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Abstract. An objective analysis is carried out of the matricial models representing the polarimetric prop-
erties of light and material media leading to the identification and definition of their corresponding physical
quantities, using the concept of the coherency matrix. For light, cases of homogeneous and inhomogeneous
wavefront are analyzed, and a model for 3D polarimetric purity is constructed. For linear passive material
media, a general model is developed on the basis that any physically realizable linear transformation of
Stokes vectors is equivalent to an ensemble average of passive, deterministic nondepolarizing transforma-
tions. Through this framework, the relevant physical quantities, including indices of polarimetric purity, are
identified and decoupled. Some decompositions of the whole system into a set of well-defined components
are considered, as well as techniques for isolating the unknown components by means of new procedures
for subtracting coherency matrices. These results and methods constitute a powerful tool for analyzing and
exploiting experimental and industrial polarimetry. Some particular application examples are indicated.

PACS. 42.25.Ja Polarization — 42.68.Mj Scattering, polarization

1 Introduction

A proper description of the polarization properties of elec-
tromagnetic waves relies on the concept of the coherency
matrix. This mathematical formulation is applicable re-
gardless the particular band of the electromagnetic spec-
trum considered. In this paper we will frequently refer to
“light” but, except for particular cases which are identified
from the context, this term can be substituted by “elec-
tromagnetic radiation”. In fact there are many important
industrial and research subjects involving polarization of
electromagnetic radiation beyond the optical range such
as microwaves, X-rays and gamma-rays.

Given a fixed point in space, the electric field of an
electromagnetic wave describes an ellipse (the polariza-
tion ellipse) in a plane perpendicular to the propagation
direction. For the ideal case of monochromatic light, both
polarization ellipse and propagation direction are fixed.
In general, polychromatic light behaves as monochromatic
for time intervals longer than the natural period Tj of the
wave and shorter than the coherence time 7, so that the
following different situations can be distinguished:

— Both the propagation direction and the polarization el-
lipse are stable; in consequence, the light beam is fully
polarized. For most purposes, and from a polarimetric
point of view, monochromatic totally polarized light
can be considered equivalent to monochromatic light.
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— The propagation direction is fixed, whereas the po-
larization ellipse fluctuates; in consequence, the light
beam is partially polarized. It is well-known that these
states are polarimetrically equivalent to a statistical
mixture of two pure states with orthogonal polariza-
tions. We will show that mixed states are also equiv-
alent to statistical mixtures of non-orthogonal pure
states.

— Both the propagation direction and the polarization
ellipse fluctuate. As we will see, an objective measure
of the degree of directionality can be defined, which is
always higher than (or equal to) the objective mea-
sure of the stability of the polarization ellipse. These
states require a particular treatment, different to that
the commonly used for light with a fixed direction of
propagation.

In general, concerning the optical band of the electro-
magnetic spectrum, the time of measurement 7' (i.e. the
response time of the detector) is much higher than the
coherence time. Typical values of the indicated time in-
tervals are the following: Ty = 1/vg = 107155 (vy being
the central frequency of the spectral profile of the wave),
107%s <7< 107 *s and T2 10~ s [1,2]. Thus, for most
purposes the assumption of quasimonochromaticity is jus-
tified.

In a second-order optics approach, the Stokes param-
eters [3] provide a complete mathematical characteriza-
tion of the different states of polarization. The physical
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meaning of these four real parameters has been studied in
depth by several authors [4-7].

When a material medium is irradiated by an electro-
magnetic wave, molecular electric charges are set in oscil-
latory motion by the electric field of the wave, producing
secondary radiation, so that the overall effects of the com-
bined basic interactions (scattering in its essential sense)
[8] results in refracted, reflected, diffracted or scattered
light. The effects of linear passive media can be repre-
sented by linear transformations of the electric field vari-
ables. By “passive” we refer to the property of not ampli-
fying the light intensity.

Depending on: (1) the nature and particular condi-
tions of the linear interaction; (2) the spectral profile of
the incident light beam; (3) the chromatic properties of
the material sample, and (4) the specific polarizing prop-
erties of the sample, the waves emerging from different ho-
mogeneous parts of the material target can have different
degrees of mutual coherence. Coherent interactions can
be represented through the Jones formalism [9], whereas
for the general case of incoherent interactions of polychro-
matic light, the Stokes-Mueller model is required.

Concerning the transformations of the state of polar-
ization due to the interaction of the wave with linear mate-
rial media, Jones introduced a simple method applicable
for deterministic interactions [9]. In this model, the po-
larization states are represented by two-component com-
plex “Jones vectors” and the medium is characterized by
a 2 x 2 complex “Jones matrix”.

The classic contributions of authors such
as  Soleillet [10], Perrin [11], Mueller [12] and
Parke IIT [13,14], have led to a more general model,
in which the action of media is represented through linear
transformations of the Stokes parameters. Although the
4 x 4 real matrices characterizing these transformations
are usually called “Mueller matrices” it should be noted
that it was Soleillet who first introduced this concept [10].
The lecture notes where Mueller used these matrices
remained unpublished except for a brief note [12]. The
connection between the Jones and the Soleillet-Mueller
models was studied by Parke IIT [13,14]. An interesting
compilation of several seminal works on polarization
optics can be found in reference [15].

Some works have dealt with the case of determinis-
tic nondepolarizing media (polarimetrically pure media),
leading to clear physical interpretations of the seven in-
dependent parameters that appear in this case [16,17]. In
the general case, a complete polarimetric characterization
of the medium requires considering up to sixteen indepen-
dent parameters.

Given the essential nature of polarization phenomena,
polarimetry is a general-purpose technique which can be
applied in a great variety of industrial, medical and scien-
tific environments. Thus, different interaction conditions
can be arranged in order to obtain information about
material samples from polarimetric measurements. These
techniques have been widely used for many years. One par-
ticular technique, called “ellipsometry” [18,19], is based
on determining some properties of material samples from

the changes produced on totally polarized light. The inter-
action transforms the “input polarization ellipse”, charac-
terized by a complex number that contains information
about the corresponding azimuth and ellipticity, into a
reflected “output polarization ellipse”. The ratio between
these numbers results in two ellipsometric real parameters.
Ellipsometric techniques provide very fast in-situ and non-
destructive control of several industrial processes. Never-
theless, it should be noted that the term “ellipsometry” is
also frequently used as a synonym for “polarimetry” and,
hence, refers to general techniques for measuring polari-
metric properties.

In general, interactions not only produce changes in
the ellipsometric parameters, but also cause selective
changes in the transmitted intensity as well as depolariz-
ing effects, so that, in these cases, a complete polarimetry
is required. For the measurement of all the sixteen ele-
ments of a Mueller matrix, the material sample is placed
between a generator and an analyzer of polarization states.
The generator must be arranged into at least four inde-
pendent configurations for each one of which the analyzer
must in turn be disposed into at least four independent
configurations. Usually, the generator includes a total po-
larizer followed by a retarder placed in front of the light
source, whereas the analyzer includes a retarder followed
by a total polarizer before the detector. By means of ro-
tating wave-plates, Pockels cells or other kinds of control-
lable retarders, these polarimeters can be automatically
operated [20-28].

The analyzer described, used alone, can be used as a
Stokes polarimeter, enabling the Stokes parameters of the
incoming light to be measured [29]. Other interesting de-
vices are based on the use of polarization gratings [30,31].

Different kinds of polarimeters are used in several dif-
ferent environments such as remote sensing [32]; scat-
tering applications [8,33,34]; ITER & Tokamak [35];
Astronomy [36], etc.

For some applications, spectral polarimetry and inter-
ferometry are combined into a whole device [35-40].

Polarimetric techniques are powerful tools for the
study and analysis of material samples because, given the
specific interaction conditions (reflection, refraction, scat-
tering...) and given the spectral and spatial properties
of the light probe, up to sixteen independent parameters
can be measured. These measurable quantities are the el-
ements of the Mueller matrix, which characterize the po-
larimetric properties of the sample with respect to the in-
teraction conditions mentioned. Nevertheless, important
limitations of these techniques arise from the absence of
a complete understanding of the information contained in
the Mueller matrix. The physical information is structured
in a complicated manner and, thus, the obtainment of a
set of sixteen quantities with clear physical meaning is not
straightforward. In fact, as we will see, some new param-
eters must be introduced in order to reach the indicated
objective.

Consequently, the mathematical characterization
of Mueller matrices is a key question in the exploita-
tion of powerful polarimetric techniques. In general, the
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values of the elements of Mueller matrices are restricted
by several quadratic and bilinear constraining inequalities,
which have been the main subject of several papers.

In this review, we consider the mathematical descrip-
tion of the polarimetric properties of light and media
through a unified model based on the concept of coherency
matrices. The measurable quantities arise as the coeffi-
cients of the expansion of the coherency matrix in a set
of Hermitian trace-orthogonal matrices constituted by the
generators of the SU(n) group plus the n x n identity ma-
trix. The physical parameters with direct physical mean-
ing are defined from the corresponding measurable quan-
tities.

The different sections of this paper include relevant
results quoted in the literature, as well as some new re-
sults, which are treated on the basis of the unified frame-
work indicated [41]. Thus, for example, in the light of the
respective “indices of purity”, the polarimetric purity of
3D states of polarized light is analyzed, as well as the po-
larimetric purity of media. Moreover, the retarding, po-
larizing and depolarizing properties of material media are
characterized through a set of sixteen independent param-
eters with direct physical meaning. We will find that ten
of these parameters are physically-invariant quantities.

The following sections consider successively the polar-
ization states of plane waves, the 3D states of polariza-
tion and the polarimetric properties of material media. In
general, when possible, the habitual notations and names
have been preserved. In some cases, particular notations
have been introduced for the sake of clarity.

2 Polarized light

Given a point in space, the state of polarization of a light
beam that propagates in a fixed direction z is given by
the temporal evolution of the electric field of the electro-
magnetic wave, which lies in a plane perpendicular to the
propagation direction. Let E(z,t) be the electric field at a
point z, at time ¢, of a monochromatic plane wave prop-
agating in an isotropic medium, and let (eq, ey, e3) be a
reference basis of orthonormal vectors along the respective
axes XYZ. The components of the electric field are

E.(z,t) = Ay cos (kz — wt + ;)
Ey(z,t) = Ay cos (kz — wt + §y) (1)
where k = 2w /Mg (Ao is the wavelength for the vacuum);
w is the angular frequency, w = 27v (v is the natural
frequency); ., 8y are the respective phases, and A,, 4,
are the respective amplitudes.

In the case of quasimonochromatic light, i.e. when the
bandwidth Av is very narrow with respect to the central
frequency U of the spectral profile, the components of the
electric field can be expressed as

Ey(z,t) = Ag(t) cos (kz — 0t + B3, (1))
Ey(z,t) = Ay(t) cos (kz — wt + By (1)) (2)

where k, 0 are the respective mean values of k, w.

As usual in polarization optics, under this assump-
tion of quasimonochromaticity, it is very advantageous to
use the analytic signal representation, where the compo-
nents are described through their respective complex vari-
ables [6].

