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Abstract
This paper reports the deployment of computational storage

drives in Alibaba Cloud to enable cloud-native relational

database cost-effectively support analytical workloads. With

its compute-storage decoupled architecture, cloud-native re-

lational database should pushdown data-intensive tasks (e.g.,

table scan) from front-end database nodes to back-end storage

nodes in order to adequately support analytical workloads.

This however makes it a challenge to maintain the cost ef-

fectiveness of storage nodes. The emerging computational

storage opens a new opportunity to address this challenge: By

replacing commodity SSDs with computational storage drives,

storage nodes can leverage the in-storage computing power

to much more efficiently perform table scans. Practical imple-

mentation of this simple idea is non-trivial and demands cohe-

sive innovations across the software (i.e., database, filesystem

and I/O) and hardware (i.e., computational storage drive) lay-

ers. This paper presents such a holistic implementation for

Alibaba cloud-native relational database POLARDB. To the

best of our knowledge, this is the first real-world deployment

of cloud-native databases with computational storage drives

ever reported in the open literature.

1 Introduction

Relational database is an essential building block in mod-

ern information technology infrastructure. Therefore, all the

cloud vendors have invested significant efforts to grow their

relational database service (RDS) business. Not surprisingly,

some cloud vendors have developed their own cloud-native

relational database systems, e.g., Amazon Aurora [28] and

Alibaba POLARDB [9]. In order to achieve sufficient scala-

bility and fault resilience, cloud-native relational databases

naturally follow the design principle of decoupling compute

from data storage [4,17]. Meanwhile, they typically aim to be

compatible with mainstream open-source relational databases

(e.g., MySQL and PostgreSQL) and achieve high performance

for OLTP (online transaction processing) workloads at a much

lower cost than their on-premise counterparts.

It is highly desirable for cloud-native relational databases

to adequately support analytical workloads. As pointed out by

the authors of [28], because cloud-native relational databases

decouple compute from data storage, the network band-

width between database nodes and storage nodes becomes a

scarce resource. This however does not match well to ana-

lytical workloads that involve intensive data access. To best

serve OLTP workloads, cloud-native relational databases typ-

ically employ the row-store model (or the hybrid-row/column

model [5]). This could make the network bandwidth an even

bigger bottleneck for analytical workloads. In order to bet-

ter serve analytical workloads, the almost only viable option

is to off-load data-access-intensive tasks (in particular table

scan) from database nodes to storage nodes. This concept is

certainly not new and has been adopted by both proprietary

database appliances (e.g., Oracle Exadata) and open-source

databases (e.g., MySQL NDB Cluster). In spite of the simple

concept, its practical implementation in the context of cloud-

native databases is particularly non-trivial. On one hand, each

storage node must be equipped with sufficient data process-

ing power to handle table scan tasks. On the other hand, to

maintain the cost effectiveness of cloud-native databases, we

cannot significantly (or even modestly) increase the cost of

storage nodes. By complementing CPUs with special-purpose

hardware (e.g., GPU and FPGA), heterogeneous computing

architecture appears to be an appealing option to address this

data processing power vs. cost dilemma.

This work applies heterogeneous computing in POLARDB

storage nodes to efficiently support table scan pushdown. The

key idea is simple: Each POLARDB storage node off-loads

and distributes table scan tasks from its CPU to its data stor-

age devices. Under this framework, each data storage device

becomes a computational storage drive [1] that can carry

out table scan on the I/O path. Compared with off-loading

table scan to a dedicated stand-alone computing device (e.g.,

FPGA/GPU-based PCIe card), distributing table scan across

all the storage drives can minimize the data traffic across the

storage/memory hierarchy and obviate data processing hot-

spot. This simple concept is not new and has been discussed
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(e.g., see [11, 14]). However, its practically viable implemen-

tation and real-world deployment remain completely missing,

at least in the open literature. This is mainly due to the dif-

ficulty of addressing two challenges: (1) how to practically

support the table scan pushdown across the entire software

hierarchy, and (2) how to implement low-cost computational

storage drives with sufficient table scan processing capability.

Over the course of materializing this simple idea in the

context of POLARDB on Alibaba Cloud, we developed a

set of software/hardware techniques to cohesively address

the two challenges. To reduce the product development cy-

cle and meanwhile ensure cost effectiveness, computational

storage drives use an FPGA-centric host-managed architec-

ture. Inside each computational storage drive, a single mid-

range low-cost Xilinx FPGA chip handles both flash mem-

ory control and table scan. With highly optimized software

and hardware design, each computational storage drive can

support high-throughput (i.e., over 2GB/s) table scan on com-

pressed data and meanwhile achieve storage I/O performance

comparable to leading-edge NVMe SSDs. We developed a

variety of techniques that enable POLARDB storage nodes

fully exploit the capability of computational storage drives.

This paper presents these design techniques and elaborates

on their implementation, and further presents evaluation re-

sults to demonstrate their effectiveness. Based on the TPC-H

queries, we extracted six individual table scan tasks and ran

these scan tasks on one storage node. Such node-level evalua-

tion shows that the computational storage drives can largely

reduce both scan latency and CPU utilization of the storage

node. We further carried out system-level evaluations on a PO-

LARDB cloud instance over 7 database nodes and 3 storage

nodes. Results show that this solution can noticeably reduce

the TPC-H query latency. To the best of our knowledge, this

is the first application of emerging computational storage in

production database ever reported in the open literature.

