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Polar Orbits in the Kerr Space-Time 
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The motion of test particles in polar orbit about the source of the Kerr field of 
gravity is studied, using Carter's first integrals for timelike geodesics in the Kerr 
space-time. Expressions giving the angular coordinates of such particles as 
functions of the radial one are derived, both for the case of a rotating black hole 
as well as for that of a naked singularity. 

1. INTRODUCTION 

Since Carter [1 ] proved that the corresponding Hamilton-Jacobi equation 
is separable, the orbits of particles falling freely in the Kerr field of gravity 
have been the object of extensive qualitative as well as quantitative 
analysis. Reference E2], together with the "bibliographical notes" at the 
end of [-3, Chap. 7] comprises the most recent guide to the literature. 

Generally, the analysis of such orbits tends to be quite complicated. 
Thus, for reasons of mathematical simplicity and or physical interest, some 
particular class of geodesics, for example, those corresponding to 
equatorial orbits, is chosen as the object of investigation. Following this 
trend, we focus the analysis presented in this paper on polar orbits of 
massive particles, i.e., timelike geodesics crossing the symmetry axis of the 
Kerr space-time. 

The physical interest in polar orbits derives from a set of effects, such 
as the advance of the ascending node and the geodetic effect, which recent 
technological advances seem to have rendered measurable in the case of 
artificial satellites in polar orbit around the Earth I-4, 5]. Of course, the 
weakness of the Earth's field of gravity and the small velocities involved in 
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such experiments guarantee that an approximate analysis is satisfactory. 
However, the exact treatment of the corresponding orbits in the Kerr  
space-time gives a clearer physical insight into how the above effects arise. 

This note is structured as follows: In Section 2, the equations of 
motion of the particles under consideration are presented along with a 
qualitative analysis of their basic features. In Section 3, analytic expressions 
for the orbit equation are obtained for characteristic cases that arise 
according to the results of Section 3. In the same section, the equations of 
motion are integrated numerically for a number of cases, whereby 
corroboration and easy visualization of previous results is obtained. Our 
analysis is based on the method of [3, Chap, 7] and extends some of the 
results contained in this and [6]  and [7].  

2. FIRST INTEGRALS FOR POLAR TIMELIKE GEODESICS 

Let x% a = 0 ,  1, 2, 3, stand for the Boyer-Lindquist  (BL) [6]  coor- 
dinates (t, r, 9, ~o) in which the Kerr metric reads 

ds 2 = - (1 - 2 M r / S )  dt 2 - 2 ( 2 M r / Z ) a  sin29 dt do 

+ (X /A)  dr 2 + X  dO 2 + ( A / Z )  sin29 &02 (1) 

where 
Z : = r  2+a2cos20  

zl := r 2 + a 2 - 2 M r  (2) 

A := (r 2 + a2) 2 - da  2 sin20 

and M, a denote the mass and specific angular momentum of the object 
which gives rise to the gravitational field represented by the Kerr space- 
time. 

If xa(r), r denoting proper time, is the coordinate image of the timelike 
geodesic C(r) followed by a particle of rest mass #, then the vector 
ua=  2" := dx"/dz satisfies the following set of equations 

i = ( A X ) - L ( A E -  2Mar(o) 

x2e2 = [-(r 2 + a 2 ) E _  a~12 _ ~(u~r ~ + K) 
(3) 

X202 = K- /12a ;  cos29 - (aE sin 9 - ~b/sin 3) 2 

0 = A J [ ( 2 M r / X )  a E +  (t  - 2 M r / Z )  ~/sin 2 3] 

where ~b, E, and K are real constants. This was first shown by Carter [1 ], 
and the constant K which does not correspond to any obvious symmetry of 
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the Kerr metric bears his namer  The constants ~b and E, on the other hand, 
correspond, respectively, to the axially symmetric and stationary character 
of the Kerr space-time. They also represent the projection of the angular 
momentum along the symmetry axis and the "energy at infinity" of the 
particle following C(z). 

