density is computed by differentiating Cop-

ula cumulative distribution function.

Empirical Copula

�e empirical Copula is an estimator for the unknown 

theoretical Copula distribution, and it is defined in the 

rank space as follows (Genest and Rivest 1993; Genest 

and Favre 2007; Laux et al. 2011):

where,

(r1), (r2) . . . , (rn) denote the pairs of ranks of the var-

iable (x1), (x2), . . . , (xn),

(s1), (s2) . . . , (sn) denote the pairs of ranks of the var-

iable (y1), (y2), . . . , (yn),

n is the length of the data vector,

1(...) is the indicator function. If the condition is 

true, the indicator function is equal to 1. Otherwise, 

the indicator function is equal to 0.

Archimedean Copula

A number of Copulas can be estimated directly with the 

simple form. �ey are named Archimedean Copulas. An 

Archimedean Copula can be presented in the following 

form:

where θ is the Copula parameter and the function φ is the 

generator of the Copula with the following characteristics 

(Nelsen 2007):

  • for all u ∈ (0, 1),φ(u) < 0 , φ is decreasing,

  • for all u ∈ (0, 1),φ(u) < 0 , φ is convex,

  • φ(1) = 0,

(12)|C(u2, v2) − C(u1, v1)| ≤ |u2 − u1| + |v2 − v1|

(13)c(u, v) =

∂2C(u, v)

∂u∂v

(14)Ce(u, v) =
1

n

n
∑

i=1

1

(

ri

n + 1
≤ u,

si

n + 1
≤ v

)

(15)C(u, v) = φ−1{φ(u) + φ(v), θ}

and φ−1 is defined by

�ere are three commonly used Archimedean Copula 

which are explained as follows and will be investigated in 

this study (see Table 1).

(1) Clayton Copulas

  �e generator of the Clayton Copula (see Fig. 1) is 

given by 

 �erefore, the cumulative distribution function 

(CDF) for Clayton Copula is defined as (Clayton 

1978): 

φ−1(t) =

{

φ−1(t; θ), if 0 ≤ t ≤ φ(0)

0, if φ(0) ≤ t ≤ ∞

(16)φCl(x) =

1

θ
(t−θ

− 1)

(17)Cθ (u, v) = max[(u−θ
+ v

−θ
− 1), 0]−

1
θ

Fig. 1 Clayton Copula with parameter θ = 3 . The Clayton Copula is 

an asymmetric Archimedean Copula; it shows greater dependence in 

the lower tail than in the upper tail

Table 1 Three ordinary families of  Archimedean Copulas (Clayton, Frank, and  Gumbel Copula) and  their generator, 

parameter space, and their formula

θ is the parameter of the Copula called the dependence parameter, which measures the dependence between the marginal

Family Generator Parameter Formula

Clayton φCl(x) =
1

θ
(t−θ

− 1) − 1 ≤ θ Cθ (u, v) = max[(u−θ + v
−θ − 1), 0]−

1
θ

Frank φFr(t) = − ln

{

e
−θ t

−1

e−θ
−1

}

−∞ < θ < ∞
Cθ (u, v) =

1
θ
ln(1 +

(e−θu
−1)(e−θv)

e−θ −1
)

Gumbel φ(t) = (− ln t)θ 1 ≤ θ
Cθ (u, v) = e−((− ln(u)θ )+(− ln(v)θ ))

1
θ
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  where θ is restricted on the interval [−1,∞) . If 

θ = 0 , it shows the independence case and when 

θ → ∞ , indicate high dependency in the lower 

rank space.

(2) Frank Copula

  �e generator of the Frank Copula (see Fig.  2) is 

given by 

  �e parameter θ is defined over ∈ (−∞,∞) − {0} . 