2 Background and Motivation

2.1 POLARDB: Basic Architecture

POLARDB is a new cloud-native OLTP database designed

by Alibaba Cloud. Its design goals come from our cloud cus-

tomers’ real needs: large per-instance storage capacity (tens

of TB), high TPS (transactions per second), high and scalable

QoS and high availability. POLARDB provides enterprise-

level cloud database services and is compatible with MySQL

and PostgreSQL. Fig. 1 illustrates the compute-storage decou-

pled architecture of Alibaba POLARDB. Database computing

nodes and storage nodes are connected through high-speed

RDMA network. In each POLARDB instance, there is only

one read/write database node that handles both the read and

write requests, and the other database nodes handle only read

requests. All the nodes in an instance, including read/write

nodes and read-only nodes, are able to access the same copy

of data on a storage node. To ensure the high availability, PO-

LARDB uses the Parallel-Raft protocol to write three copies

of data across the storage nodes [9].

Figure 1: Illustration of POLARDB architecture.

2.2 POLARDB: Table Scan Pushdown

Off-loading table scan from database nodes to storage nodes

is important for cloud-native relational database to effectively

handle analytical workloads. This concept trades heavier data

processing load on storage nodes for significantly reduced

network traffic between database nodes and storage nodes.

Moreover, since POLARDB employs the row-store model

to better serve OLTP workloads, the column-oriented nature

of table scan tends to demand even higher data processing

power in storage nodes. Therefore, the key design issue is how

to cost-effectively equip storage nodes with sufficient data

processing power to handle the additional table scan tasks.

The most straightforward option is to simply scale up each

storage node, which nevertheless is not practically desirable

mainly due to the cost overhead. Table scan over row-store

data does not fit well to modern CPU architecture and tends

to largely under-utilize CPU hardware resources (e.g., cache

memory, and SIMD processing resource) [2]. As a result, we

have to more aggressively scale up the storage nodes to com-

pensate for the inefficiency of CPU-based implementation.

Hence, this straightforward option is economically unappeal-

ing and even unacceptable, especially as the classical CMOS

technology scaling is quickly approaching its end [8].

An alternative is to complement storage node CPUs with

special-purpose hardware (e.g., FPGA or GPU) that can carry

out table scan with much better cost effectiveness. Under
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this heterogeneous computing framework, the conventional

practice uses a centralized heterogeneous architecture where

the special-purpose hardware is implemented in the form of a

single stand-alone FPGA/GPU-based PCIe card (e.g., see [24,

26, 29]). Nevertheless, this approach has several drawbacks

for our targeted systems: (1) High data traffic: All the raw data

in their row-store format must be fetched from the storage

devices into the FPGA/GPU-based PCIe card. Due to the

data-intensive nature of table scan, this leads to a very heavy

data traffic over the PCIe/DRAM channels. The high data

traffic can cause significant energy consumption overhead

and inter-workload interference. (2) Data processing hot-spot:

Each storage node contains a large number of NVMe SSDs,

each of which can achieve multi-GB/s data read throughput.

As a result, analytical processing workloads could trigger very

high aggregated raw data access throughput that is far beyond

the I/O bandwidth of one PCIe card. This could make the

FPGA/GPU-based PCIe card become the system bottleneck.

The above discussion suggests that a distributed heteroge-

neous architecture is a better option. As illustrated in Fig. 2,

by distributing table scans directly into each storage drive,

we can eliminate the high data traffic over the PCIe/DRAM

channels, and obviate data processing hot-spot in the system.

This intuition directly motivated us to develop and deploy

computational storage drives in POLARDB storage nodes.

2.3 Computational Storage Drive

Loosely speaking, any data storage device that can carry out

data processing tasks beyond its core storage duty can be

called a computational storage drive. The simple concept

of empowering storage devices with additional computing

capability can trace back to over 20 years ago [3, 21, 22].

Computational storage complements with CPU to form a het-

erogeneous computing system. Compared with its CPU-only

counterpart, a heterogeneous computing system not surpris-

ingly can achieve higher performance and/or energy efficiency

for many applications, as demonstrated by prior research (e.g.,

see [10,11,15,16,18,23,27]). However, it is apparently subject

to two cost overheads: (1) the hardware cost of implementing

computational storage drives, and (2) the development cost on

developing all the necessary hardware and software solutions

to enable its real-world deployment. In spite of the over two

decades of research, computational storage has not yet entered

the mainstream market, arguably because of the absence of a

practically justifiable benefit vs. cost trade-off.

To overcome the cost barrier, we chose an FPGA-based

host-managed computational storage drive design strategy.

This can reduce the development cost from two aspects: (1)

We use a single FPGA to realize both flash memory control

and computation (i.e., table scan in this work) inside compu-

tational storage drives. Compared with ASIC-based approach,

the circuit-level programmability of FPGA can significantly

reduce the computational storage drive development cycle and

CPU	  &	  DRAM	  

PCIe	  Root	  Complex	  &	  Switch	  

Table	  Scan	  

Accelerator	  

(FPGA/GPU)	  
NAND	  Flash	  

Flash	  control	  

NAND	  Flash	  

Flash	  control	  

.	  .	  .	  