Let us now demand that the orbit represented by C(r) be a polar one, 
meaning that it intersects the symmetry axis of the Kerr space-time. Since 
this axis consists of points where sin 0 = 0, it follows from (3) (third line) 
that 

~b=O (4) 

is a necessary condition for C(r) to be polar. Incorporating this condition 
in (3) and setting # = 1 for convenience we obtain 

i = A E / A S  (5a) 

~y-2/~2 = R(r)  := (r 2 q- a2)2[E 2 - V2(r)] (Sb) 

Z'202 = 0(0) := Q -a2(1  - -E  2) COS20 (5c) 

(o = 2 M a E r / A X  (5d) 

where 

V 2 := A ( K +  r2)/(r 2 + a2) 2 (6) 

and 

Q := K -  a2E 2 (7) 

The combination of the first with the last of (5) leads to 

d~p/dt = co(r, O) := 2MariA  (8) 

Therefore, according to the asymptotic frame, our particle rotates about 
the source of the Kerr field with angular velocity co(r, 0). The latter 
coincides with the characteristic angular velocity of each member of the 
congruence of curves defined by the vector e0, where 

eo := (A/ZA)I/2(~t  + coO~) (9) 

2 Insights into the physical meaning of Carter's constant can be found in [11 13]. 



1238 Stoghianidis and Tsoubelis 

This congruence is orthogonal to the t = const, hypersurfaces of the Kerr 
space-time. The frame (el, e2, e3), where 

el := (A/,S)I/2Or 

e2 := (1/2;)1/2~o (10) 

e3 := (S/A sin2,9)1/2d~o 

defined along each member of the congruence is a locally nonrotating 
frame (LNRF) in the terminology of Bardeen I-9] who first constructed 
this class of frames in stationary axially symmetric space-times. 

Thus, (8) implies that the particle under consideration is observed to 
remain in the r - 0  plane by all the LNRFs it meets as it revolves around 
the source of the Kerr field. On the basis of this observation, we can call 
the orbits considered in this paper locally planar. 

The orbits considered in the following are assumed to be polar in t he  
usual sense of the term. By this we mean that our test particle is supposed 
not only to cross the symmetry axis but also to sweep the whole range of 
the angular coordinate oa. Therefore, we demand that ~ does not vanish for 
any 0~ [0, it]. According to (5c), this condition is equivalent to the 
demand that 

Q > 0  when E2>~l (11) 

and 

Q>a2(1 -E  2) when E 2 < l  (12) 

and, in conjunction with (6) and (7), it implies that 

V2(O ) = K/a 2 > E 2 (13) 

Equation (5b) shows that V2(r) plays the role of a square potential for 
the r motion of our particle. Therefore, (13) implies that our particle 
cannot move into the negative-r region, toward which the Kerr metric is 
extendible [1 ], having started from a point where r > 0. Thus we do not 
lose in generality by restricting our considerations to the region of 
positive r. 

From (6), (7), (11), and (12) it follows that 

V2(O) = K/a 2 > 1 (14) 

lim V2(r)= 1 - 0  (15) 
r ---> o o  

and that the local extrema of VZ(r) occur at the roots of the equation 

Mr4-(K-aZ)r3 + 3M(K-a2)r2--(K--a2)a2r--MKa2=O (16) 
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Descartes' rule and (14) imply that (16) has at most three roots in the r > 0 
region, while (14) and (15) imply that it has at least one root in the same 
region. Moreover, in the case of a rotating black hole, i.e., when M 2 >~ a 2, 
V2(r) necessarily vanishes at the roots r+ : = M + _ ( M 2 - a 2 )  1/2 of the 
equation 3(r)  = O. 

The above qualitative study suffices for determining the essential 
features of the effective square potential VZ(r). This is shown by Figs. 1 and 
2, where V:(r) is plotted for various values of Carter's constant K, 
corresponding to a rotating black hole and a naked singularity (a2> M2), 
respectively. 