�e CDF for Frank Copula is given by (Joe 1997; 

Lee and Long 2009) 

  Frank Copula allows to model data with positive 

and negative dependency. �e large positive and 

negative θ indicate high dependency, and θ = 1 

implies total independence. �e Frank Copula is 

a suitable method for two data sets with the same 

dynamic characteristics (Rodriguez 2007).

(3) Gumbel Copulas

  Gumbel Copula (see Fig. 3) is famous for its ability 

to capture strong upper tail dependence and weak 

lower tail dependence. Gumbel Copula is used to 

model asymmetric relationship in the data (Jawor-

(18)φFr(t) = − ln

{

e
−θ t

− 1

e−θ
− 1

}

(19)Cθ (u, v) =
1

θ
ln

(

1 +
(e−θu

− 1)(e−θv)

e−θ − 1

)

ski et  al. 2010). �e Gumbel Copula generator is 

written as: 

  �e CDF for Gumbel Copula is given by (Nelsen 

2007) 

  �e Copula parameter θ is on the interval [1,+∞) . 

If θ is equal 1, Copula shows independence. When 

θ → ∞ , the Gumbel Copula indicates high depend-

ence between the random variables.

Copula parameter estimation

�e widely used estimation method for the Copula 

parameter is the maximum likelihood (ML) estima-

tion methodology (Joe 1997). �e Copula parameters in 

this study are derived from ML estimation. �e canoni-

cal maximum likelihood estimation (CLME) and infer-

ence for margins estimation (IFME) are two methods for 

estimation of the Copula parameter (Joe and Xu 1996). 

For both methods, the first step is marginal distribution 

estimation. �en, a pseudo-sample of the transformed 

observation is used to estimate the Copula parameter. In 

the IFME method, the theoretical marginal distribution 

parameters are estimated, and in the CMLE the univari-

ate marginals are the empirical distribution functions 

(Giacomini et al. 2009). It is assumed that the sample data 

(X1,X2,X3, . . . ,Xn) are n independent and identically 

(20)
φ(t)Gu = (− ln t)θ

(21)Cθ (u, v) = e
−((− ln(u)θ )+(− ln(v)θ ))

1
θ

Fig. 2 Frank Copula with parameter θ = 8 . The Frank Copula is a 

symmetric Archimedean Copula

Fig. 3 Gumbel Copula with parameter θ = 3 . Gumbel Copula 

can capture strong upper tail dependency and weak lower tail 

dependency
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distributed (iid) random variables. �ese data are trans-

formed into uniform variates (r1, r2, r3, . . . , rn).

Let c(r1, r2, r3, . . . , rn) be the density function of Copula 

C(r1, r2, r3, . . . , rn; θ) , and let θ be the Copula parameter 

which is estimated by maximizing the ML equation:

Computation of conditional CDF for Archimedean Copula

In this subsection, the conditional CDF of Clayton, Frank, 

and Gumbel Copula are computed (Yue 1999; Zhang and 

Singh 2007; Trivedi et al. 2007). �e conditional CDF for 

Clayton Copula is given by (Joe 1997):

and for Frank Copula:

�e conditional CDF of Gumbel Copula is:

Simulating from Copula‑based conditional random data

�is subsection provides the essential steps for data sim-

ulation using Copula-based conditional random data. 

�e following steps are taken to fit the suitable theo-

retical Copula function and simulation data (Laux et al. 

2011; Vogl et al. 2012).

(1) Independent identical distribution (iid)-transfor-

mation of input time series.

(2) Compute the marginal distribution FX (x) and FY (y) 

of the input data x and y.

(3) Transform data to rank space using the estimated 

marginal distributions of data with ui and vi in rank 

space.

(4) Compute the empirical Copula to the dependence 

structure of random variables using the rank-trans-

formed data.

(5) Fit a theoretical Copula function Cθ (u, v).

(6) Compute the conditional Copula function.

(7) Sample random data from the conditional Copula 

CDF.