(a)	  Centralized	  heterogeneous	  compuHng	  architecture	  

High	  data	  

traffic	  

CPU	  &	  DRAM	  

PCIe	  Root	  Complex	  &	  Switch	  

.	  .	  .	  

(b)	  Distributed	  heterogeneous	  compuHng	  architecture	  

Low	  data	  
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NAND	  Flash	  

Flash	  control	  

&	  table	  scan	  

NAND	  Flash	  

Flash	  control	  
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Compute	  

hot-‐spot	  

Centralized	  

compuHng	  

Figure 2: Illustration of (a) centralized heterogeneous comput-

ing architecture, and (b) distributed heterogeneous computing

architecture.

cost. (2) The computational storage drive is fully managed by

the host for the functions such as address mapping, request

scheduling, and garbage collection. Its host-management na-

ture can facilitate integrating computational storage drive into

existing software stack. It enables a high flexibility to devise

and optimize the computational storage drive’s API through

which applications can utilize its configurable computation

capability. Meanwhile, the host-managed computational stor-

age drive natively integrates into the Linux I/O stack as a

storage block device to serve normal I/O requests.

However, in return for its circuit-level programmability,

FPGA is expensive (e.g., modern high-end FPGA chip could

cost few thousand dollars), leading to a higher hardware cost

of computational storage drive. Meanwhile, the objective of

this work is to deploy computational storage drive to cost-

effectively support table scan pushdown. Therefore, one key

issue is how to minimize the hardware cost overhead while

achieving sufficiently high storage I/O and table scan process-

ing performance, which will be discussed in the next section.

3 Design and Implementation

As pointed out above, although applying computational stor-

age to support table scan pushdown is a very simple concept

and has been well discussed in the open literature, its real-

world implementation and deployment has remained missing.

Our first-hand experience of implementing this concept for

POLARDB reveals that transferring this simple idea into real

product faces the following two major challenges:
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1. Support table scan pushdown across the entire software

hierarchy: Table scan pushdown is initiated by the user-

space POLARDB storage engine that accesses data by

specifying the offsets in files, while table scan is physi-

cally served by computational storage drive that operates

as a raw block device and manages data with LBA (log-

ical block address). The entire storage I/O stack sits

in between POLARDB storage engine and computa-

tional storage drive. Hence, we have to cohesively en-

hance/modify the entire software/driver stack in order to

create a path in support of table scan pushdown.

2. Implement low-cost computational storage drive: As dis-

cussed above in Section 2.3, although the FPGA-based

design approach can significantly reduce the develop-

ment cost, FPGA tends to be expensive. Moreover, since

FPGA typically operates at only 200∼300MHz (in con-

trast to 2∼4GHz CPU clock frequency), we have to em-

ploy a large degree of circuit-level implementation paral-

lelism (hence more silicon resource) in order to achieve

sufficiently high performance. Therefore, we must de-

velop solutions to enable the use of low-cost FPGA chip

in our implementation.

The remainder of this section presents a set of design tech-

niques across the software and hardware stacks that can ad-

dress the above two major challenges.

3.1 Support Table Scan Pushdown Across the

Entire Software Stack

To tackle the first challenge, we developed techniques to sup-

port the table scan pushdown across the entire software stack,

as illustrated in Fig. 3. POLARDB database nodes incorporate

a front-end analytical processing engine called POLARDB

MPP. Being compatible with the MySQL protocol, this an-

alytical processing engine can parse, optimize and rewrite

SQL using the AST (abstract syntax tree) and a number of

embedded optimization rules. It transforms each SQL query

into a DAG (directed acyclic graph) execution plan consist-

ing of operators and data flow topology. This analytical pro-

cessing engine natively supports table scan pushdown to the

underlying storage engine. Hence, we can keep the analytical

processing engine intact in this work.

As illustrated in Fig. 3, in order to enable table scan push-

down, we have to appropriately enhance the entire storage

stack underneath the analytical processing engine, including

POLARDB storage engine, PolarFS (a distributed filesystem

under POLARDB), and computational storage driver. In the

following, we will elaborate on the implemented enhance-

ments across these three layers.

3.1.1 Enhancement to POLARDB Storage Engine

POLARDB database storage engine follows the design prin-

ciple of LSM-tree (log-structured merge-tree) [20]. Data in

SELECT l_linestatus, sum(l_quantity)

FROM     lineitem 

WHERE  l_shipdate <= date “1998-09-04”

POLARDB MPP

DAG Sink 

Op 

Table Scan 

Op 

 POLARDB 

Storage Engine

PolarFS

Schema	  (e.g.,	  lineitem	  table:	  int,int,int,int,…)	  

Predicate	  (e.g., col 11 <= date “1998-09-04”)	  

Data blocks (block_offsets	  in	  data	  file)	  

Table scan request conversion 

Data blocks (LBA	  on	  storage	  drive)

Table scan request conversion 

SQL

Computational 

Storage Driver

Data blocks (PBA	  on	  flash	  memory)

Table scan request conversion, partition, 

and scheduling 

Computational 

storage drive

Computational 

storage drive
.	  .	  .	  

Unchanged

Enhanced

Figure 3: Illustration of the overall software stack.

each table are organized into many files (typical file size is

few tens of MBs), and each file contains a large number of

blocks (typical block size ranges from 4KB to 32KB). In its

original implementation, POLARDB storage engine serves

the table scan requests using the CPUs on storage nodes.