The general features of the r motion of a particle in polar orbit about 
the source of the Kerr field can be deduced from graphs of V2(r), such as 
those shown in Figs. 1 and 2. They make it obvious, for example, that such 
a particle follows a bound orbit when its specific energy at infinity E is such 
that E 2 < 1. They also show that, when E 2 < 1 and a black hole is involved, 
the particle gets dragged, disappearing behind the event horizon, i.e., the 
surface r =  r+ ,  unless K is such that V2(r) develops a local maximum 2 Ernax 

V~lrl a : . 8 M  

K=24 

1.0 

.6 

log(r/M) 

Fig. 1. The effective square potential V2(r) for polar orbits in the neighborhood of a rotating" 
black hole with a=0.8 M. The parameter K distinguishing the three curves is Carter's 
constant in units of M 2. 
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Fig. 2. 

Vz(r}  ' 

1 .4-  

1.0 

.6 

.2  �84 

K=24  

a : 1 . 2 M  

Iog(r/MI 
The effective square potential V2(r) for polar orbits in the neighborhood of a naked 

singularity with a = 1.2 M. Carter's constant K is given in units of M 2. 

2 outside the event  hor izon  and  E 2 <  Ema x. In  this case, the particle will not  
be swallowed by the black hole, p rovided  it is initially found in the region 
r >  ro, where ro is the point  on the r axis where V 2 ( r ) =  E2max . Similar 
considerat ions apply  when E2>~ 1. In  this case, however ,  a particle with 

2 E 2 < E,~ax is not  necessarily bound.  I t  can follow a free orbit,  moving  in the 
half-open interval  ro <~ r < ~ ,  provided it is initially found in this region. 

3. T H E  O R B I T  E Q U A T I O N  

Depending  on whether  or  not  the coord ina te  radius r is cons tant  a long 
a given timelike geodesic, the cor responding  particle orbit  is character ized 
as spherical or  nonspherical ,  respectively. 

Consider ing the case of spherical  orbi ts  first, we note  tha t  E 2 = V2(ro), 

where r0, a root  of (16), is a necessary condi t ion for a spherical  orbit  to 
obtain.  Thus,  (16) implies tha t  

K =  r ( M r  3 + a2r 2 - 3MaZr  + a4)/Z (17) 

where 
Z := r 3 -- 3 M r  2 + aZr + M a  2 (18) 
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along a spherical polar orbit. For  convenience, r0 has been replaced by r in 
the last two equations. 

From (6) and (17) it follows that the energy of a particle following a 
polar orbit of radius r is determined by the equation 

E 2 = rd2/(r  2 + a 2 ) Z  (19) 

Since E 2 must be positive, (19) implies that spherical polar orbits lie out- 
side the interval rl ~< r ~< r2, where r l ,  r2 are the two roots that the equation 
Z(r )  = 0 can have on the positive r axis. It  is a simple matter  to obtain 
(a/M)2<<. 3 ( 2 x f 3 - 3 ) ~  1.3924 as the condition for such roots to obtain. 

From (18) we find that 

where 

1 "2 := 1 - -  E 2 = M H / ( r  2 + a 2 ) Z  (20 )  

H(r)  := r 4 --  4 M r  3 + 2a2r 2 + a 4 (21) 

Since Z ( r ) >  0, it follows from (20) that E 2 is less, equal or greater than 
unity according to whether H(r )  is greater, equal or less than zero, respec- 
tively. Descartes'  rule, on the other hand, implies that the equation 
H(r)  = 0 can have at most two roots for r > 0. One finds that such roots 
exist as long as (a/M)2<<. (27/16)= 1.6875. This means that no spherical 
orbits with E2~> 1 are possible when the ratio a2 /M 2 exceeds the above 
value. 