Let us consider the analytical signal representations
Mg (t), ny (t) of the two mutually orthogonal components
of the electric field in a plane perpendicular to the direc-
tion of propagation

M () = By (1) +1E, (1) = Ay (t)e (0,

= A,
ny (8) = By (t) +1E, (t) = Ay(t)e' O 0)]

3)
where, E, (t), E, (t), are the Hilbert transforms of the real
components of the electric field, and u(t) = kz — wt.

These two components can be arranged as the compo-
nents of the following 2 x 1 complex vector

(M) i(u(t)+Ba(t Az (t)
T](t) — (772) — e’t( (t)+B= (1)) (Ay(t)ez(ﬁy(t)ﬁl(t)) )

(4)
and, by avoiding the global phase factor (without physical
meaning), the “instantaneous Jones vector” is defined as

0= (Gl

where 0, (t) = 5, (t) — B:(t) is the relative phase.

This vector includes all the information relative to the
temporal evolution of the electric field. It is called “in-
stantaneous” because the amplitudes and relative phase
are time-dependent variables. In the case of a polychro-
matic wave, the instantaneous Jones vector has slow time
dependence with respect to the coherence time, so that,
for time intervals shorter than the coherence time, the
polarization ellipse can be considered constant. For time
intervals higher than the coherence time of the light wave,
the instantaneous Jones vector can vary resulting in par-
tially polarized light.

Thus, when the following quantities have not time de-
pendence

()

Ay (2)
A, (1)

= constant, J, (t) = constant, (6)
so that the electric field describes a stable well-defined
ellipse (Fig. 1), the Jones vector is defined as [9]

— A;C
g = <Ayei5y >

It should be noted that the conditions given by equa-
tion (6) are compatible with intensity fluctuations. In fact,
totally polarized light maintains the azimuth and elliptic-
ity of the polarization ellipse fixed whereas the size of the
ellipse fluctuates resulting in a “mean intensity” over the
measurement time. Moreover, slow time variations of the
Jones vector with respect to the measurement time can
be represented by this model [42].

(7)
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Fig. 1. (Color online) The polarization ellipse.

We see that the Jones vector provides a basic model
for representing the state of polarization when light is to-
tally polarized. The state of polarization of the coherent
superposition of totally polarized light beams is given by
the sum of the corresponding Jones vectors.

In the case of partially polarized light, the azimuth and
(or) ellipticity of the polarization ellipse varies during a
typical measurement time. In consequence, the treatment
of partially polarized light requires a different mathemati-
cal model in order to take into account all the parameters
that characterize completely the state of polarization.

2.1 The coherency matrix

The “coherency matrix” (or polarization matrix) ® [4,
6,13,43-45] of a light beam contains all the measurable
information about its state of polarization (including in-
tensity). This Hermitian 2 x 2 matrix is defined as

(1) {er ()3 ()
(e2(t)e (1) <sg<t>sz<t>>) ®)

where € is the instantaneous Jones vector whose two com-
ponents are the analytic signals of the electric field of
the wave; €™ is the transposed conjugated vector of €; &f
represents the complex conjugate of €;; ® stands for the
Kronecker product, and the brackets indicate time aver-
aging over the measurement time

¢:<qw®eﬂw>=(

T

Hml/X@ﬁ ()

T—oo T
0

(X(1) =

Therefore, ® is a covariance matrix whose elements are
the second-order moments of the zero-mean analytic sig-
nals g;(¢); ¢ = 1,2. Under the assumption that they are
stationary and ergodic, the brackets can alternatively be
considered as ensemble averaging of € ® e, where € are
simple realizations.

Due to its statistical nature, ® is characterized by the
fact that its two eigenvalues are non-negative. These two
constraints are a complete set of necessary and sufficient
conditions for a Hermitian matrix ® to be a coherency
matrix, i.e. to represent a particular state of polarization
of a light beam.

The statistical properties of ® appear explicitly when
its elements are written in terms of the corresponding
standard deviations 0y, 01 and the complex degree of co-

herence p
2
P — 0g Hoo0o1
- * 2 .
wropor  of

As some authors have pointed out [2,46] the normalized
matrix

(10)

N P

b= 11

tre (11)

is the corresponding density matrix, which contains in-

formation about the populations and coherences of the
polarization states.

2.2 The Stokes parameters

The coherency matrix ® can be expressed as a linear ex-
pansion, with real coefficients, in the following basis, con-
stituted by the three Pauli matrices plus the identity ma-

trix
10 10
UO<01); Ul(o]_)a
(o1 (0
72=\10) 237 \io0 )

It should be noted that, although the habitual notations
for the standard deviations (o9, 01) and for the Pauli ma-
trices (o;) have been preserved, this should not lead to
confusion because o; are matrices (bold), whereas the vari-
ances are scalar quantities.

This set of linearly independent matrices o; consti-
tutes an adequate basis for the space of 2 x 2 Hermitian
matrices. They are Hermitian o; = O'ZF; trace-orthogonal
tr (o;0;) = 24;;, and satisfy o2 = D (1,1), [D (1,1) being
the 2 x 2 unity matrix|. Thus, these matrices are unitary
and, except for og, are traceless. This basis allows ® to
be expressed as the following linear expansion [4,47]

(12)

3
1
i=0
where the real coefficients s; are given by
s; = tr (®o;), i=0,1,2,3. (14)

The “Stokes parameters” sg,si,S2,S83 are measurable
quantities which satisfy the restrictions given by the in-
equalities

50>0, s2>87+524s2, (15)

which are equivalent to the non-negativity of the co-
herency matrix ®.



J.J. Gil: Polarimetric characterization of light and media 5

These parameters, arranged as a 4 x 1 vector, consti-
tute the “Stokes vector” s. Although in this section we
will use the Stokes vector, we also introduce the following
alternative notation in order to compare some expressions
with others that will appear in later sections

S — 500 So1 \ _ [ So S1
510 S11 S2 53

2.3 The purity criterion

(16)

Let us consider now the Euclidean norms of ® and S

T 1/2

@, = | > loul*| = [r(®®)]"* = [ (®%)]"
i,j=0
S

ISl = Zs?] = [ir (s78)] "% (17)
Li=0

Moreover, taking into account that ® is a positive semidef-

inite Hermitian matrix, we can define the following norm
2

@), =ue = Ve . (18)

It is easy to show that the above norms satisfy the follow-
ing relations

2 1 2
2]z =5 ISl (19)
@]l = so, (20)
1 2 2 2
S 1elo < lell; < li®fq- (21)

For pure states, ||<I>H§ = ||<I>||§ This equality consti-
tutes an objective purity criterion, whereas the other limit
||<I>||§ = %H‘I’”(Q) occurs in the case of unpolarized light
(equiprobable mixture of states).

2.4 Physical quantities characterizing the polarized
light

The Stokes vector can be written as

(1
S= |1Pu|"

where the main physical magnitudes: (1) the intensity I;
(2) the degree of polarization P; and (3) the unitary vector
u that determines univocally the azimuth ¢ (0 < ¢ < )
and the ellipticity angle x (—7/4 < x < 7w/4) of the “av-
erage polarization ellipse”, appear explicitly

(22)

1/2
= s PE(S%+S%+S§)/’
50
1 S1 1 cos 2 cos 2p
u=— | s2 | = —= | cos2xsin2¢p (23)
Ip S3 1 sin 2y

3 ta
o
v

Fig. 2. (Color online) Poincaré sphere.

In the second-order approach, the Poincaré sphere (Fig. 2)
provides a useful geometric representation of all possible
states of polarization. Taking into account the character-
istic properties of the Stokes parameters, they define a
4D cone, whose generatrix is the sg-axis. The cut of this
cone with the plane sg = 1 lead to the 3D representa-
tion given by the Poincaré sphere, which is a solid sphere
of radius 1 where all states have an intensity equal to
1. Points on the surface represent totally polarized states
(pure states) and points inside represent partially polar-
ized states (mixed states). The origin represents second-
order unpolarized light.

2.5 Decomposition of mixed states

From equation (22), the following “trivial decomposition”
of s as a convex sum of a pure state and an unpolarized
state can be immediately obtained [6,44]

SIRIE AR

Another alternative decomposition with different physical
meaning is [44]

a[AJ O L)

This “spectral decomposition”, represented graphically in
Figure 3, expresses a mixed state as a convex linear com-
bination of two orthogonal pure states (their respective
Jones vectors are orthogonal), which have the same direc-
tion in the Poincaré sphere and are represented by antipo-
dal points (these states have the same azimuth and their
ellipticities differ in 7/2). The origin of the name spectral
decomposition is derived from the fact that the above de-
composition of a Stokes vector is equivalent to the spectral
decomposition of its corresponding coherency matrix.
Nevertheless, given a mixed state, there exist infinite
possibilities for decomposing it as a convex sum of two

(24)
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1+ Pcos2pcos2y

d— I
~ 2 \ P(sin 2y cos 2x + isin 2x)

P(sin 2¢ cos 2y — isin 2x)
1 — Pcos2pcos2x ’

v

Fig. 3. (Color online) Spectral decomposition of a mixed state.

pure states

s— [Pﬂ = I(ex+(1-0)y);

o L)

where v, w are linearly independent unitary vectors, and
0<e<l.

Given a mixed state s, any pure state x can be con-
sidered as a component. Once x is chosen, the coefficient
¢ and the remaining pure component y are univocally de-
termined

(26)

. 1-pP?
- 2(1— PuTv)’

Pu; — cv;

¢ 1—c

0<e< (27)

W; =

Provided s is a mixed state, it is straightforward to show
that the condition 0 < ¢ < 1 is always satisfied.

To illustrate this “arbitrary decomposition” by means
of an explicit example, let us consider the mixed state
s = (1,1/2,0,0)T and let us chose the pure state x =
(1,0,1,0)T as a component. We find that ¢ = 3/8 and
y=(1,4/5,-3/5,0)".

Although in a later section we will see a demonstration
of the arbitrary decomposition of 3 x 3 coherency matrices,
which can also be applied to n x n coherency matrices, we
have considered it useful to include this demonstration
in terms of Stokes vectors, because it provides a more
intuitive view of this kind of decomposition.

The existence of different possible decompositions of a
mixed state into pure states has particular importance due
to its implications in the possible “target decompositions”
used in radar polarimetry, where the spectral decomposi-
tion is usually considered to be the only way to achieve
this [48].

v

Fig. 4. (Color online) Arbitrary decomposition of a mixed
state into a convex combination of two pure states.

Figure 4 illustrates the arbitrary decomposition by
means of the corresponding representation in the Poincaré
sphere.

2.6 Physical invariants and degree of polarization

Although the models of the Stokes vectors and the
Poincaré sphere are particularly appropriate for represent-
ing the above decompositions, it is useful to return to the
coherency matrix model because, as will be shown in later
sections, this model can be generalized in order to repre-
sent the 3D states of polarization, as well as the polari-
metric effects of linear media.

The 2 x 2 coherency matrix ® can be written in terms
of the physical parameters I, P, x, ¢

see equation (28) above

and, from this expression, it is straightforward to repro-
duce the trivial decomposition.