Hence, the underlying storage I/O stack is oblivious to the

table scan pushdown. Since this work aims to utilize computa-

tional storage drives to process table scan, we have enhanced

POLARDB storage engine so that it can pass table scan re-

quests to the underlying filesystem PolarFS. As illustrated in

Fig. 3, storage engine accesses data blocks in terms of offsets

in files. Each table scan request contains: (1) the location

(i.e., offsets in files) of the to-be-scanned data, (2) the schema

of the table onto which the table scan is applied, and (3) the

table scan conditions to be evaluated. Meanwhile, POLARDB

storage engine allocates a memory buffer for storing data re-

turned from computational storage drives, and each table scan

request contains the location of this memory buffer.

As discussed later, the implemented computational storage

drives do not support all the possible scan conditions (e.g.,

LIKE is not supported in current implementation). Hence,

upon receiving table scan pushdown from the analytical pro-

cessing engine, the enhanced storage engine first analyzes

the scan conditions, and if necessary it extracts and passes a

subset of the scan conditions that can be served by the compu-

tational storage drives. After receiving the data returned from

the computational storage drives, the storage engine always

checks the data against the complete table scan conditions.

Moreover, to improve the overall system efficiency, we should
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exploit the computational parallelism across multiple compu-

tational storage drives within each storage node. Therefore,

POLARDB storage engine is able to issue multiple table scan

requests concurrently to the underlying computational storage

devices through PolarFS.

3.1.2 Enhancement to PolarFS

As described in [9], POLARDB is deployed on the distributed

filesystem PolarFS that manages the data storage across all

the storage nodes. Each computational storage drive can only

perform table scan on its own data and meanwhile data are

scanned in the unit of storage engine data blocks. Meanwhile,

due to the use of block-level compression, variable-length

compressed blocks are contiguously packed in each file (i.e.,

each compressed block is not 4KB-aligned). Therefore, Po-

larFS employs a coarse-grained data striping (4MB stripe

size) across the computational storage drives in order to en-

sure most data blocks entirely reside on one computational

storage drive. In the rare case of one compressed block locates

across two drives, the system will use storage node CPU to

handle the corresponding scan operation.

As discussed in Section 3.1.1, POLARDB storage engine

specifies the location of to-be-scanned data in the form of

offsets in files. The to-be-scanned data may span over mul-

tiple files and hence multiple computational storage drives.

Meanwhile, computational storage drives can only locate data

in the form of LBAs. Therefore, upon receiving each table

scan request from POLARDB storage engine, PolarFS must

appropriately convert this request before forwarding it to the

computational storage driver. Accordingly, we have enhanced

PolarFS from the following aspects: (1) Suppose the to-be-

scanned data span over m computational drives, the enhanced

PolarFS decomposes this request into m scan requests, each

of which scans the data on one computational storage drive.

(2) For each scan request, it converts the data location in-

formation into offsets in LBAs. As illustrated in Fig. 3, the

enhanced PolarFS subsequently passes the m scan requests

with converted LBA-based location information to the under-

lying computational storage driver.

3.1.3 Enhancement to Computational Storage Driver

As discussed above in Section 2.3, our computational storage

drive is fully managed by a host-side driver in the kernel

space. The driver exposes each computational storage drive

as a block device. Upon receiving each table scan request from

PolarFS, the driver carries out the following operations. It first

analyzes the scan conditions, and if necessary re-arranges the

scan conditions in order to better streamline the hardware-

based scan processing and hence improve the throughput. For

example, suppose the table contains 16 fields (i.e., f1, f2, · · · ,

f16), and the scan condition involves two comparisons, where

the first one compares f10 and a constant, and the second

one compares f2 and f5. Since hardware can pipeline the

table record parsing, field selection, and comparison, if we

re-arrange the scan condition by interchanging the position of

the two comparisons, we can improve the hardware utilization

efficiency and hence achieve higher processing throughput.

The driver further converts the location information of the

to-be-scanned data from the LBA domain into the physical

block address (PBA) domain, where each PBA associates

with a fixed location in NAND flash memory.

Moreover, the driver internally partitions each scan request

into a number of (much) smaller scan sub-tasks, which can

serve for two purposes: (1) A large scan task may occupy the

flash memory bandwidth for a long time, which can cause

other normal I/O request suffer from a longer latency. This

problem can be mitigated by partitioning a large scan task

into small sub-tasks and cohesively scheduling them with

normal I/O requests. (2) By partitioning a large scan task

into small sub-tasks, it helps to reduce the hardware resource

usage for internal buffering and improve flash memory access

parallelism. Moreover, storage device background operations,

in particular garbage collection (GC), can severely interfere

with table scan and hence cause significant latency penalty.

Since all the flash management functions are handled by the

host-side driver, we enhanced the driver so that it can cohe-

sively schedule GC and table scan in order to minimize the

GC-induced interference. In particular, in the case of heavy

and bursty analytical processing workloads, the driver will

adaptively reduce or even suspend the GC operation.

3.2 Reduce Hardware Implementation Cost

In order to tackle the challenge of computational storage drive

implementation cost, the key is to maximize the FPGA hard-

ware resource utilization efficiency. To achieve this objective,

we further developed the following techniques across the soft-

ware and hardware layers.