(22)θ̂ = arg max
θ

n∑

i=1

log c(r1, r2, r3, . . . , rn; θ)

(23)C
Clayton
V=v

(u, v) = u
−θ−1(−1 + u

−θ
+ v

−θ )(
−1
θ

−1)

(24)

C
Frank
V=v (u, v) =

e−uθ (−1 + e−vθ )

(−1 + e−θ )

(

1 +
(−1+e−uθ )(−1+e−vθ )

−1+e−θ

)

(25)

C
Gumbel
V=v (u, v) =

(− ln uθ−1)

(

ln v(θ−ln vθ )

(

1
θ

−1

)

)

ue(− ln u(θ+ln vθ )

(

1
θ

)

)

(8) Transfer the sample back to the data space using the 

inverse marginal.

Error analysis

�e mean absolute error (MAE) standard is used in order 

to evaluate the prediction accuracy. It can be shown as 

follows:

where Pi is the predicted value of the i-th prediction, Oi is 

the corresponding observation value, Ei is the error, and 

n is the total prediction number (Willmott and Matsuura 

2005).

Calculation and analysis
Data description

In this paper, the PMx and PMy time series (see Fig. 4) are 

from the International Earth Rotation and Reference Sys-

tems Service (IERS) combined earth orientation param-

eter (EOP) solutions 08 C04 (available at http://hpier 

s.obspm .fr/eop-pc/analy sis/excit activ e.html). �e EOP 

08 C04 series is derived from different geodetic tech-

niques, and it is consistent with ITRF 2008. �e EOP 08 

C04 time series cover the period 1962 to the present. �e 

sampling interval is one day.

Data processing and analysis

In this study, we defined an algorithm for PM prediction 

which is shown in Fig. 5. �e observed PM time series can 

be split up into two parts. �e first part is dealing with peri-

odic effects such as Chandler wobble, annual variation, and 

influences of solid Earth tides and ocean tides on PM. �e 

SSA is used to model the periodic terms of the PM. �en, 

the difference between the observed PM and SSA estimated 

data is modeled by using the Copula-based analysis method. 

After that, the periodic terms of PM are extrapolated using 

the SSA a priori model. Also, the anomaly part is predicted 

using the Copula-based model. Finally, the anomaly solution 

is added to the SSA-forecasted time series.

�erefore, the analysis of the data is divided into two 

main steps:

(1) SSA Periodic Terms Estimation

 • Selecting window parameter (L) considering the 

dominant periods of the time series and the pre-

diction interval,

  • Forming trajectory matrix ( X ) using L,

(26)Ei = Pi − Oi

(27)MAE =
1

n

n∑

i=1

(|Ei|)

http://hpiers.obspm.fr/eop-pc/analysis/excitactive.html
http://hpiers.obspm.fr/eop-pc/analysis/excitactive.html
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  • Singular value decomposition of X,

  • Selecting a proper group of singular values and 

corresponding singular vectors,

  • Reconstruction of X,

  • Calculation of the trend by applying diagonal 

averaging to X.

(2) Copula Anomaly Modeling

 • Subtract the observed PM time series by SSA-

reconstructed time series,

  • Forming the trajectory matrix of residual time 

series using window length L and time delay of 1 

day,

  • Compute the marginal distribution of each col-

umn of the matrix,

  • Transform data to the rank space,

  • Compute the empirical Copula between the col-

umn i and i+1,

  • Fit the theoretical Copula model by applying 

appropriate goodness-of-fit tests,

  • Compute the conditional Copula,

  • Sample random data from the conditional Cop-

ula CDF and transfer the sample back to the data 

space using the inverse marginal,

  • For each value of one input time series, one 

obtains an ensemble of possible values for other 

time series.

Fig. 4 Daily PM time series from 1990 to the present
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�erefore, the final PM predicted data is the sum of the 

results of predicted periodic terms using SSA and pre-

dicted anomaly using the Copula-based model.