Turning to (5) we see that the last two of them imply that, when ~ > 0 

d~o 2 M a E r  

dO ,dO 1/2 
(22) 

Let us suppose that E 2 < 1. Then we can use the latitude angle tp, where 

to write (22) in the form 

d~o 

where 

~b := (re/2) - ,9 (23) 

2 M a E r  

AQ1/2(1 - k 2 sin2O)m 

k 2 := a2F2/Q 

According to (7), (12), (17), and (20) 

k 2 = (a/r)2(r 4 - 4 M r  + 2a2r 2 + a 4 ) / H <  1 

(24) 

(25) 

(26) 
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Therefore, (24) gives 

2 M a E r  F 
q)=~P0 ~ (0, k) (27) 

where F(0, k) is the elliptic integral of the first kind defined by 

fo F(0, k) := (1 - k  2 sin20) -1/2 dO (28) 

The integration of (22) when E 2 --- 1 is trivial. When E 2 > 1, one can 
write it in the form 

dq~ 2 M a E r  
-'- + A ( K -  a2)1/2(1 - 12 sin20) 1/2 (29) 

where 

l 2 = a2(E 2 - 1 ) / (K  - a 2) (30) 

According to (13), l 2 < i so that 

2 M a E r  
q)=~Ooq A ( K _ a 2 ) I / 2  F(O, I) (31) 

In general, the bound orbits corresponding to E2>~ 1 do not show any 
qualitative difference from those with E 2 < 1. Therefore, we will restrict our 
considerations to the case E ~ < 1 in the following. 

Equation (5d) shows that ~b>0 for future pointing ( E > 0 )  polar 
orbits and a > 0. This means that the orbit is dragged in the sense in which 
the source is rotating. In the case of the spherical orbits this is the main 
effect of the nonvanishing of a and it is reflected in the fact that the 
ascending node advances by 6q~ per revolution, where, according to (27) 

8 M a E r  
~q~ = ~ F(~/2,  k )  

"~d-'- 
(32) 

when E 2 < 1. This is shown in Fig. 3 where the orbit of a particle with E = 
0.956 and K = 14.783 orbitting a black hole with a = 0.8 M is pictured using 
the asymptotic meaning of the BL coordinates r, 0, and q~. Since 

F(r~/2, k )  ~ (~/2)(1 + k2/4), k 2 ,~ 1 (33) 

and (a/r) 2= 6.4 x 10 a in this case, it follows from (26) and (32) that 
&0 ~ 18.12 ~ The orbit shown in Fig. 3, as well as the one shown in Fig. 4 
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X 

Fig. 3. A spherical polar orbit around a rotating black hole with a = 0.8 M. The coordinate 
radius of the orbit is r 0 = 10 M, E = 0.956, and K =  14.783 M 2. 

( r /M I 

Fig. 4. 

0 

t ~  
! 

-12  

X 

The projection of the orbit shown in Fig. 3 in the x - y  plane. 
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and a series of others corresponding to various values of E and K, was 
obtained by numerical integration of (5) with the purpose of checking the 
analytic results of this section. 

In the case of the nonspherical orbits, ? # 0. Then, it follows from (5) 
that 

f d~/01/2= ~ f dr/R1/2 (34) 

and 

q~ = +_2MaE f dr(rA/R 1/2) (35) 

where 

R(r) := - F 2 r  4 + 2Mr 3 - (a2F 2 + Q )r 2 + 2M[a2(l  - / - 2 )  + Q] r -  Qa 2 

and the ___ sign is that of ?. 
Now 

(36) 

f dO/O ~/2 = - f  d$ [Q(1 - k  2 sin $ ) ]  1/2 = _Q-1/2F(~t ' k ) +  const. (37) 

Therefore, in order to obtain 0 and ~0 as functions of r, it suffices to com- 
pute the r integrals on the right-hand side of (34) and (35), respectively. 

In general, the equation R ( r ) = 0  has four roots in the interval 
0 < r < ~ .  Assuming that ro is a double root of this equation, we can write 

where 

R(r) = (r - %)2 G(r) (38) 

G(r) := - F 2 r  2 + 2 ( M -  F2ro)r -  aZQ/r 2 (39) 

Obviously, ro represents the coordinate radius of a spherical orbit of the 
kind considered earlier. From (38) it follows that when G(ro)> 0 the root 
ro lies in an open interval where R ( r ) > 0 .  This implies that the 
corresponding spherical orbit is unstable. Similarly, when G(ro)< 0, the 
root ro is isolated and the corresponding spherical orbit is stable. 