3.2.1 Hardware-Friendly Data Block Format

We first modified POLARDB storage engine data block for-

mat in order to facilitate the FPGA implementation of table

scan. Table scan mainly involves various data comparison

operations (e.g., =, ≥, ≤). In spite of the FPGA circuit-level

programmability, it is difficult for FPGA to implement com-

parators that can efficiently support multiple different data

types. In this work, we modified POLARDB storage engine

so that it stores all the table data in the memory-comparable

format, i.e., data can be compared using the function mem-

cmp(). As a result, computational storage drives only need to

implement a single type of comparator that can carry out the

memcmp() function, regardless of the specific data types in

different fields of a table. By enabling the implementation of

type-oblivious comparators in FPGA, this can largely reduce

the usage of FPGA resources for implementing table scan.
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We further modified the storage engine data block struc-

ture in order to improve the hardware utilization efficiency.

Fig. 4(a) illustrates the data block format being used in the

original storage engine: One data block contains a number

of sorted table entries, and ends with meta information (i.e.,

1-byte data compression type and 4-byte CRC). Although

such a block format can be easily handled by CPUs, it is not

friendly to the hardware-based table scan in computational

storage drives. We modified the data block format as illus-

trated in Fig. 4(b), where we add an additional block header

including 1-byte block compression type, 4-byte number of

key-value pairs, and 4-byte number of restart keys (note that

restart key is used to facilitate key search in the presence

of prefix compression). This modified block format is much

more friendly to hardware-based table scan because: (1) Com-

putational storage drive can decompress each block and check

CRC without demanding POLARDB storage engine to pass

the size information of each block. (2) By adding the “# of

keys” and “# of restarts” fields at the beginning of each block,

the hardware can more conveniently handle the restarts within

each block and detect the end of each block. This is well suited

to the sequential data processing flow of the hardware, and

hence simplifies the FPGA-based hardware implementation.

Compressed	  block	  

Type:	  1-‐byte	  

CRC:	  4-‐byte	  

Compressed	  block	  

Type:	  1-‐byte	  

CRC:	  4-‐byte	  

#	  of	  keys:	  4-‐byte	  	  

#	  of	  restarts:	  4-‐byte	  

Type:	  1-‐byte	  

(a)	   (b)	  

Figure 4: (a) Block structure in conventional practice, and (b)

modified block structure to simplify hardware implementation

of data scan.

3.2.2 FPGA Implementation

Fig. 5 shows the parallel and pipelined architecture of our

FPGA implementation. To reduce the cost, we use a single

mid-range FPGA chip for both flash memory control and table

scan. The FPGA incorporates a powerful soft-decision LDPC

(low-density parity-check) coding engine. This enables the

use of low-cost 3D TLC (and QLC in the future) NAND flash

memory, which helps to reduce the overall computational

storage drive cost. We use a parallel and pipelined hardware

architecture to improve the table scan processing throughput.

As shown in Fig. 5, it contains two parallel data decompres-

sion engines and four data scan engines. Current implementa-

tion supports the Snappy decompression and following scan

conditions: =, 6=, >, ≥, <, ≤, NULL, and !NULL.

Middle-‐range	  Xilinx	  KU15P	  16nm	  FPGA	  

Flash	  Control	  

(so>	  LDPC)	  

Scan	  #1	  

Scan	  #3	  

Scan	  #2	  

Scan	  #4	   PCIe	  

Gen3x4	  

Buffer	  
Decomp.	  #1	  

Decomp.	  #2	  
Buffer	  

Figure 5: Parallel and pipelined FPGA implementation.

To further improve the hardware resource utilization effi-

ciency, we applied a simple design technique described as

follows. As pointed out above, all the fields are stored in the

memory-comparable form, hence we only need to implement

type-oblivious memcmp modules to evaluate each condition.

Since the number of scan conditions varies among different

table scan tasks, each scan engine employs a recursive archi-

tecture in order to maximize the FPGA resource utilization.

Each scan engine contains one memcmp module and one RE

(result evaluation) module. Let P = ∑
m
i=1(∏

ni
j=1 ci, j) denote

the overall scan task, where each ci, j is one individual condi-

tion on one field. The symbols ∑ and ∏ represent the logic

OR and AND operation, respectively. Using a single memcmp

and RE module, we recursively evaluate the predicate with

one condition ci, j at a time. The RE module checks whether

the previous memcmp output (i.e., all the ci, j’s that have been

evaluated so far) is sufficient to determine the value of the

result P. Once the value of P (i.e., either 1 or 0) can be deter-

mined, the scan engine can immediately finish the evaluation

on current row, and start to work on another row. This recur-

sive architecture can handle any arbitrary predicate with the

optimal FPGA hardware resource utilization.

4 Evaluation

This section presents evaluation results to demonstrate the

effectiveness of this deployed solution. The remainder of

this section is organized as follows: Section 4.1 summa-

rizes the experimental environment and basic storage per-

formance of the computational storage drives. Section 4.2

evaluates and compares the table scan performance when

using CPUs or computational storage devices to realize ta-

ble scan. Section 4.3 presents the TPC-H evaluation results

on a POLARDB instance in Alibaba Cloud, and Section 4.4

provides further concluding remarks.