The diagonalization of ® leads to the spectral decom-
position, expressed in terms of coherency matrices [44,49].

The quantities I and P are invariant in the sense that
they remain unchanged under unitary transformations of
the coherency matrix [50] and, hence, they are invariant
with respect to changes of the reference system XY. In
fact, I and P are directly related with the eigenvalues
of ® [44]

1 1
o= gI(1+P), M =zI(1-P);

2
Ao — A1
I=X+M=tr &, P=—— 29

0+ A1 -3 (29)
In agreement with the statistical nature of ®, which is a
covariance matrix (and, hence, is a positive semidefinite



J.J. Gil: Polarimetric characterization of light and media 7

Hermitian matrix), Ao, Ay are non-negative. Pure states
are characterized by rank-1 polarization matrices (only
one nonzero eigenvalue, P = 1), whereas rank-2 polariza-
tion matrices correspond to mixed states (P < 1).

Appropriate expressions of P that will be useful for
future considerations are

1/2 1/2
2r (P2 2@
P = <7( 2) - 1) = (—' QZ — 1) ., (30)
(tr®) @1l
1 1/2
2
ng:O & tr (S7S) 1
Pay = r— 1| =|l—(m—-1] , (1
500 500

where the subscript (2) has been added in order to com-
pare these expressions with other that will appear con-
cerning higher order coherency matrices.

As another interesting way of studying P, Wolf, in
a classic paper [6], showed that there always exist two
orthogonal reference directions such that the degree of
coherence p reaches its maximum value, which coincides
with P.

There are various random distributions which corre-
spond to unpolarized light. As Ellis and Dogariu have
shown [51], the measurement of the correlations of the
Stokes parameters allows us to distinguish between these
different types of unpolarized light. Moreover, for the case
of non-Gaussian light, a quantitative determination of
the degree of polarization of type-II unpolarized light by
means of the distance between the polarization distribu-
tion and the uniform distribution associated with type-I
unpolarized light, has been introduced by Luis [52].

2.7 Polarization entropy

It is opportune to consider now the concept of the
von Neumann entropy S applied to electromagnetic
waves [2,46,49,53-55], which, in terms of the density ma-

trix @ is defined as
S = —tr (<i> In <i>) . (32)

This quantity is a measure of the difference in the amount
of information between a pure state and a mixed state
(both with the same intensity) and can also be ex-

pressed as X
S = —Z (Xilnj\i)

=0

(33)

where 5\1- = \;/tr® are the eigenvalues of d. Thus, in
the case of 2 x 2 coherency matrices, the von Neumann
entropy can be written as a function of the degree of po-
larization P [54]

S =S (P){%(lJrP)ln B (1+P)]

£ (- P)ln B (1 —P)} } (34)

Therefore, Sy is characterized univocally by P and
decreases monotonically as P increases. The maximum
S(2) = In2 corresponds to PP = 0, whereas the minimum
S(2) = 0 is reached for P = 1, (i.e. when light is totally
polarized, regardless of its spectral profile) [2].

We observe that S is dimensionless. Its relation with
the concept of “specific radiation entropy” introduced by
Plank, formulated explicitly by von Laue and extended by
Barakat for n pencils of radiation [53], has been studied
by Barakat and Brosseau [54], who have expressed the
normalized specific radiation entropy as the difference of
two von Neumann entropies.

Moreover, from the von Neumann entropy, Brosseau
and Bicout [56] have defined a “polarization temperature”
which can be expressed as a monotonic decreasing function
of the degree of polarization.

Although a detailed study of the different measures re-
lated with entropy and the relations among them falls out-
side the scope of this review, other relevant approaches to
polarization entropy are briefly discussed in Sections 3.6.
and 3.7.

As we will see in later sections, the concept of “polar-
ization entropy” [57], when related with the depolarizing
effects of a material medium, is commonly used to ana-
lyze measurements and images [58] by remote sensing, by
lidar detection and by synthetic aperture radar polarime-
try (SAR Polarimetry) in order to detect spatial hetero-
geneity in a great variety of terrestrial and oceanic surface
targets [59]. It also will be shown that a meaningful pa-
rameter defined as the degree of polarimetric purity can
be used as a quantity alternative to entropy.

2.8 Scope of the coherency matrix model and some
extensions

The Stokes parameters are defined through second-order
moments of the field variables. Therefore, the statistical
nature of light underlies in the mathematical description
of the states of polarization of light, so that the study
of the fluctuations of the field variables in different rel-
evant cases is an important subject. For the cases of
non-Gaussian probability distributions of these variables,
higher order moments must be considered and, hence, the
Stokes parameters do not provide a complete description
of the state of polarization. Several authors have dealt
with this matter, so that a significant amount of knowl-
edge has been achieved [5,7,60-65]. A good compilation,
including several contributions of the author, can be found
in a book by Brosseau [2].

The measurement of the polarization properties of
light beams with non-Gaussian spectral profiles should
requires particular measurement arrangements involving
interferometers and fast detectors.

Coherence properties have a close relation with polar-
ization description, and several authors have dealt with
this important subject [45,66-73].

A vparticular definition of Stokes parameters at the
wavelet scale has been introduced by Castaneda [74].
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These parameters take into account the correlation prop-
erties of the random electromagnetic field on the aperture
plane.

A generalization of the Stokes parameters of a random
electromagnetic beam has been introduced by Ellis and
Dogariu [71] in the space-time domain and has also been
studied by Korotkova and Wolf [75] in the space-frequency
domain on the basis of the Wolf’s unified theory of coher-
ence and polarization [76]. Whereas the usual Stokes pa-
rameters depend on one spatial variable, these “two-point
Stokes parameters”, which can be defined in the space-
frequency domain from the cross-spectral density matrix
that characterizes the correlations at two points, depend
on two spatial variables and contain additional informa-
tion about the coherence properties.

Another relevant approach to polarization description
is the model of “spatial-angular Stokes parameters” devel-
oped by Luis [77,78]. Using Wigner functions [79], these
parameters are introduced for generalized rays including
spatial and angular dependence and allow their evolution
during propagation to be considered.

Both the above-mentioned generalizations have their
corresponding counterpart in Mueller representations, i.e.
Mueller matrices transforming two-point Stokes parame-
ters [80,81] and spatial-angular Mueller matrices trans-
forming spatial-angular Stokes parameters [78].

The above paragraphs deal with a classical description
of polarization. The Stokes parameters have been used
traditionally to describe certain quantum systems [46,82].
Nevertheless, it should be noted that a quantum descrip-
tion of polarization, performed by means of replacing clas-
sical amplitudes by bosonic operators, results in some
properties that cannot be fully described by the classi-
cal Stokes parameters [83]. Thus, for instance, the electric
field vector never describes a definite ellipse (due to un-
certainty relationships); there are states with P = 0 that
cannot be regarded as unpolarized, and P does not reflect
the lack of perfect polarization for any quantum state.

The quantum description of polarization states is nec-
essary for the study and characterization of coherent,
squeezed, number, and phase states, and for the design
of experiments in order to show fundamental properties
and applications of quantum theory such as entanglement,
complementarity, information processing and cryptogra-
phy, teleportation and Bell inequalities.

The characterization of states of polarization through
probability distributions on the Poincaré sphere allows the
definition of the quantum degree of polarization as the
distance between the corresponding polarization distribu-
tion and the uniform distribution representing unpolar-
ized light. This definition can be particularized as a trace
distance between the coherency matrix and the identity
matrix (unpolarized light), and is an important and open
subject that provides results applicable to the description
of quantum field states [83-86].

3 3D Polarized light

The two-dimensional formalism considered in the previous
section is valid when the propagation direction of light
is constant, which is the commonest physical situation of
interest in polarimetry. In the most general case, the three
components of the electric field vector of the light wave
should be considered in order to describe the evolution of
the end of the electric field vector (which determines the
polarization state).

This section deals with the construction of a model for
a general description of the polarization properties of light,
applicable to waves whose direction of propagation is not
stable in time. Thus, from the extension of the concept of
the Jones vector, the 3D polarization matrix, as well as
the 3D Stokes parameters, is defined. The main physical
quantities characterizing the 3D states of polarization are
obtained and analyzed, with special attention being given
to the description of polarimetric purity by means of two
invariant parameters.

3.1 3D Jones vector

Let us consider a quasimonochromatic wave of arbi-
trary form, propagating in an isotropic medium, and let
(e1,eq,e3) be a reference basis of orthonormal vectors
along the respective axes XYZ. Given a point r in space,
the analytic signals of the three components of the electric
field of the electromagnetic wave can be arranged as the
3 x 1 complex vector

m Nz (t)
nt)=mn | =7
3 P (t)
_ A (t)
= 80 [ A (1)eil(0-5:(0) (35)

AL (£)ei(B-(0)=Ba(0)

where u(t) = k-(r/|r|) —@t, k being the mean wave-vector
at the point r.

The corresponding “3D instantaneous Jones vector” is
defined as

€1 (t) A:c (t)
e(t) = | e2(t) | = | A,(t)e?v® (36)
e3(t) AL (t)e?=®

In this expression, the possible time dependence of am-
plitude and phases of the three components of the wave
are indicated. Since only the phase differences have phys-
ical meaning, d, (¢) has been taken as reference, so that a
global phase factor has been avoided.

For totally-polarized sates, the following conditions are
satisfied

PN
=
P

=(1)
o(t
d.(t) = constant,

= constant, = constant,

S

d,(t) = constant, (37)



J.J. Gil: Polarimetric characterization of light and media 9

(AZ(t)) (As(t) Ay (t)e D) (As(t)Ax(t)e "=
R = ((Ax(t)Ay(t)e”y“U (A5(1) Ay(t)Az(t)e“‘Sy(“5’“”)) (40)
(Az(t)A=(8)e™= ) (Ay (1) Ax(t)e v =0=(D) (AZ())

and the generalized Jones vector is
Ay
Ayei‘sy
A e

€= (38)

It is easy to verify that, in this case, the direction of prop-
agation remains constant and the end of the electric field
vector describes an ellipse perpendicular to the direction
of propagation. The 2D model is then easily reproduced
by taking the direction of propagation as the Z reference
axis, so that the third component of the 3D Jones vector
is cancelled.

3.2 3D coherency matrix

Several authors have dealt with the 3D description of the
polarization state. From a chronological point of view, it
is worth emphasizing the work of Roman [87], who de-
fined a set of generalized Stokes parameters from a par-
ticular basis of 3 x 3 matrices. These matrices are not
trace-orthogonal and, consequently, do not constitute the
best option for building a basis. As Fano pointed out [46],
a convenient basis for n X n coherency matrices is a set of
Hermitian trace-orthogonal operators. Thus, for our pur-
poses, an appropriate basis is that constituted by the 3 x 3
identity matrix together with the eight Gell-Mann matri-
ces. We will see that this choice, based on the generators
of the SU(3) group, is consistent with a generalization of
the polarization algebra to n X n coherency matrices.