When the double root r o of the equation R(r)= 0 is accompanied by 
an open interval r' < r < r" where G(r) > 0, a nonspherical orbit appears in 
this interval which is characterized by the same values of E 2 and K, or F 2 
and Q, as the spherical one at r o. Assuming that this is the orbit we are 
dealing with, we can write R(r) in the form 

R = r2(r - ro)2(r - r')(r" - r) (40) 
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and use the subst i tut ion 

x := (r - r0 ) - i  

to turn the integral  on the r ight -hand side of  (34) into 

(41) 

where 

Then 

Io ( r ) : : i d r lR~ la=fdr [ ( r - ro )2G]  I / 2 = - f d x l X ' 1 2  (42) 

)((X) := ~ + fix + 7X 2 

0r : =  _ / , 2  

fi := 2(M--  2F2ro) = F2(r  ' + r" - 2t"o) 

:= G(ro) = F2(ro - r ' ) ( r "  - ro) 

(43) 

Io=-(1/7)l121n(fl+2?x+71/2X~/2), if G(ro) > 0 

=(-1 /y ) l /Zs in - l (27x+f l ) /F2( r" - r  ') if G ( r o ) < 0  (44) 

Actually, G(r) m a y  vanish at r o. In this case ro coincides with either r '  
or r", whereby 

2 (r"- -r~  ~/2 
- -  if  r ' = r  o ( 4 5 )  

I~ = + IFI (r" - ro) \ r  -- roj 

When r 0 coincides with r' ,  I o is obta ined  by replacing r" by r '  in (45). 
In order  to calculate the integral  on the r ight -hand side of (35) in the 

case of  an orbit  associated with a spherical one at to, let us first assume 
that  the particle is orbi t t ing a black hole with a 2 < M  2. Then A(r)= 
( r -  r ) ( r -  r+) ,  and after some algebra  we obta in  

I i ( r )  :=  f (rlAR 11'2) dr 

where 

The subst i tut ion 

�9 r+ )I+-~ ~(ro_r )I ( 4 6 )  
= J o)S~ (r+--r_ 

I+_(r) : = f  [(r--r•  dr (47) 

x =  (r--r+) < (48) 
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reproduces the results (42)-(44) where, now, r+ replaces ro and 1+ replaces 
Io, respectively. Moreover, only the first of the expressions given by (43) 
obtains, because G(r+)> 0. When r"= to, the final expression for G(r) sim- 
plifies considerably and reads 

2MaE F 2r" 
, - - - , ,  I ~  u(r) 

~p(r)=~Oo-~ I r l ( r ' - r  +)(r - r _ ) L r  - r  

r+u(r+) lu(r)-u(r+) r_u(~__)ln u(r)-u(r_) ] (49) + - - - -  in r"-r+ u(r)~u-~-;-~+) r"-  u(r)+u(r_) J 
where 

u( r ) = ( r -r___~' ~ 112 ( 50 ) 
\r"-  r) 

It is clear from Fig. 1 that a particle following an orbit associated with 
a stable spherical one oscillates in the region r' <~ r < r", which includes the 
horizons at r = r +, since r' < r_  < r + < r" < r 0. Of course, this does not 
mean that, having started from a point in the region r > r+ and fallen into 
the black hole, the particle can return to the region outside the event 
horizon r = r+.  As a matter of fact, the particle finds itself in a new replica 
of the space-time region into which it enters each time it crosses one of the 
horizons [-1 ]. In any case, the motion is smooth even though the functions 
I+_(r), which determine ~o(r) via (35) and (46), diverge at r=r+_. The 
divergence of I+ (r) at the horizons reflects the singular character of the BL 
coordinates at r = r_+. 