4.1 Experimental Setup

In order to become practically viable products, besides provid-

ing in-storage computing capability, computational storage

drives must have top-notch storage I/O performance (at least

comparable with leading-edge commodity NVMe SSDs). The
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storage performance of our computational storage drives is

summarized as follows. Each drive uses 64-layer 3D TLC

NAND flash memory chips. With PCIe Gen3×4 interface,

each drive can sustain 2.2GB/s and 3.0GB/s sequential write

and read throughput. Under 100% address span and fully trig-

gered GC, each drive can achieve 160K and 590K random

4KB write and read IOPS, which are on par with the latest

enterprise-grade NVMe SSDs. Each computational storage

drive hosts a single mid-range Xilinx UltraScale+ KU15p

FPGA chip that handles both flash memory control and com-

putation. To maximize the error correction strength, each drive

supports soft-decision LDPC code decoding with beyond-

3GB/s decoding throughput. The performance evaluation is

carried out on a POLARDB instance (with seven database

nodes and three storage nodes) in Alibaba Cloud.

4.2 Table Scan Performance Evaluation

The FPGA inside each computational storage drive incorpo-

rates two Snappy decompression engines and four data scan

engines. The decompression throughput varies with the data

compressibility. Under compression ratio of 60% and 30%,

the two decompression engines total can achieve 2.3GB/s and

2.8GB/s decompression throughput, respectively. The data

scan engines also have variable throughput that depend on

several runtime parameters, e.g., the size of each row in the

table, table schema, and scan conditions.

We uses the LINEITEM table defined in TPC-H benchmark

as a test vehicle to evaluate the effectiveness of moving table

scan to computational storage drives. The LINEITEM table

contains total 16 columns mixed with data types of identifier,

integer, decimal, fixed-length and variable-length strings. To

cover a wide range of processing complexity, we chose the

following six table scan tasks (extracted from different TPC-H

queries) to carry out evaluations on one storage node:

TS-1: Select L_PARTKEY, L_EXTENDEDPRICE,

L_DISCOUNT

from LINEITEM

where L_SHIPDATE ≥ “1994-06-01” and

L_SHIPDATE < “1994-07-01”

TS-2: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY

from LINEITEM

where L_SHIPDATE ≥ “1993-01-01” and

L_SHIPDATE < “1994-01-01”

TS-3: Select L_ORDERKEY, L_SUPPKEY,

L_EXTENDEDPRICE, L_DISCOUNT, L_SHIPDATE

from LINEITEM

where L_SHIPDATE ≥ “1995-01-01” and

L_SHIPDATE ≤ “1996-12-31”

TS-4: Select L_ORDERKEY, L_EXTENDEDPRICE,

L_DISCOUNT

from LINEITEM

where L_SHIPDATE ≤ “1995-03-12”

TS-5: Select L_ORDERKEY

from LINEITEM

where L_COMMITDATE < L_RECEIPTDATE

TS-6: Select L_PARTKEY, L_SUPPKEY, L_QUANTITY

from LINEITEM

For the above six scan tasks, the data selectivity in terms

of table entries is 1.25%, 15.17%, 30.34%, 54.04%, 63.22%,

and 100.00%, respectively. We set the raw data compression

ratio as 0.5 when generating the LINEITEM table, and use the

Snappy compression library to compress each data block. For

each table scan task, we measured the scan latency and PCIe

data traffic when turning on and off the table scan pushdown.

When we turn off the table scan pushdown, storage node treats

each computational storage drive as a normal SSD and relies

on CPU to carry out the table scan processing.

Fig. 6 shows the measured scan latency and CPU utilization,

where each data point is obtained by averaging the results of

10 independent runs. As discussed above, each computational

storage drive contains four hardware data scan engines. Hence,

the storage node runs the scan tasks under two hardware con-

figurations: (a) one computational storage drive with 4 CPU

threads, and (b) two computational storage drives with 8 CPU

threads. The notation CPU-based Scan and CSD-based Scan

correspond to the cases when storage nodes use its CPU and

computational storage drives to carry out table scan process-

ing, respectively. As shown in Fig. 6, under each hardware

configuration, we studied four cases: (1) CPU-based scan

without data compression, (2) CSD-based scan without data

compression, (3) CPU-based scan with Snappy compression,

and (4) CSD-based scan with Snappy compression.

The results clearly show that, compared with CPU-based

scan, its CSD-based counterpart can simultaneously reduce

the scan latency and CPU utilization. For example, when we

run the scan task TS-1 (with Snappy compression) on two

drives with 8 threads, CSD-based scan can reduce the latency

from 55s to 39s and meanwhile reduce the CPU utilization

from 514% to 140%. Compared with other scan tasks, TS-

6 can least benefit from CSD-based scan because its very

simple scan condition largely under-utilizes the hardware re-

source in computational storage drives. Even for TS-6 (with

Snappy compression), when using two drives with 8 threads,

CSD-based scan can reduce the latency from 65s to 53s and

meanwhile reduce the CPU utilization from 558% to 374%.

Fig. 6 also shows that, although the CPU utilization of CPU-

based scan remain relatively constant across all the six scan

tasks, the CPU utilization of CSD-based scan noticeably in-

creases as the data selectivity becomes larger. For example,

TS-1 (with the selectivity of 1.25%) and TS-2 (with the se-

lectivity of 15.17%) have less CPU utilization than others.