The so-called “coherency matrix” [6,43-45] or “polar-
ization matrix”, which contains all measurable informa-
tion about the state of polarization (including intensity)
of an electromagnetic wave, is defined as the following 3 x 3
Hermitian matrix

R =(e(t) ®e" (1))
E1®ei(®)  (e1(D)es(t))  (ea(t)e3(h)
= [ (e2(®)ei(®)) (e2(t)ez(8))  (e2(t)e3(0)) |, (38)
(ea()ei(t)) (es(D)es(t))  (es(t)es(t))

whose elements are the second-order moments of the zero-
mean analytic signals €;(¢); i =1,2,3, so that R is a co-
variance matrix and, therefore, R is completely character-
ized by the fact that it is a positive semidefinite Hermitian
matrix [88].

The expression of R in terms of the amplitudes and
relative phases of the field components is

see equation (40) above

As we have observed, R is characterized by the fact that
its three eigenvalues are non-negative. These three con-
straints are a complete set of necessary and sufficient con-
ditions for a Hermitian matrix R to be a “3D coherency

matrix”, i.e. to represent a particular state of polariza-
tion of a light beam. An equivalent set of conditions is
derived from the fact that the Hermitian matrix R has
three nested non-negative principal minors [88].

The statistical properties of R arise clearly when its
elements r;; (4,7 = 0,1,2) are written in terms of the cor-
responding standard deviations o; and degrees of coher-
ence [;j,

Tij = Hij0i034, (41)
2 - - .
where g; = <€i€;<> = Tii, Hijg = Tij/o—io—j; 1.€.
2
o) 1010001 4020002
R = | pi0001 o7 pi20109 (42)

* * 2
Ho20002 120102 T3

From the non-negativity of three nested principal minors,
we can write a set of necessary and sufficient explicit con-
ditions for R to be a covariance matrix and, hence, to be
a coherency matrix representing 3D states of polarization

o0 2 0 (43a)

1 = poi; (43b)

det R =1+ 2po1p12p02¢0s (Bo1 + 12 — Bo2)
— P31 — Pla = Po =0 (43c)

where p;; = |pijl, pij = pelii.

An interesting geometric interpretation of the 3D co-
herency matrix has been presented by Dennis [89] through
the decomposition of R into a real symmetric positive def-
inite matrix (interpreted as the moment of inertia of the
ensemble, and represented by means of the correspond-
ing ellipsoid) and a real axial vector (corresponding to
the mean angular momentum of the ensemble). Another
kind of representation of 3D states of polarization (but
only valid for pure states), based on the Majorana sphere
representation has been presented by Hannay [90] who
has studied its relation with the Berry phase. Moreover,
Saastamoinen and Tervo [91] and Ellis and Dogariu [92]
have introduced geometric representations of the invari-
ants of R in the eigenvalue space.

As a basis for the expansion of R, let us now consider
the following set of Hermitian, trace-orthogonal matrices
constituted by the Gell-Mann matrices plus the identity
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100 3
Wwoo = 010 wmz\/;
001

3 0—20 3 100
wio = 5 i 00 wllz\/; 0-10
000 00O

010 3 001
100 Wwo2 = 5 000
000 100

3 000
wlgE\/; 001
010

3 00— 3 000 1 100
wzo—\/; 000 UJ21E\/; 00— wa=—|(010 |. (44)
i0 0 04 0 V2 00 -2
3
qoo = roo + 111 + 722 qo1 = B (ro1 +r10) qo2 = 5 (ro2 + r20)
. /3 3
qio =1 5 (7“01 - 7‘10) q1 = § (7‘00 — T11 qi2 = 7“12 + 7“21
:i\/g(r — 120) :i\/g(r —721) ¢ :—(r + 711 — 2r22) (46)
G20 =0/ 5 (ro2 =720) g =4[5 (M2 =721 =5 00 + 711 22
(2(]00 +V6qu1 + \/§Q22) (\/éqm - 7:\/6q10) (\/6(]02 - i\/é(]go)
R=- (v6qo1 +iv/6q10) (2q00 — V6q11 + V2q22) (V6q12 — iv/6q21) (47)
(V6q02 + iv/6g20) (V612 +iv6g21) (2q00 — 2v/2¢22)

matrix
see equation (44) above

The notation used for these matrices is justified for the
sake of simplicity as well as to emphasize the symmetry
in some future mathematical expressions.

As occurs with the basis used for the expansion of the
2x2 coherency matrices the above matrices w;; are Her-
mitian w;; = w ; trace-orthogonal tr (w;jwii) = 361051,

and satisfy w? = D (1,1,1). Thus, they are unitary and,
except for the identity matrix wqg, they are traceless.

The basis constituted by w;; allows R to be expressed
as the following linear combination [2]

2
1
=3 Z Gijwij, i = tr (Rwij), (45)

i,§=0

where the nine real coefficients ¢;; can be properly called
the “3D Stokes parameters”.

In order to compare this expansion with that presented
by other authors, the following observations should be
taken into account:

— for the sake of symmetry and simplicity in the mathe-
matical relations, the order chosen for the Gell-Mann
matrices differs from that used by Gell-Mann and by
several authors [93-95]. Except for the change wi; <
wao, the order coincides with the one used by
Brosseau [2];

— the Gell-Mannn matrices have been normalized in or-
der to ensure that their weight (Euclidean norm) co-
incide with that of the 3 x 3 identity matrix, which

is also included in the basis. This choice differs from
those used in the cited references, as well as in refer-
ence [96].

Obviously, these options have no physical consequences
and do not affect the results expressed in terms of invari-
ant quantities (i.e. derived from the eigenvalues of R), but
lead to different expressions for the 3D Stokes parameters
and for their relations with other parameters.

As we will see, the normalization performed is consis-
tent with a generalized model for the polarimetric proper-
ties of light and media based on n-dimensional coherency
matrices.

3.3 3D Stokes parameters

According to the definitions introduced in the previous
section, the 3D Stokes parameters take the form

see equation (46) above

and the coherency matrix can be expressed in terms of ¢;;
as follows

see equation (47) above

It is obvious that the Poincaré sphere representation is not
applicable to 3D states of polarization. The constraining
inequalities between ¢;; (derived from the non-negativity
of the eigenvalues of R) are of greater complexity than
that of the 2D Stokes parameters. In fact, these restric-
tions involves, not only trR and tr (RQ)7 but also tr (R3).

Now we examine the physical meaning of the 3D Stokes
parameters. To do this, we first consider the reduction to
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(2400 + V6agi: + \/§QQ2)

Ri= 2| (Vodh +ivado)
0

(\/6(]61 — i\/é(ﬁo)

(QQ60 — V641, + \/ﬁqég) ) (48)
0

o O O

the case of plane waves, which can be performed through
a transformation of the reference axes XYZ to X'Y'Z’, Z'
being the propagation direction. The resulting coherency
matrix R’ is

see equation (48) above

where the Stokes parameters can be interpreted by com-
paring them with the corresponding 2D Stokes parameters

2 / 1 ! 2 !
S0=3 (‘Ioo + _\/5%2>7 51 = \/;‘hlv
2 / 2 /
S2 = g%p 83 = \/;(ho-

We see that, due to the particular normalization
tr (wijwir) = 30;0;; chosen for w;;, and due to the intrin-
sic “asymmetry” of the Gell-Mann matrices, which have
only two nonzero elements except for the diagonal ma-
trix wag, the intensity sg includes a contribution from g,.
Thus, as Carozzi, Karlsson, and Bergman [93], and Setél4,
Shevchenko, Kaivola and Friberg [94] have pointed out, in
general, the parameter ¢11 represents the predominance
of the X component (¢11 > 0) or of the Y component
(g11 < 0). Attending to the projections of the field com-
ponents on the XY plane, the value ¢;; = 0 occurs, for
example, in the cases of circularly polarized light and un-
polarized light. Analogously, the parameters qo1, g0 re-
fer respectively to the predominance of projections on the
positive (go1 > 0), or negative (go1 < 0), parts of the bi-
sector axis of XY and of right handed (q1p > 0), or left
handed (q19 < 0), circularly polarized light.

Analogous meanings correspond to the parameters
qo2, g20 (for projections on the XZ-plane), and qi2, ¢21
(for projections on the YZ-plane). Finally, the parameter
@22 represents the intensity in the XY -plane additional to
that in the Z-direction [94].

A particular analysis devoted to plane waves in the
3D spectral density tensor formalism is presented in ref-
erence [93], where the angles that determine the plane
containing the polarization ellipse and the propagation
direction are obtained from R. This analysis can also
be applied to characterize the “spectral polarization el-
lipse” corresponding to each frequency contained in the
light wave. In the time domain, and under the clas-
sic assumptions, the electric field describes the polar-
ization ellipse, but, in general, both its shape and its
plane vary with time. For the spectral density tensor,
the dual pseudovector associated with its antisymmetric
part is given by i (—¢21, q12, —g20), so that the real vector
v = (g21, —q12, g20) determines the plane of the polariza-
tion ellipse as well as the direction of propagation [93].

In the quantum model, these interpretations must be
reconsidered because the polarization ellipse is not well
defined [97], regardless of the existence of states of an
essentially quantum nature.

(49)

As some authors have pointed out [98-100], the
measurement of 3D Stokes parameters of near fields is
an important subject for the study of coherent light
diffracted by microstructures (producing subwavelength
features) [99], fluorescence, multiphoton microscopy,
imaging objects imbedded in dense scattering media,
nanophotonics [100], etc. Déndliker et al. [99] have dealt
with the measurement of the transverse component of the
electric field by means of a heterodyne scanning probe op-
tical microscope (heterodyne SPOM) and, more recently,
Ellis and Dogariu [100] have suggested an original exper-
imental setup for full 3D polarimetric measurements.

3.4 Purity criterion for 3 x 3 coherency matrices

The expression of the 3 x 3 coherency matrix R in terms
of the statistical parameters, given by equation (42),
shows that, as Ellis, Dogariu, Ponomarenko and Wolf have
pointed out [101], total polarimetric purity corresponds to
complete correlation between the field variables, so that
the values of the modulus of the mutual degrees of coher-
ence are equal to 1, |u;;| = 1.

In order to express some relevant relations in terms
of invariant metric parameters, let us now consider the
Euclidean norms (also called Frobenius norms) of R and

Q = (¢i5)

) 1/2
IRI, = S 1| =[tr RTR)]? =[x (R?)],
i,j=0
(50)
) 1/2
Qb= > & | =[r@Q"qQ)]"”, (51)

4,j=0

and, as in the 2D case, we define the following norm for R

2
IR||, = trR = H\/RHQ. (52)
Since R is a positive semidefinite Hermitian matrix, it is
easy to show that ||R||, satisfies all the conditions to be
a norm. Furthermore, these norms satisfy the following
relations

IRy = oo, (53)

1

3 R[S < IRJ < IR (54)
For pure states, the equality HR||§ = HRH% holds, which
constitutes an objective purity criterion formulated in a
symmetric manner with respect to that presented for the
2D case. The other limit HRHg =1 HR||§ is reached in the
case of unpolarized light (equiprobable mixture of states).
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3.5 Decompositions of the coherency matrix

In the following subsections we analyze different proce-
dures for decomposing a coherency matrix R into a convex
linear combination of particular coherency matrices. The
spectral decomposition is based on the eigenvalue struc-
ture of R and consists of a set of pure components. The
trivial decomposition is also based on the eigenvalue struc-
ture of R and consists of a pure component and a scaled
set of unpolarized components. Finally, the arbitrary de-
composition provides a general method for decomposing
a mixed state into pure states and, hence, includes the
spectral decomposition as a particular case.