SSA periodic terms estimation

Window length selection is a crucial step in SSA which 

has a significant impact on the decomposition of the time 

series. �e appropriate choice for L in a periodic time 

series with a period T is a window length proportional to 

the period, meaning that the L / T is an integer. Figure 6 

depicts the main periods of PM time series (Golyandina 

and Zhigljavsky 2013). So, the Chandler period as the 

main period of both time series would be a reasonable 

choice. Making the closest choice to the half of the length 

of the time series (if possible, least common multiple of 

the Chandler and annual periods) is recommended by 

Golyandina and Zhigljavsky (2013), but is avoided due to 

the processing time.

After selection of the window length, the number of 

singular vectors or empirical functions for reconstruction 

of the time series should be determined. �e goal of this 

procedure is to find and apply a proper set of construc-

tive components. Most significant periodicities as well 

as excitation mechanisms are rather low-frequency com-

ponents and reveal their impact in the first few singular 

vectors while high-frequency components fall in later 

Fig. 5 Scheme of the SSA+Copula model for PM prediction
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Fig. 6 Spectral analysis of the PMx (up), PMy (down) using fast Fourier transform (FFT)
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singular vectors. �e singular value spectrum reflects the 

importance of each singular vector. Figure 7 suggests that 

in order to achieve an accuracy of about 1 mas in polar 

motion modeling, we need to utilize at least first 70 sin-

gular vectors which correspond to using all components 

with periods more than or equal to 14 days.

Having the window length and the number of singular 

values determined, we construct the trajectory matrix. 

As it can be seen in Fig. 8 the data between the year of 

1997 and 2003 is used as the training period. �e cyan 

curve is the SSA-reconstructed PMx time series. Predic-

tion of the future entries starts by adding initial guess of 

future entries to the end of the time series. �en, itera-

tion of the SSA process is done until the result of two 

successive iterations has a difference less than a certain 

threshold. �is will map the initial values to the estimated 

periodic terms of the time series. �e residual part of the 

difference between original PMx time series and SSA esti-

mated time series is named anomaly of PMx which has a 

stochastic behavior. �erefore, the anomaly part will be 

investigated by Copula-based technique.

Copula anomaly modeling

�e anomaly part which is shown in Fig. 8 (lower panel) 

with dark violet is formed into a matrix with the same 

window length L. �en, the dependency structure 

between the rmcolumni and rmcolumni+1 is investigated 

for the whole dataset. Modeling the joint dependence 

structure with Copulas requires fitting marginal distri-

bution to data. In this study, three univariate distribu-

tion functions are considered: extreme value, generalized 

extreme value, and generalized Pareto distribution (see 

Table  2). To identify which univariate distribution is 

the best suitable for both PMx and PMy , the root-mean-

square error is estimated and the goodness of fit is 

examined with the Akaike and the Bayesian information 

criteria (AIC and BIC).

and

(28)AIC = 2k − ln(B)

where k denotes the number of the free parameters in the 

model. n is the sample size, and B is the maximized value 

of the likelihood function of the estimated model. �e 

smallest amount of AIC or BIC, respectively, suggests the 

best fitting model or distribution. After estimation of the 

parameters by maximum likelihood approach, the AIC, 

BIC, and RMSE values are calculated for both PMx and 

PMy distribution. As it can be seen in Fig. 9, the general-

ized extreme value (black) provides the best fit in com-

parison with the generalized Pareto distribution function 

(blue) and extreme value distribution function (green). 

Furthermore, according to Tables  3 and 4, the result of 

the AIC, BIC, and RMSE confirmed that the generalized 

extreme value provides the best fit in both PMx and PMy 

distribution. �erefore, generalized extreme value distri-

bution was selected in this study.

Estimating empirical Copula

Once the univariate marginal distribution is fitted, the 

dependence structure between the time series has to be 

investigated. �e first step is to calculate the empirical 

Copula using Eq. (14). As it can be seen in Fig. 10, there 

is a scatter plot of two adjacent columns, and it shows a 

scatter linear dependency structure with the heavy tail. 