This can be explained as follows: In the case of CSD-based

scan, the CPU workload is proportional to the data selectivity.

The smaller the data selectivity is, the less amount of data are

transferred to and processed by the host CPU. In contrast, in

the case of CPU-based scan, regardless of the data selectivity,

host CPU has to fetch and process all the data from drives. The
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Figure 6: Measured scan latency and CPU utilization when the storage node runs the scan tasks on (a) one computational storage

drive with 4 CPU threads, and (b) two computational storage drives with 8 CPU threads.

results also show that the effectiveness of CSD-based scan

can readily scale with the number of computational storage

drives. Finally, the results reveal that light-weight compres-

sion (i.e., Snappy in this study) can noticeably improve the

performance of CPU-based scan at the cost of CPU utiliza-

tion. In comparison, CSD-based scan is relatively insensitive

to the use of compression.

To further reveal the benefit of using computational storage

table scan pushdown to reduce data movement across the

storage and memory hierarchy, Fig. 7(a) shows the measured

volume of data being transferred from computational storage

drives to host DRAM, and Fig. 7(b) shows the measured total

host memory data transfer volume. The results show that

Figure 7: (a) PCIe data traffic and (b) memory data traffic

inside the storage node.

CSD-based scan can significantly reduce the data transfer

volume across the storage and memory hierarchy. The benefit

improves as the data selectivity becomes smaller. For example,

in the case of scan task TS-1 (with the selectivity of 1.25%) ,

CSD-based scan can almost eliminate the PCIe data transfer

traffic, and reduce the host memory data traffic by 5× (without

compression) and 3× (with compression). The results also

show that compression can very effectively reduce data traffic

volume across the storage and memory hierarchy.

4.3 System-level Evaluation

We further ran TPC-H analytical workload benchmark on a

POLARDB cloud instance with 32 SQL-engine containers

distributed on 7 database nodes and 3 back-end storage nodes.

Each storage node hosts 12 computational storage drives,

and each drive has a capacity of 3.7TB. We considered the

following three different scenarios:

1. No pushdown: In this baseline scenario, database nodes

do not push the table scan down to storage nodes. As

a result, storage nodes have to transfer all the data to

database nodes for table scan.

2. CPU-based pushdown: We enable the table scan push-

down from database nodes to storage nodes, and the

CPUs on the storage nodes are responsible for carrying

out table scan.

3. CSD-based pushdown: We enable the table scan push-

down from database nodes to storage nodes, and the

computational storage drives on the storage nodes are

responsible for carrying out table scan.

For each one out of the total 22 TPC-H queries, we mea-

sured the POLARDB performance by splitting data into parti-

tions and submitting n scan requests in parallel to the back-

end storage cluster. In this study, we considered three different
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Figure 8: Measured TPC-H query latency under 32 parallel requests.

Figure 9: Measured TPC-H query latency under 64 parallel requests.

Figure 10: Measured TPC-H query latency under 128 parallel requests.
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Figure 11: (a) PCIe data traffic inside storage nodes and (b) network data traffic in the POLARDB cluster.

values of n: 32, 64, and 128. Fig. 8, Fig. 9, and Fig. 10 show

the measured latency of all the 22 TPC-H queries under 32, 64,

and 128 parallel requests, respectively. Each evaluation point

is obtained by averaging the results of 5 independent runs.

The results clearly show the significant benefit of migrating

table scan operations from database nodes to storage nodes,

which can be intuitively justified given the compute-storage

decoupled architecture of POLARDB. The results show that,

as the number of requests increases, CSD-based pushdown

on average can more noticeably outperform CPU-based push-

down in terms of scan latency. For example, in the case of 32

parallel requests (with Snappy compression), when switching

from CPU-based pushdown to CSD-based pushdown, only

4 queries experience more than 30% latency reduction. In

contrast, in the case of 128 parallel requests (with Snappy

compression), when switching from CPU-based pushdown to

CSD-based pushdown, 11 queries experience more than 30%

latency reduction, where the maximum latency reduction is

50% for Q7. This is because, as the number of parallel re-

quests increases, storage nodes will have more parallel table

scan tasks to better utilize the hardware resource in the com-

putational storage drives. Moreover, the results show that the

benefit of CSD-based pushdown tends to improve when table

data are compressed by Snappy. This can be explained as fol-

lows: When table data are compressed, CPU-based pushdown

will consume more CPU resource in order to handle both data

decompression and query processing. Hence a larger num-

ber of parallel requests will more likely make CPU-based

pushdown CPU-bound. In contrast, CSD-based pushdown

can readily leverage the hardware decompression engines in

computational storage drives.

The results also show that CPU-based pushdown may even

slightly outperform CSD-based pushdown in few cases under

32 or 64 requests (e.g., Q10 with 32 requests). This is most

likely caused by the sub-optimal behavior of table scan push-

down scheduling, which leads to significant under-utilization

of the hardware resource in the computational storage drives.