3.5.1 The spectral decomposition of the coherency matrix

Since the coherency matrices are Hermitian positive
semidefinite, they can be diagonalized through a unitary
transformation. Therefore, the matrix R can be written
as

R = UD (Mo, A1, A2) UT (55)

where D (Mg, A1, A1) represents the diagonal matrix com-
posed of the non-negative eigenvalues, ordered so that
0 < A2 < A < Agp. The columns u; (i =0,1,2) of the
unitary matrix U are the respective eigenvectors.

Consequently, R can be expressed as the following con-
vex linear combination of three rank-1 coherency matrices
that represent respective pure states with the same inten-
sity as R

pY Y .
R = 2 UD (trR,0,0)U* + Z2UD (0,uR,0)U
A2
22 UD (0,0, tR) U*
+ RJUD(0,0,tR)UT,  (56)

where each term in the sum is only affected by the corre-
sponding eigenvector

R= 2 [(0R) (w @) (57)

=0

As in the 2D case, this spectral decomposition shows that
any 3D polarization state can be considered as an incoher-
ent superposition of three pure states with weights propor-
tional to the eigenvalues of R. The coherency matrix is a
convex linear combination of the coherency matrices gen-
erated by their eigenvectors. It should be noted that, when
one of the eigenvalues has a multiplicity higher than 1,
then the eigenvectors of the corresponding invariant sub-
space are not unique.

3.5.2 The trivial decomposition of the coherency matrix

The trivial decomposition of R cannot be performed in the
form of a sum of a pure state and a 3D unpolarized state
but, as we will see at the end of Section 3.6, a generalized
trivial decomposition can be realized properly through a

sum of a pure state, a 2D unpolarized state and a 3D un-
polarized state. This agrees with the fact that the nine
real independent parameters of R can be generated by the
sum of a pure 3 x 3 coherency matrix (five real indepen-
dent parameters), a 2D-unpolarized 3x 3 coherency matrix
(three real independent parameters) and a 3D-unpolarized
3 X 3 coherency matrix (one real independent parameter).
In general, pure n X n coherency matrices contain 2n — 1
independent parameters whereas mD-unpolarized n x n
coherency matrices contain 2 (n — m) + 1 independent pa-
rameters.

3.5.3 The arbitrary decomposition of the coherency matrix

As with the spectral decomposition, an arbitrary decompo-
sition can also be applied to 3 x 3 coherency matrices

2 2

R:Zai [(trR) (vi®vi+)}, ZO%:L 0<a; (58)

i=0 =0

where v; are linearly independent unitary vectors. The
number of pure components is equal to the rank of R.
The demonstration of the existence of this kind of de-
composition for n x n coherency matrices, as well as the
restrictions on v;, is dealt with in reference [102]. In our
opinion this is a relevant result because provide all the
ways for representing a mixed state as a superposition of
pure states. Nevertheless, as we will see in Section 5.6.3,
the application of this decomposition to coherency matri-
ces representing material media requires that the mathe-
matical expression of the superposition of pure states have
the form of a convex sum. Thus, given the importance of
this kind of decomposition and its potential application
for scientific and industrial purposes we include here a
new demonstration where R is expressed as a convex sum
of pure components. It is straightforward to extend this
demonstration to n x n coherency matrices.

Given a non-singular (rank-3) 3 x 3 coherency ma-
trix R, we consider equation (55) and write R as

R—=CC*, C=UD (\/TO VA \/A_Q)
Cct=D (\/)\_0 VL, \//\—2) U*. (59)

From successive steps we are going to decompose R into
a linear convex combination of pure coherency matrices
A satisfying trA()=trR (equal intensities before being
affected by their respective weights in the convex sum).
First we observe that, given any rank-1 posi-
tive semidefinite Hermitian matrix A, the matrix
(C)""A®@ (CH)™" is a rank-1 Hermitian matrix, and
there exist a unitary matrix V that diagonalizes it [103]

v+ [(C)—l A® (c+)‘1} V =D (0,0,as), 0< as,
(60)

and, consequently,

A® =CVD(0,0,a;) VI C. (61)
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We introduce the following notations for V in order to use
them in subsequent calculations

Voo Vo1 Vo2
V10 V11 V12
V20 V21 V22

V= (62)

= (VO;V17V2)7

_ T
where the column vectors v; = (vg;,v1i,v2;)" are
the orthogonal unitary eigenvectors of the matrix

(C) " A®@ (c+)*1]

Therefore, A can be written as

A® =Claz(v2®v])]CT. (63)
It is important to note that, whereas the eigenvector vo,
corresponding to the nonzero eigenvalue ao, is fixed by
the particular election of A(?) the other two orthogonal
eigenvectors vg, vy, corresponding to the null subspace,
can be chosen freely, provided they are orthogonal to vs.

Let us now consider the trace of A®)| in order to de-
termine the parameter ay from the condition trA(? = trR,

trA® = tr [CVD (0,0,a2) VT CT]
—tr {U {D (\/E VA \/A_Q) VD (0,0, az)
VD (Vi vEL V) o)

= tr [D (Ao, A1, A2) VD (0,0,a2) VF] = asls,

(64)
where
Iy = tr [D (Ao, A1, A2) VD (0,0,1) V]
=tr {D (Ao, A1, X2) [va® v ]}
=X |UO2|2 + A1 |U12|2 + Ao |U22|2 , la>0, (65)
and the trace condition trA(?)=trR leads to
a = %. (66)

Moreover R can be expressed as

R=CC"=C(VV*")C"=(CV)D(1,1,1)(VtCT).
(67)
Thus, the simultaneous diagonalization of A and R,
allows us to perform the following subtraction
R—aA® =CV[D(1,1,1) — aD (0,0,a,)] VI CT
=CVD (1,1,1 — azas) VT C™. (68)

We observe that, by taking as = 1/as = lo/trR, the sub-
traction results in

R— a;A® =R/,

R’ =CVD(1,1,0)VtC*
=C[(vo@vy)+ (vievi)]C*, (69)

where R’ is a rank-2, positive semidefinite Hermitian ma-
trix.
Let us now consider an arbitrary unitary matrix V'of
the form
Vgo Vo1 0
V= | vgv, 0
0 0 1

(70)

This matrix V' always satisfies the following matricial
equation

V'D(1,1,0) V" =D (1,1,0), (71)
and, therefore
R'=CWD (1,1,00 W Ct, w=VV/, (72)
where, W is a unitary matrix with the form
Woo Wo1 Vo2
W = w10 W11 V12 = (Wo,Wl,Vg). (73)

V20 V21 V22

In order to find the class of rank-1 matrices susceptible to
be diagonalized simultaneously with R/, we construct the
matrix

A = CWD (0,a1,0) WHCT, (74)

so that
AWM =CJa; (wi®@w)]CT, (75)

where, as we have observed, the vector w; can be chosen
arbitrarily in the subspace orthogonal to va.
The trace of A is given by

trA® = ¢r [CWD (0,a1,0) WJFC*} = aily, (76)
where
l; = tr [D (Ao, A1, A2) WD (0,1,0) W]
=tr {D (Ao, A1, X2) [w1 @ wi ]}
= Ao lwor|* + A1 jwin | 4 Ag lwar|*, >0, (77)

Due to the non-uniqueness of the eigenvectors correspond-
ing to the subspace given by the degenerate eigenvalue 1,
the coherency matrix R’ can be written as

R'=CWD (1,1,0) WrC*

=C[(wo@w{)+ (w1 @w{)]CT. (78)

Thus, the simultaneous diagonalization of A(") and R’
allows us to perform the following subtraction

R — AV =CW D (1,1 — aja;,0)| WHC*,  (79)

and, by choosing a; = trR/l; and oy = 1/a1 = 1 /trR,
we obtain
R" =R —a;AY = CWD(1,0,0) WFC*.  (80)

The last pure component is fully determined by the pre-
vious choices of A and A™M and can be written as

A® = gyR” = CWD (ap,0,0) WHC*

= C [ao (wo ® wg )] CT, (81)
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so that its trace is

trA©) = gyl,, (82)
where
lp = tr [D (Ao, A1, A2) WD (1,0,0) W]
=tr {D (Aos A1, A2) [WQ ® WS_]}
= Ao Jwoo|® + A1 Jwio)® + Az |waol®, lo>0.  (83)

Analogously to the previous steps, we chose ag and «g
satisfying ap = trR/ly and ap = 1/ap = lo/trR.
From the properties of the unitary matrix W we see

that
2
> L =tR,
=0

which is the condition for the following expansion to be a
convex sum

(84)
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=0

trA® = 4R, rank (A@) =1 (85)
For the case rank (R) = 2 the same procedure can be
applied by starting from the expression of the coherency
matrix R/.

This result can be interpreted as follows: any mixed
state of 3D polarized light is physically equivalent to an
arbitrary incoherent superposition of up to three indepen-
dent pure sates. When rank (R) = 3, any pure state can
be considered as a component and, once chosen, the elec-
tion of the second component is not completely arbitrary,
whereas the third component is fully determined by the
previous choices. When rank (R) = 2, the direction of
propagation is fixed, and the mixed state corresponds to
a 2D state of partially polarized light. This agrees with
the arbitrary decomposition seen in the section devoted
to 2D polarized light.

Obviously, the spectral decomposition is a particular
case of the arbitrary decomposition. Moreover, we see that
any mixed state with can be expressed as a convex sum of
an arbitrary pure state and a corresponding mixed state.

As we will show, this new result is also relevant when
applied to coherency matrices representing the polarimet-
ric properties of material media.

3.6 Polarimetric purity of 3 x 3 coherency matrices
A first proper definition of the 3D degree of polarization

was presented by Samson in 1973 [104] within the scope of
geophysical studies of ultra-low frequency magnetic fields.

This result was also obtained by Barakat by formulating
the degree of polarization in terms of scalar invariants of
the coherency matrix [53]. Nevertheless, the study of the
3D degree of polarization has recently attracted attention
due to the advances in optical nanotechnologies and from
the necessity of understanding polarization phenomena in
fluctuating near fields and evanescent waves.

A complete formulation of the purity of the 3D states
of polarization based on two relative differences of the
eigenvalues of the coherency matrix (indices of purity) has
been introduced by Gil, Correas, Melero and Ferreira [41].
More recently, Ellis, Dogariu, Ponomarenko and Wolf [105]
have also presented two parameters based on two rela-
tive differences of the eigenvalues of the coherency ma-
trix and, from this result, Hioe [106] has introduced a pa-
rameter called the “degree of isotropy”. We refer also to
the relevant approaches obtained by Réfrégier, Roche and
Goudail [107] who have emphasized the necessity of three
quantities to characterize the invariant properties of 3 x 3
coherency matrices and have shown that, for light with
Gaussian fluctuations, a set of three invariant parameters
is enough to characterize the “polarimetric contrast”, so
that different sets of three invariant parameters defined
from the 3D coherency matrix have been considered, as
well as their relations with the different “degrees of po-
larization” defined by Barakat [53] and by Samson [104].
Réfrégier and Goudail have also proposed the Kullback
relative entropy as an invariant parameter that, together
with the intensity and the 3D degree of polarization, com-
pletes a set of invariant parameters [108].