�is kind of dependency structure can be correctly mod-

eled using the Archimedean Copula.

Fitting a theoretical Copula function

�e next step is fitting a theoretical bivariate Archime-

dean Copula function with its parameters estimated by 

maximum likelihood approach. In this study, three dif-

ferent theoretical Copula functions are tested (Fig.  11): 

Clayton, Frank, and Gumbel Copula. For the three dif-

ferent Copula functions, the goodness-of-fit test, which 

is based on the Cramer–von Mises statistics, is applied. 

To evaluate the performance of the Copulas, 1000 values 

of the test statistics are sampled, and the proportion of 

values larger than Sn is estimated by calculating the cor-

responding p values. �e results based on Sn show that 

the performance of Frank Copula is slightly better than 

Gumbel and Clayton Copula with less error (Table 5).

365‑day‑ahead prediction

We utilized 6 years of observed PM time series, from Jan-

uary 1997 to December 2002, for the 365-day-ahead pre-

diction. To verify the reliability of this method, the results 

were compared with the IERS Bulletin A predictions 

(https ://datac enter .iers.org/web/guest /bulle tins/-/somos 

/5Rgv/versi on/6). �e IERS Bulletin A contains the PM 

parameters and the predicted PM for one year into the 

future, and they are released every seven days by IERS 

(29)BIC = k ln(n) − 2 ln(B)

0 0.2 0.4 0.6 0.8 1

Normalised frequency (  rad/sample)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
lis

e
d
 M

a
g
n
it
u
d
e

Frequencies of SSA residuals (Utilized SVs: 70)

Highpass filter with threshold of 14 days

0.1429 (~14days)

Fig. 7 Number of singular values and vectors applied in modeling 

polar motion to achieve 1 mas degree of accuracy
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Fig. 8 The original time series (upper panel), the reconstructed time series (middle panel), and the difference between original and reconstructed 

time series (lower panel) for PMx
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Rapid Service/Prediction Center (RS/PC), hosted by the 

U.S. Naval Observatory (USNO) (Petit and Luzum 2010; 

Gambis and Luzum 2011). �e predictions of PM from 

the IERS Bulletin A were produced by LS + AR method. 

In the current prediction method, the PM prediction 

was the sum of the LS extrapolation model (including 

Fig. 9 Marginal distribution’s goodness-of-fit test for PMx (left) and PMy (right). Generalized extreme value distribution is the black curve, green 

shows the extreme value distribution, and the blue curve is generalized Pareto distribution

Table 2 Marginal distributions

Distribution Formula Parameters

Extreme value (Kotz and Nadarajah 2000) f (x;µ, σ) = σ−1 exp(
x−µ
σ

) exp
(

− exp
(

x−µ
σ

))

Location µ  scale σ 

Generalized extreme value (Hosking et al. 1985)
f (x;µ, σ , ξ) =

{
(

1 + ξ(
x−µ
σ

)
)−1/ξ

if ξ �= 0

e−(x−µ)/σ if ξ = 0

Location µ  scale σ  shape ξ

Generalized Pareto (Hosking and Wallis 1987)
f (x; σ , ξ) = f(ξ ,µ,σ)(x) =

1
σ

(

1 +
ξ(x−µ)

σ

)

(

−
1
ξ
−1

)

Location µ  scale σ  shape ξ
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the Chandler period, annual, semiannual, terannual, and 

quarter annual terms), and the AR predictions of the LS 

extrapolation residuals (Kosek et al. 2007).

Discussion of results
In this study, we demonstrated the PM prediction by 

combination of SSA and Copula-based analysis method. 