From Fig. 1 it is also clear that the orbit associated with an unstable 
spherical one is separated into two branches by the point r = r 0 .  The 
branch r <~ r0 represents a trapped orbit similar to the one described in the 
previous paragraph. The whole branch r >~ ro, on the other hand, remains 
outside the event horizon since r 0 > r +  necessarily. In this case both O(r) 
and ~0(r) diverge as r--* ro. This follows from (34), (35), (37), and (44) and 
is explained by the fact that the value ro of the coordinate radius r 
corresponds to a spherical orbit. Therefore, R ( r ) ~ 0  as r--*ro, which 
implies that ~ ~ 0, while, according to (5), 0 and ~b tend to finite limits as 
the particle approaches the hypersurface r = ro. 

W h e n  M 2 < a  2, the equation A(r)=O has no roots along the real r 
axis. Therefore, the integration of the right-hand side of (35) must in this 
case proceed along a line different from the one followed above for 
M 2 > a 2. Noting that 

r 1 (a2--ror rr_Oro ) 
A(r_ro--------~)=A(ro) t, -~--~ + (51) 
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we conclude that (46) is now replaced by the expression 

1 
I~ (r) = ~ (rot0 + I 0  

afro) 
(52) 

where 
9 r (" a - -  or 

I 2 ( r )  J (53) 

The substitution 

X = - - -  
)~+ m r  

(54) 

where 
2_+ : = 2 + p  

r ' r "  - -  a 2 

r' + r " - 2 M  

p := [()o-r')()~-r")] 1'2 

(55) 

turns (52)into 

I2(r) = -  
2p (" (a2--roA+)x+a2-ro)~ 

A().+ '~)~ . . . .  ~ _ 2 d  x (x 2 + pZ)[G(2 + )(x; - q2)] 1/ (56) 

where 
A(St_) M - 2  p2 := . 
A(2+) 2+ - M  

G(2_) r ' + r " - 2 2  q~-:_ 
G(2+) r '+r"-22+ 

(57)  

By (54) the boundary points r', r" of the orbit associated with the 
spherical one at r 0 are mapped on the points x = _+ Iq[ of the x axis. Both 
p2 and q2 are positive quantities. This is obvious for the former, since 
A(r) > 0, while for the latter it follows from the fact that (55) implies that 
2r Jr', r"] and only one of 2+ belongs to the same interval. 

Finally, a lengthy calculation shows that 

( xZ-q2)  '/2 [(p:+qZ)x2] l/z 
/ 2 ( r )=B+ tan -1 \p2+q2j + B  coth l|n--V777(~2--_7-f{ ! if G ( 2 + ) > 0  

(58)  (q2-x2)l/2 _1[(p2+qZ)x2] 1/2 
= B + t a n h  l \pZ+q2 , / +B tan Lp4(q2 x2)j if G ( 2 + ) < 0  
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z t 

%t 

i f /  %// / /  

{7 
Fig. 5. The nonspherical polar orbit which results from the one shown in Fig. 3 by changing 
the energy of the particle to E=0.957. The particle oscillates between r '=8.41 M and 
r" = 12.10 M. 

qr/t~l 

r . l ~ -  
I 

-12 

X 

Fig. 6. The projection of the orbit shown in Fig. 5 in the x - y  plane. 
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where 

2p(a2 - r~ ) (59) 
8 +  -- (;~+)[a(;~+)ll/2 

It remains to compute Ii(r) when the equation R(r) = 0 has either only 
two or four distinct positive roots. However, the results obtained so far 
make it evident that the analytic expressions for Ii(r) tend to be quite com- 
plicated. Moreover, it should be clear from Figs. 1 and 2 that no 
qualitatively new features arise in connection with the above cases. 
Therefore, they will not be discussed further here. In any case, one will 
most likely turn to numerical integration or approximation techniques for 
the analysis of specific cases of nonspherical polar orbits. An example of a 
nonspherical orbit obtained by numerical integration is illustrated in Figs. 
5 and 6. The results of the approximation approach have been presented by 
us in a separate note [10] .  
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