Our future work will focus on improving the quality of ta-

ble scan pushdown scheduling in order to avoid significant

hardware resource under-utilization. Finally, Fig. 11 shows

the measured total volume of PCIe data traffic inside stor-

age nodes and total volume of network data traffic between

database nodes and storage nodes. When switching from CPU-

based pushdown to CSD-based pushdown, 7 TPC-H queries

(with Snappy compression) experience more than 50% reduc-

tion on the PCIe data traffic volume, where the maximum

PCIe data traffic volume reduction is 97% for Q6 followed by

94% for Q14. By moving table scan from database nodes to

storage nodes, 12 TPC-H queries (with Snappy compression)

experience more than 70% reduction on the total network

data traffic volume. The above results clearly demonstrate the

significant reduction in data traffic and scan latency of table

scan pushdown in cloud-native database.

4.4 Summary

In-storage computing is a very simple concept and has been

well discussed in the research community. Nevertheless, its

practical implementation and deployment in real systems has

remained elusive. Meanwhile, it is not uncommon that signif-

icant gain at the component level does not translate to notice-

able benefit at the system level. Hence, commercializing the
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simple idea of in-storage computing goes far beyond imple-

menting a storage device that can do certain computation, and

demands cohesive innovations across software and hardware

hierarchy. Targeting at bringing in-storage table scan to cloud-

native database systems, we have developed holistic solutions

across the storage engine, filesystem, driver, and hardware

stack. The component-level evaluation results in Section 4.2

show that our implemented computational storage drive can

achieve high-throughput in-storage table scan, leading to sig-

nificant reduction on host CPU usage and storage-to-memory

data movement. The system-level evaluation results in Sec-

tion 4.3 show that our holistic solution indeed can carry the

component-level gain to the system level. The system-level

evaluation also confirms the critical importance of realizing

table scan pushdown from database nodes to storage nodes.

5 Related Work

Prior work has well studied the promise of accelerating

databases using special-purpose hardware (in particular

FPGA and GPU) to complement with CPUs. Many prior

efforts focused on off-loading the table scan in analytical

processing to dedicated accelerators (typically in the form of

PCIe cards) built with either FPGA [24,26,29] or GPU [7,25].

Beyond table scan, prior work also investigated the poten-

tial of off-loading more complicated query processing ker-

nels [12, 19, 30]. Nevertheless, in spite of extensive prior

efforts and impressive performance benefits being demon-

strated over the years, IBM/Netezza [24] appears to be the

only known commercially successful product on mainstream

markets. It off-loads data compression and table scan into

dedicated FPGA-based PCIe cards in IBM PureData Systems.

Beyond using stand-alone accelerators to complement CPUs,

Oracle even integrated special-purpose analytics acceleration

units into its own SPARC CPU [6], which however appar-

ently suffers from a very high development cost and has been

discontinued by Oracle.

The emerging computational storage enables new oppor-

tunities to implement heterogeneous computing platforms

for databases. The authors of [13] studied the design of

computational storage drives that support key-value store.

Prior work [11, 14] focused on leveraging computational stor-

age drives to realize in-storage table scan. Although prior

work [11, 14] share the same basic concept as this work,

there are several distinct differences: (1) This work presents

a holistic system solution in the context of cloud-native re-

lational database, and demonstrates its effectiveness in real

production environment. In comparison, prior work [11] ran

synthetic queries inside one computational storage drive with-

out integration with databases and system I/O stack. Prior

work [14] implemented a prototype based on a modified

MySQL running on a single server. It did not consider the

integration with a database system with compute-storage de-

coupled architecture, and did not consider the use of multiple

computational storage drives in one server. (2) The basic stor-

age I/O performance metrics (i.e., sequential throughput and

IOPS) of the computational storage drives being used in prior

work are much worse than that of leading-edge commodity

NVMe SSDs. As a result, the systems in prior work tend

to be much more I/O-bound and hence more easily benefit

from in-storage table scan. The benefits shown in prior work

may largely diminish when being compared with systems

that deploy leading-edge commodity NVMe SSDs. (3) Both

prior work [11, 14] use embedded processors within SSD

controllers to carry out the data processing, which however

cannot match the multi-GB/s intra-SSD NAND flash memory

access bandwidth and hence cannot achieve high-throughput

predicate evaluation. (4) Data compression is widely used in

databases to reduce the storage bit cost. As a result, compu-

tational storage drives must carry out data decompression in

order to support predicate evaluation on the data read path.

However, prior work [11, 14] did not consider the implemen-

tation of data decompression.

6 Conclusions

This paper reports a cohesive cross-software/hardware im-

plementation that enabled Alibaba cloud-native relational

database POLARDB to effectively support analytical work-

loads. The basic design concept is to dispatch the costly table

scan operations in analytical processing from CPU into com-

putational storage drives. Being well aligned with current

industrial trend towards heterogeneous computing, the key

idea is very simple and can trace back to over two decades

ago. Nevertheless, it is non-trivial to practically materialize

this simple idea with justifiable benefit vs. cost trade-off in the

real world. Under the framework of Alibaba POLARDB, this

work developed a set of design solutions across the entire soft-

ware and hardware stacks to practically implement this simple

idea in production cloud database environment. Experimen-

tal results on a POLARDB cloud instance over 7 database

nodes and 3 storage nodes show that our implementation can

achieve more than 30% latency reduction for 12 out of the

total 22 TPC-H queries. Meanwhile, our implementation can

reduce more than 50% storage-to-memory data movement

volume for 12 TPC-H queries. It is our hope that this work

will inspire much more research and development efforts to

investigate how future cloud infrastructure can leverage the

emerging computational storage drives.
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