Another purity parameter has recently been intro-
duced by Dennis [109] by means of averaging the 3D state
of polarization due to a dipole over all scattering direc-
tions, which leads to a purity measure which is not a uni-
tary invariant of the coherency matrix.

Particularly relevant contributions concerning the con-
cept of the 3D degree of polarization have been presented
by Setéld, Shevchenko, Kaivola and Friberg [94,98] and
Ellis and Dogariu [92].

Quantum and classical approaches to the 3D degree
of polarization concept, defining it as a distance between
distributions [83] and between correlation matrices have
been presented by Luis [95,110]. The connection between
the degree of polarization and the effective degree of co-
herence has been studied by Vahimaa and Tervo [111].

The 3D “degree of polarization” can be defined
as [53,98,104]

l1 <3tr (R?) )] 2
Po =5 7ope 1 :
(trR)
This invariant non-dimensional parameter is limited to the
interval 0 < P(3y < 1, in such a manner that Pz =1 cor-
responds to the case that R has only one nonzero eigen-
value (total polarimetric purity: the direction of propa-
gation is constant and the electric field describes a well-

defined polarization ellipse), whereas P(3)y = 0 is reached
when the three eigenvalues of R are equal (equiprobable

(86)
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mixture of states and zero correlation between the electric
field components).

For reasons that will be made clear below, we prefer
using the term “degree of purity” (which obviously refers
to polarimetric purity), rather than “degree of polariza-
tion”, for F3).

The expression of F3) in function of the 3D Stokes
parameters is

- 5 1/2
r
Py =||5|*5—-1
@ 2 a0
- 1/2
1 (tr(QT
|| (M ) 1)] )
_2 )
and, in terms of both norms of R
1/2
1 (3|R];
Py = l— < -1 (88)
2\ IRl

As Setéld et al. have pointed out [94,98], P(3) takes into
account not only the purity of the mean polarization el-
lipse, but also the stability of the plane that contains the
instantaneous components of the electric field of the wave.
Thus, for unpolarized light whose propagation direction
remains fixed, Py = 0 whereas Py = 1/2. It is clear
that in the 3D description of polarization, new relevant
quantities and peculiar properties arise that do not exist
in the 2D model. Therefore, the existence of three eigen-
values leads to the fact that, unlike the 2D model, the
overall degree of purity P3) does not provide complete
information of the polarimetric purity properties. In or-
der to find adequate invariant non-dimensional quantities
that provide a complete description of the purity of 3D
polarization states, we return to P2y and observe that it
can be defined as a relative difference between the two
eigenvalues, so that 0 < Pp) < 1. Thus, in the light of the
structure of the algebraic expressions of the eigenvalues of
R, and by inspecting the various relative differences be-
tween them, we see that a convenient pair of “indices of
purity” is defined as [41]

-\

oA - 20
trR a '

P,
! trR

Py (89)
These non-dimensional quantities are restricted by the fol-
lowing limits

0< P <P<1. (90)

From the above equations, the following quadratic relation
between 3y and the two indices of purity P, P is derived

1
Py = I (3P + P3). (91)

Another interesting expression of F3), as a homogeneous
quadratic measure of all the relative differences between

P,
B (0,1) A (1,1
0 (0,0) Py

Fig. 5. (Color online) Feasible region for Py, P, in the purity
space.

the eigenvalues, is the following

2
1 i — A
2 2 _ N j
Poy=3 2 vy pi=TpRe (02)
Za]:()
i<

Thus, the two indices of purity provide complete infor-
mation about the polarimetric purity of the correspond-
ing polarization state. This enhanced description based
on invariant, non-dimensional parameters with values re-
stricted to the range between 0 and 1, has special signifi-
cance from a physical point of view.

The physically feasible region in the purity space Py, Py
is shown in Figure 5.

As we will see in the case analysis presented below,
P; maintain its meaning of “2D degree of polarization”
whereas P, have the following properties:

—if P = 0 (fully random polarization ellipse), then
0 < P, < 1. We see that the only possible contri-
bution to purity of P; is related with the stability of
the propagation direction;

— if Py = 1 (pure 2D state), then P, = 1 and Pg) = 1
(3D pure state). This agrees with the fact that a 2D
pure state is a 3D pure state with fixed direction of
propagation;

— if P, =0, then P = 0 and P(3y = 0 (3D unpolarized
state). This agrees with the fact that a random propa-
gation direction entails a random polarization ellipse.

These arguments indicate that P, is a measure of the de-
gree of stability of the propagation direction of the wave.
To provide a good understanding of the physical
meaning of the indices of purity, we analyze different
states represented in the corresponding feasible region.

(a)P120,0<P2<1

0 < Pg) <1/2; Ao = A1 > A2 > 0. The system is equiv-
alent to an incoherent combination of three pure contri-
butions. The more significant two have equal intensities
Ao = A1 > Ao. These states are represented in the edge
OB (vertices O and B excluded) and correspond to light
whose direction of propagation fluctuates (P < 1) with
a predominance of an “average direction of propagation”,
whereas the “instantaneous polarization ellipse” is fully
random ( P, = 0).
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b)o<P<1,P=1

1/2< P(3) < 1 A = A 20,)\0 >0,>\2 = 0.
The system is composed of two incoherent beams with
orthogonal states of polarization and superposed in
the same fixed direction of propagation, so that this
case corresponds to 2D partially polarized light. These
states are represented in the edge BA. P, is the 2D
degree of polarization Py, whereas the constancy of
the propagation direction results in a contribution of
1/2 to the value of Pg). Therefore, it is clear that P
refers directly to the stability of the propagation direction.
(b)) LA=P=1

P(L;) =1, XN > 0, Ay = A2 = 0. The vertex A rep-
resents this state of totally polarized light, i.e. light
with fixed direction of propagation and stable mean
polarization ellipse (in short times only the intensity
fluctuates; whereas the azimuth x and the ellipticity ¢
do not).

(b2) P, =0,P =1

Pgy = 1/2; A=A >0, A2 =0. The point B rep-
resents this state of 2D unpolarized light, i.e. plane wave
with fixed direction of propagation and equiprobable
statistical contributions of the two orthogonally polarized
incoherent components.

()0<P,=P <1

Py = P, = P1; Ao > A1 (= A2) > 0. The propagation
direction and the instantaneous polarization -ellipse
fluctuate with the same randommness P, = P;. These
states are represented in the segment OA (vertices O,
A excluded). P; has a maximum value compatible with Ps.
dPp=P=0

Py = 0; Ao = A1 = A2 > 0. This state is represented
by the vertex O and corresponds to a fully random 3D
state of polarization. No predominance exists in the
direction of propagation and in the polarization ellipse.
The only nonzero 3D Stokes parameter is ggg. This is an
extreme physical situation which can be generated by
intersecting three orthogonal light beams with the same
intensity. It is very important to note that the inequality
P, < P, indicates that the value of P; is limited by the
value of P». This result is consequent with the expected
physical behavior. In this case, fully random direction of
propagation implies zero purity of the polarization ellipse.

e)0<P<P<l1

0 < Pamy <1; X > A1 > Az > 0. These states are rep-
resented by points inside the triangle OBA and exhibit
partially random fluctuations of the direction of propa-
gation and of the instantaneous polarization ellipse (with

different randomness P; # P,). It should be noted again
that the purity of the fluctuations of the polarization el-
lipse (P1) can never exceed the purity of the fluctuations
of the direction of propagation (Ps).

The above analysis leads us to propose the following
names for the indices of purity, P;: degree of polarization;
Py: degree of directionality, and P3y: degree of purity. The
names are consistent with the concepts underlying these
relevant quantities. We also observe that this disquisi-
tion agrees with the conclusions of the study of Ellis and
Dogariu concerning the concept of degree of polarization
and the other invariant quantities describing the purity of
a polarization state [92]. In fact, in the light of the previ-
ous analysis, we can consider the following decomposition
proposed by Holm and Barnes [112], which has also been
considered by Cloude and Pottier [113] and by Ellis and
Dogariu [92]

R=UD (Ao, A\, ) UT=A+B+C

A =UD ()N — )\,0,0)UT,

B=UD (\; — Mg, A1 — A2,0) U™,

C=TUD (A, A2, X0) U™ (93)

where the coherency matrix R is expressed as a sum of
the following coherency matrices: A, which represents a
2D pure state (vertex A, case (b.1)); B, which represents a
2D unpolarized state (vertex B, case (b.2)), and C, which
represents a 3D unpolarized state (vertex O, case (d)).
Provided P, = 1 (i.e. Ay = 0), this decomposition results
in the 2D trivial decomposition.

This result can be expressed as follows: “any 3D polar-
ization state can be considered as a superposition of three
polarization states: a pure state, a 2D unpolarized state
and a 3D unpolarized state” [92].

Therefore, the decomposition of a mixed state into a
pure state and an unpolarized state must be performed in
this scaled way, where the unpolarized term is composed
of a 2D unpolarized state and a 3D unpolarized state. This
point of view definitely clarifies the fundamental meaning
of the generalized trivial decomposition. We consequently
propose the name “8D trivial decomposition” for the de-
composition given by equation (93).

Moreover, it is interesting to express this decompo-
sition by means of a linear convex combination of light
states (with equal intensities before being affected by their
respective weights in the convex sum)

)\ )\1 )\ )\2
trR trR
AY =R [UD(1,0,0) U],

A2

R=20_TIAO 92 22132 B(2)
trR

B

col»—*l\DI

Lur [UD(1,1,0)U*],

B® = _trR[UD(1,1,1) UT]. (94)
A is the pure component, B is the 2D unpolarized
state and B() is the 3D unpolarized state.

In later sections devoted to coherency matrices repre-

senting the polarimetric properties of material media, we
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will see that any physically realizable decomposition of
such coherency matrices has the form of a linear convex
combination of coherency matrices with equal traces.

The trivial decomposition constitutes an appropriate
framework for distinguishing the pure component from the
random or noise component of the radiation field. In the
same sense it allows a proper treatment of the measure-
ment errors when it is known that the polarization state
being measured is pure.

3.7 Entropy associated with R

From the description of the von Neumann entropy for n-
dimensional density matrices introduced by Fano [46] and
studied by Brosseau [2], the 3D polarization entropy can
be defined as

2

Szy = —tr (Rln R) = fz (5\1 In 5\1>

1=0

(95)

where R = R/trR is the density matrix and 5\0, 5\1, Ao are
the eigenvalues of R.