Our method is tested based on the hindcast experiments 

using data from the past. Hence, we have calculated the 

results of our methods yearly for seven years of the test 

Fig. 10 Scatter plot (left) two adjacent columns in the residual matrix. The empirical Copula (right) is estimated based on the dependency structure 

of two columns

Fig. 11 Theoretical Copula is fitted to the empirical Copula. The Copula parameter is 3.82, 15, and 3.61 for the Clayton, Frank, and Gumbel Copula, 

respectively

Table 3 Goodness-of-�t test for  marginal distribution 

of PMx

Distributions AIC BIC RMSE

Extreme value 574.60 582.66 0.04

Generalized extreme value 511.14 523.23 0.01

Generalized Pareto 758.22 770.31 0.13

Table 4 Goodness-of-�t test for  marginal distribution 

of PMy

Distributions AIC BIC RMSE

Extreme value 310.99 319.05 0.03

Generalized extreme value 261.25 273.34 0.01

Generalized Pareto 523.99 536.09 0.14

Table 5 Goodness-of-�t test for Copula model

Copula name Clayton Frank Gumbel

Mean(Sn) 43.57 12.13 17.58
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period 2003–2009 in comparison with Bulletin A PM 

prediction. As the prediction solutions of Bulletin A are 

available weekly, we would have approximately 52 time 

series of prediction for each year. So, Fig.  12 shows the 

mean value of MAE for each year. In Fig. 12, the Bulle-

tin A solution is shown in black and the SSA predicted 

data in red. Also, the results of SSA+Copula are dis-

played by green, blue, and pink for Clayton, Frank, and 

Gumbel Copula, respectively. Compared to the results 

from the IERS Bulletin A, the MAE of the predictions 

produced by the proposed method was smaller in dif-

ferent short-, mid-, and long-term intervals for different 

cases (e.g., between 1 and 5 mas progression of PMx pre-

diction for different time intervals in 2003). �e better 

prediction performance of the SSA + Copula prediction 

may have been due to the modeling of the linear change 

of the Chandler and the annual oscillation amplitudes. 

Besides, the combination of SSA+Copula improves the 

SSA solution because of its ability to model the stochas-

tic behavior of the anomaly part of the PM time series. 

However, the proposed method did not always perform 

better, especially in cases of long-term prediction where 

the quality of the results was not as good as we expected 

(see Fig.  12). �is may have been caused by changes of 

the amplitudes of the periodic terms in this six-year time 

span where the SSA was not able to capture all features in 

order to predict more precisely we would have to increase 

the interval of training time. Figure 13 presents the abso-

lute error of 365-day-ahead prediction between 2003 and 

2009. Different patterns and features can be seen in our 

solution and Bulletin A solution. For instance, Bulletin 

A predicted PMx from January to March 2003 displays 

errors of more than 30  mas which cannot be found in 

our results, and there is a clear feature in PMx Bulletin 

A mean absolute error plot from August to December 

2008 which does not appear in our prediction. How-

ever, our predicted PM results indicate a periodic error 

in mid- and long-term predictions although the results of 

the combination SSA + Copula show smoother errors in 

comparison with the SSA results. To better understand 

this particular periodic error of our method, we plot 

Fig. 14 that demonstrates the improvement in the SSA + 

Copula predicted solution compared to Bulletin A. For 

each prediction epoch, if the difference between errors 

of Bulletin A prediction and errors of SSA/SSA+Copula 

is positive, it is considered as an improvement in predic-

tion. Yellow color shows the progress in prediction in 

heat maps (see Fig. 14). �e red color indicates where our 

method shows higher errors than Bulletin A in the pre-

diction process. Also, the orange shows where both PM 

prediction techniques display the same amount of error. 

�e results illustrate that SSA+Copula can improve the 

accuracy of PM prediction in the different time intervals 

of prediction (short, mid, and long). Tables 6 and 7 indi-

cate the success rate of PM prediction when using the 

SSA + Copula algorithm. �e success rate of PM predic-

tion is illustrated by the number of improvement in PM 

prediction (yellow) over the total number of PM predic-

tion (yellow+ orange+ red).