Now, in order to complete the study of the physical
parameters involved in 3D polarized light, and in the light
of the above results, we consider the entropy of a state of
polarization in terms of the indices of purity of R

S =t (RuR) = =" (i)

1=

1+ip+ 2P 1 1
{< et s l)ln[—<1+§P2+§P1)]

3 3 2
MG %P; —3P) E (1 + %PQ - ;Plﬂ
n @ In [% (1- PQ)} } (96)

S is characterized univocally by P; and P,. The maxi-
mum S(3y = In3 corresponds to P, = P, = Pz = 0,
whereas the minimum Sy = 0 is reached when P =
P =P3 =1

Due to the relevant nature of the concepts related with
entropy, Réfrégier et al. [108,114,115] have dealt with the
Shannon entropy and with the Kullback relative entropy,
including their relations with the n-dimensional degrees
of polarization for optical waves with Gaussian and non-
Gaussian probability density functions. In these works, the
degree of polarization is related to the measure of prox-
imity between probability density functions and to the
measure of disorder provided by the Shannon entropy.

Taking into account the expression of the
von Neumann entropy associated with 2 x 2 coherency
matrices given by equation (34), as well as that in the
case of 3 x 3 coherency matrices there exist two indices of
purity defined as relative differences of the eigenvalues,
it is possible to introduce a proper definition of two
respective “partial entropies”, namely, directional entropy
S(2) (P2) and polarization entropy Sy (P1).

These invariant quantities contain objective informa-
tion about the randomness in the propagation direction
and in the polarization ellipse respectively. The condition
0 < P, < P> <1 on the indices of purity has its counter-
part in the partial entropies 0 < Sy (P2) < S(2) (P1) <
In 2.

Moreover, specific partial entropy can be defined for
each purity parameter p;; = i — j\j. Nevertheless, as we
have seen, P;, P, contain all the relevant information and,
hence, S(ay (P2), S(2) (P1) are proper representative quan-
tities among all possible partial entropies Sz) (pij)-

Furthermore, following the definition of Réfrégier,
Roche and Goudail [107] of the polarimetric contrast, we
find that [trR, Pi, P2] can be considered as an appropri-
ate set of characteristic parameters of the polarimetric
contrast of the corresponding 3 x 3 coherency matrix R.

4 Mathematical representation
of the polarimetric effects of material media

The polarimetric effects of a material sample depend on
its intrinsic properties, on the spectral characteristics of
interacting light, and on the particular type of interac-
tion under study. Thus, given a direction of incidence of
the light, it is possible to study the effects in the light re-
fracted, reflected, diffracted or scattered in different direc-
tions. The transformation of the polarization state of the
incoming light into the polarization state of the outgoing
light due to the interaction with a passive linear medium
can be represented through a linear transformation of the
corresponding Stokes parameters [10-13].

The main problem of polarimetry is the physical in-
terpretation of the information that provides the sixteen
elements of the transformation matrix (Soleillet-Mueller
matrix). The resolution of this problem requires a suitable
mathematical characterization of these matrices, which is
obtained through the construction of a 4 x 4 coherency
matrix whose properties are analogous to that of the 2 x 2
and 3 x 3 coherency matrices studied previously. In order
to avoid confusion, we will hereafter refer to the above-
mentioned transformation matrix as a Mueller matrix,
rather than a Soleillet matrix, because this is the term
generally used in the literature.

In the case of deterministic non-depolarizing linear ma-
terial systems (pure systems), pure states are transformed
into pure states, so that these basic interactions involve
birefringence and diattenuation properties. In the general
case, the incoherent superposition of emerging light pen-
cils results in depolarization phenomena.

In this section, a general characterization of physical
Mueller matrices is obtained from the representation of
a passive, linear optical system as a parallel combination
of pure elements. This model is justified because of the
essentiality of scattering phenomena: any polarimetric be-
havior of a material medium is derived from the secondary
radiation of the accelerated atomic and molecular charges
of the medium.

This general characterization is obtained by means of a
complete set of explicit necessary and sufficient conditions
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Fig. 6. (Color online) Basic polarimetric interaction.

for a real 4 x 4 matrix to be a physical Mueller matrix. A
subset of four conditions is derived from the mathemati-
cal properties of the covariance matrix associated with a
Mueller matrix (covariance conditions). Another subset of
conditions, composed of two “transmittance conditions”
is based on the physical restriction that the elements of
the parallel combination do not amplify the intensity of
light.

4.1 Basic polarimetric interaction: the Jones matrix

First, let us consider the Jones formalism in order to
represent the effects of a deterministic-nondepolarizing
optical system (or, briefly, “pure system”) on the polariza-
tion properties of an electromagnetic wave that interacts
with it. It should be noted that we use the term “deter-
ministic nondepolarizing” in the sense that totally polar-
ized incident light always emerges totally polarized. This
observation is important because, as Simon has pointed
out [116], the degree of polarization of a partially polar-
ized light beam can decrease when it interacts with some
kinds of deterministic optical systems (for example partial
polarizers). Moreover, there exists the possibility of depo-
larizing effects when polychromatic light passes through
some deterministic systems [117-120].

For passive pure systems, the linear transformation of
the electric field components of the light beam interacting
with them is given by the corresponding Jones matrix T

e'(t) = Te(t), (97)
where €', e, are the emerging and incident Jones vectors
(Fig. 6).

Thus, we can say that any polarimetrically-pure sys-
tem can be represented by its corresponding Jones matrix
and vice-versa.

In general both emerging and incident fields can fluctu-
ate, so that, in order to describe the properties of partially
polarized light, it is necessary to use the 2 x 2 coherency
matrices rather than the Jones vectors. The transforma-
tion of the coherency matrix is given by

' =('wet) = <Te® (Ts)+>

=(Te®e™TT) =T(e®e")TH =TET*. (98)
Like other authors [13,121], and in order to make subse-
quent straightforward calculations, we introduce the fol-
lowing alternative notation for the elements of ®

©o = P11, P1 = P12, P2 = P21, P3 = Pao. (99)

The elements of the polarization matrix can also be writ-
ten as a column-vector ¢ defined as

_ T

® = (o, 1, P2, ¥3)
= ((e1e1) , (165) , (eaeT) , (e263))" = (e @e™) . (100)
The polarization vector ¢ and the corresponding Stokes

vector s are related by means of the following expres-
sion [13,47]

s = L, (101)
where
1 0 0 1
1 0 0 -1
L= 0 1 1 0 (102)
0 i+ —i 0

This matrix L connecting both vectorial representations
of the polarization states has the following property

P

5 (103)

Taking into account some properties of the Kronecker
product, it is straightforward to show that the Stokes vec-
tor s’ of the emerging beam is given by

s'=L(e'®e”) = L((Te) @ (Te)")
=L{(Te®T)(e®e"))=L(T®T)((c®e"))
=LT®T ) =L(T®T )L 's. (104)

Therefore, these linear transformations of Stokes vectors
are given by the “Mueller-Jones matrix” N [13]

N=L(T®T")L, (105)
or, in components,
1 +
Nner = §tr(akTalT ) (106)

In the next section we will deal with optical systems whose
effect on polarized light cannot be represented by means
of Jones matrices but can be represented by Mueller ma-
trices. Therefore, like other authors, we will distinguish
between Mueller-Jones matrices (or pure Mueller matri-
ces [122]), which correspond to pure systems (i.e. charac-
terized by Jones matrices) and Mueller matrices in gen-
eral.

For the sake of clarity, hereafter we will use the fol-
lowing notation for the different types of matrices: N,
Mueller-Jones matrices and M, general Mueller matrices.

As several authors have pointed out
[17,18,45,123-126]), the condition for the elements
of the Jones matrix to represent a pure “physically
realizable” (or physical) system arises from the physical
restriction that the gain (intensity transmittance) g of
the optical system, defined as the ratio between the
intensities of the emerging and incident light beams, must
be limited to the interval 0 < ¢ < 1. This condition,
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A 2 eiA12) L 2 miA) (eim/2> _ e—imm)) o0

Tr(a, 9, = ) ) ) ) ) )

r( ) Sulo (ez(A/Q) . e—z(A/2)) i s2ei(A/2) 4 (2 o=i(A/2) (114)
So = Sina, cq = cos

called the “transmittance condition” (or “gain condi- which shows that

tion”) can be written in function of the elements of T as

follows [124,126] gr (N) = g5 (NT). (113)

% {tr (THT) + | (tr (THT))” + ddet (T*T) Pl

(107)
It should be noted that the condition 0 < g, is directly
satisfied [124].

Moreover, it is also opportune to consider the re-
versibility properties of the matrices that represent optical
systems, i.e. the operation of interchanging the incident
and emerging light beams. It was Jones who first formu-
lated a reciprocity theorem in terms of Jones matrices [9].
Given a linear optical system characterized by a Jones
matrix T, the relation between the input n and output n’
Jones vectors when the light passes through the same sys-
tem in the opposite direction is given by n'’ = nTT,
which formulated in terms of column vectors is

n =T"n. (108)
That is to say, the Jones matrix representing the sys-
tem when incident and emerging beams are interchanged
is T7 [9,127-129]. This result is not applicable when
the system exhibits magneto-optic effects. For example,
for a Faraday cell, the forward-propagating and counter-
propagating Jones matrices are equal [129].

Moreover, the symmetry of equation (107) shows that
if it is valid for T, it is also valid for T7. Therefore, if a
Jones matrix T is physically realizable, T7 is also physi-
cally realizable, and vice-versa.

For a Mueller-Jones matrix N (T), the corresponding
“reciprocal Mueller-Jones matrix” N” is given by

N"=N(T")=D(1,1,1,-1)N"D(1,1,1,—1), (109)

where the diagonal matrix D (1,1,1,—1) performs a
change of the sign in s3 in the reverse interaction. As in the
case of Jones matrices, a particular analysis of the form
of N is required when the system includes magneto-optic
effects.

The transmittance condition, expressed in function of
the elements of N (T), is the following [124]

g5 <1, g5 =noo+ (ndy +ndy + ”33)1/27 (110)

where gy is the maximum transmittance of N.
In the case of Mueller-Jones matrices, the following
equality is satisfied [130,131]
(”(2)1 + n(2)2 + ”33) = (”%0 + ”%0 + ”%0)7 (111)

so that the transmittance condition can also be ex-
pressed as

9 <1, gr = noo + (2 + 0y + n2y) /2, (112)

In consequence, g, can be properly considered as the
maximum reverse transmittance. We will see that, al-
though for Mueller-Jones matrices both “gains” are equal
gr (N) = gy (N), this equality fails, in general, for Mueller
matrices: g, (M) # g5 (M).

The above conclusions are also valid when the medium
exhibits magneto-optic effects because changes of the sign
in mo;, mjo (4,5 =1,2,3) do not affect the value of the
maximum gain.

In a later section we will show that any system is po-
larimetrically equivalent to a certain parallel combination
of pure systems, and that any pure system is polarimetri-
cally equivalent to a serial combination of pure retarders
and pure diattenuators (partial or total polarizers) [132].
The following sections are devoted to the properties of
pure systems, prior to dealing with non-pure systems.