�e improvement in the prediction is approximately 

40% on average. According to Malkin and Miller (2010), 

there is Candler Wobble phase variation in 1850, 1925, 

and 2005. So, probably it is the reason why the proposed 

prediction method losses accuracy around the year 2005. 

Also, as it can be seen in Tables 6 and 7 the success rate 

of PMx and PMy can be reached up to 64.99 and 46.66%, 

respectively. 

Conclusions
�e improvement in the Earth rotation prediction is a rel-

evant, timely problem, as confirmed by the fact that the 

International Astronomical Union (IAU) Commission 

A2, the International Association of Geodesy (IAG), and 

the IERS have at present two Joint Working Groups on 

Prediction (JWG-P) and on �eory of Earth rotation and 

validation (JWG-�ER). According to the United Nations 

(UN) resolution in 2015, the primary objective of these 

JWGs is to assess and ensure the level of consistency of 

earth orientation parameter (EOP) predictions derived 

from theories with the corresponding EOP determined 

from analyses of the observational data provided by the 

various geodetic techniques. �erefore, accurate EOP 

predictions are essential to avoid any systematic drifts 

and/or biases between the international celestial and ter-

restrial reference frames (ICRF and ITRF). �e results 

illustrate that the proposed method could efficiently and 

precisely predict the PM parameters. As clearly demon-

strated, the SSA + Copula algorithm shows better per-

formance for PMx prediction in comparison with the SSA 

prediction. �e Copula-based analysis is fully successful 

in its aim to increase the accuracy of PM prediction by 

modeling the stochastic part of the PM and subtract-

ing PM by SSA-reconstructed time series. We suspect 

the main error contributions come from SSA extrapola-

tion part. So, further investigations about the SSA train-

ing time will be required to clarify this issue. Also, SSA 

+ Copula prediction method shows periodic errors, 

and these errors have a significant impact on the mean 

(30)

Success rate of PM prediction

=

Number of improvement in the predicted PM

Total number of PM prediction

× 100
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Fig. 12 Mean value of MAE of PMx and PMy prediction for 2003, 2006, and 2009 with the unit [mas]
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Fig. 13 Absolute errors of the predicted PMx (up) and PMy (down) using SSA, SSA+Gumbel Copula, SSA+Clayton Copula, SSA+Frank Copula 

compared with Bulletin A product. The unit is [mas]
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Fig. 14 Improvement of PMx and PMy prediction using SSA + Copula-based model compared with Bulletin A product for 2003, 2006, and 2009. The 

improvement in prediction is shown by yellow color

Table 6 Success rate of PMx prediction [%]

Method\year 2003 2004 2005 2006 2007 2008 2009 Average

SSA 55.29 33.31 26.52 40.16 22.90 45.94 64.70 41.26

SSA + Clayton 61.71 33.88 31.91 40.17 22.91 45.96 64.95 43.07

SSA + Frank 58.31 34.31 33.61 42.50 22.91 45.97 64.99 43.22

SSA + Gumbel 55.90 33.81 28.31 41.00 22.90 45.94 64.97 41.83

Table 7 Success rate of PMy prediction [%]

Method\year 2003 2004 2005 2006 2007 2008 2009 Average

SSA 35.95 44.99 25.43 45.28 39.50 29.21 39.50 37.12

SSA + Clayton 35.99 44.84 24.93 41.27 39.57 29.14 39.65 36.48

SSA + Frank 35.94 44.82 25.54 46.66 39.45 29.30 39.70 37.36

SSA + Gumbel 38.45 44.60 26.66 44.46 39.36 29.55 39.74 37.54



Page 17 of 18Modiri et al. Earth, Planets and Space  (2018) 70:115 

absolute error. �erefore, these occasional errors should 

be further investigated to have a noticeable progression 

in the PM prediction accuracy.
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