4.2 Pure retarders

Pure retarders are non-absorbing materials that exhibit
different refraction indices (birefringence) for respective
orthogonal states of polarization, and are represented by
unitary Jones matrices

see equation (114) above

where A stands for the retardance caused between the two
orthogonal elliptical-polarized eigenstates (Fig. 7). Their
respective azimuths, (namely ¢, 4+ 7/2) and ellipticities

(x, — x) are given by

tan 2 = tan 2a cosd, sin2y = sin2asind,

O0<ag<n/2,—T<d< 7). (115)
The operational notation used for the Jones matrices is
similar to that used by Priebe [133] for Mueller-Jones ma-
trices.

It is important to point out that birefringent systems
can produce depolarization in quasimonochromatic light.
For instance, this is the case with long fiber optics, where
the shift between the modes is higher than the coherence
length. Thus, as we have indicated previously, these cases
are not covered by the Jones model, which can only be
applied when the cumulated shift is smaller than the co-
herence length of the light. The treatment of linear inter-
actions involving depolarizing effects requires the use of
the Mueller formalism.

Moreover, the chromatic dependence of the effec-
tive retardance of retarders is applied to the design of
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Lyot and Solc filters, which are constituted by appro-
priate serial combinations of retarders placed between
total polarizers. The spectral calculations can be per-
formed through the Jones formalism, whereas the study of
the integrated depolarization effects requires the Mueller
formalism [117,134]. All these considerations also have
important applications to liquid crystal optical filters,
electro-optical polarization controllers, polarization main-
taining fiber ring lasers, birefringent tuning in dye lasers,
thin film filters for optical sensing of gas concentration,
active filters for color imaging, optical flip-flop systems
and many other industrial and scientific devices.

Particular cases of pure retarders are the lin-
ear retarder Tpg(,0,4) and the circular retarder
Tr(n/4,7/2,A).

Given a Jones matrix T referred to a coordinate sys-
tem XY (Z is the propagation direction of the light beam),
the corresponding Jones matrix T referred to a rotated
coordinate system X'Y”(f: angle between X and X') is
given by

e

(Color online) Pure retardes.

T'gr=Tg (—0) TrTg (0);
__( cosf sinf
Ta (0) = (sin@ cos@)'

With this operational notation for the unitary Jones
matrices it is easy to show the following equiva-
lences [127,130,132,135-137]:

(116)

(a) TR (a, 07 A) = TG (—a) TR (0, 0, A) TG (a),

(b) Tgl (a,8,A) = T (a,6,A) = Tg (a, 6, — A),

(¢) Tr(0,0, 0) (1,1),

(d) Tgr(0,0,7)=D(1,-1),

(e) Tg(0, 7r/2 A) Tr(0,0,—A4),

(f) Tg(¥) = Tg (7r/4,7r/2,29). A rotation matrix is

equivalent to the matrix of a circular retarder with

A =20,

a system composed of any serial combination of re-

tarders is equivalent to an elliptical retarder,

an elliptical retarder is equivalent to a serial com-

bination of a linear retarder and a circular retarder

(rotator),

(i) an elliptical retarder is equivalent to a serial combi-
nation of two linear retarders,

(J) TR(aa67 A) = TR (070,,5) TR (OZ,O,A) TR (0,0,5)

Any pure retarder is optically equivalent to a linear

retarder placed between two linear retarders whose

fast axes coincide with the reference axes X and Y

respectively,

TR (Oé, 07 A) = TR (07 0; 51) TR (9a 07 52) TR (07 0; 61):

a linear retarder placed between two “aligned”

equal linear retarders is equivalent to a linear re-
tarder [138]. The parameters «, A of the resulting
equivalent linear retarder are

cos (A/2) = cos by cos (d2/2) — sin &y sin (d2/2) cos 260
sin 26
sin 61 cot (82/2) + cos 1 cos 26

tan 2a =

This serial combination of three linear retarders pro-
vides a simple method for designing tunable com-
pensators by adjusting the angle of the intermediate
retarder.

In agreement with theorem (j), any unitary Jones
matrix Tpr can be expressed as Trp = K,
where K is the Hermitian matrix given by K =
i[D(1,1)) — Tg] [D (1,1)) + Tg)~ " [103]. Thus, from this
point of view, any pure retarder has an associated Hermi-
tian matrix K, in such a manner that its Jones matrix has
the above exponential form. This representation is useful
for calculations concerning the evolution of polarization
states along the direction of propagation of the wave in-
side thick media [139-141]. In these problems, differential
forms of Jones matrices and Mueller-Jones matrices are
used [139,142-144].

An interesting case of pure retarder is a twisted opti-
cal fiber with local linear polarized eigenstates. The twist
results in an overall behavior equivalent to an elliptical
retarder. Nevertheless, the appropriate physical model for
the study of polarization mode dispersion is given by the
“principal states of polarization” [145,146]. Despite the
overall equivalence to an elliptical retarder, the system is
also equivalent to a linear retarder followed by a circular
retarder (rotator). Thus, the incoming eigenstates of the
equivalent linear retarder result in a pair of orthogonal
linear polarized outgoing states, which are rotated with
respect to the incoming ones. As we will see, this model
of principal states of polarization is also related with the
singular value decomposition of Jones and Mueller matri-
ces, and can be very useful for modeling serial and parallel
combinations of pure systems.

The Jones formulation presented for pure retarders can
easily be translated to the Mueller formalism. We have
seen that any matrix of pure retarder can be expressed
as a product of simple matrices corresponding to linear
retarders and rotation matrices. The respective Mueller
matrices of linear retarders and rotation matrices have
the following forms

100 O
010 O
NR(O;()?A): OOCA sa |
00 —saca
10 0 0
0 0
N (0) = Ng (w/4,7/2,20) = | 0—2229 Zg 0
00 0 1
(117)
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so that, in the same way as in the Jones model,

NR (Oz7 5, A) = NR (0, 07 —5) NR (a, 07 A) NR (07 0, (5)
=Ngr(0,0,-0) Ng (—a) Ng (0,0, 4) Ng (o) N (0,0, ).

(118)
These orthogonal matrices have the general form
100 0
Ng = 0 (119)
R — 0 (NR) )
0

where Ny represents a proper rotation around the axes
defined by the three Stokes parameters si, so, 2, i.e. it
corresponds to a rotation in the Poincaré sphere. It should
be noted that, in accordance with the definition of the
Stokes parameters, these axes do not correspond to those
of the spatial reference system XYZ.

Orthogonal Mueller matrices (which always corre-
spond to pure retarders) can be diagonalized through the
following similarity transformation

D (1,1, e74) = N (0,0,0) Ng (a)

x C*Ng (a, 6, A) CNg (—a) Ng (0,0, —5), (120)
where the non-Mueller unitary matrix C is [147]
1100
o= oot 2
00 ¢—

Although this “modal matrix” is not the only one that
satisfies equation (120), it has been chosen because it is
the same as we will use to diagonalize the Mueller matrices
of diattenuators.

Thus, any pure retarder has two physical eigenstates,
with eigenvalues equal to one, which are the following [148]

1
t(O) = E (]—7 C2ary S2aC6, 52a56)T ’
1
£ — % (1, —Coas —$2aCs, —52055) " (122)

and the Mueller matrix also has the following two

non-physical eigenvectors (with respective eigenvalues
eiA e—iA)
)

. . T
(]—7 —S2a, C2aCs + 155, C20S5 — ZC&) 3

(1, —S24, CaaCs — 1S5, CanS5 + iq;)T . (123)

Sl Sl

The action of a retarder can be represented in the Poincaré
sphere as a rotation, of an angle A, around the axis de-
fined by the two antipodal points corresponding to the
two orthogonal physical eigenstates [127].

The matrix Ny characteristic of a pure retarder can be
expressed in terms of the normalized Stokes eigenvector

for the fast axis t(© = t(© / téo) and the retardance as
follows [149]

(NR)ij =d;;cos A+ Ago)£§o) (1 —cosA)

+

N

(Gijk tA;O)) sin4; 4,7=1,2,3 (124)

el
Il
=

where d;; is the Kronecker delta and is the Lecy-Civita
permutation symbol.

Conversely, the retardance and the elements of the
eigenvectors of Np can be obtained as [16,149]

trN
COSAZ%*

. 1< -
1, tz('O) = 5o A Z €ijk (NR)jk'
e
(125)
It should also be noted that the transmittance of a pure
retarder is independent of the incoming Stokes vector and
g(Ngr) =1.

Any serial combination of pure retarders is equivalent
to a certain elliptical retarder represented by a unitary
Jones matrix (orthogonal Mueller matrix). Therefore, any
kind of pure retarder has two orthogonal eigenstates.

Hereafter we will distinguish between serial combina-
tions, where the light passes through successive elements
arranged along the direction of propagation, and parallel
combinations, where the incoming light beam falls simul-
taneously on different parts of the material target and
the light pencils emerging from the different components
are recombined into a whole emerging beam. The Mueller
(or Jones) matrix of a serial combination is given by the
ordered product of the Mueller (or Jones) matrices corre-
sponding to the different components. The Jones matrix
of a coherent parallel combination is given by a convex
linear combination of the Jones matrices corresponding
to the different components [13]. The Mueller matrix of
an incoherent parallel combination is given by a convex
linear combination of the Mueller matrices corresponding
to the different components [13]. For a proper calculus
of such a convex linear combination, the matrices of the
components must be normalized to have the same mean
transmittance as that exhibited by the whole equivalent
matrix.

An original method for the graphical representation
of retarders has been introduced on the basis of a four-
dimensional spherical parameterization of the Jones ma-
trix. This representation takes the form of a solid cylinder
in such a manner that the projection of the point repre-
senting the retarder on the cylinder base gives the corre-
sponding Jones eigenvectors [150].

Equation (119) shows the possibility of a particular
treatment of Mueller-Jones matrices representing devices
composed of retarders by means of 3 x 3 matrices appli-
cable directly to the “vectorial part” of the Stokes vectors
(s1, S2,83)" [137]. Moreover, the use of a complex num-
ber to represent the polarization ellipse of light passing
through a thick retarder allows us to obtain the evolution
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Fig. 8. (Color online) Pure diattenuator.
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of the state of polarization along the direction of propaga-
tion. This evolution is given by a second-degree ordinary
differential equation [151].

As we will see in next section, this 3 x 3 model cannot
be applied to pure systems exhibiting diattenuation.

4.3 Pure diattenuators

Pure diattenuators are material systems exhibiting selec-
tive transmittances for two incoming states of polariza-
tion. A diattenuator is called “homogeneous” when it has
two orthogonal eigenstates and is represented by a positive
semidefinite Hermitian Jones matrix

k10%+k25%

_ spcp (k1 —kz) e
TD(B?’YaklakQ)(sﬁcﬁ(k1k2)e’i’y )

k18%+k26%
sg =sinf, cg=cosp,

(126)
where k1, k2 (0 < ko < k1 < 1) are the coefficients of am-
plitude transmittance for the two orthogonal eigenstates
(Fig. 8). Their respective azimuths, (namely ., + 7/2)
and ellipticities (v, — v) are given by

tan 2y = tan2fcosy, sin2v =sin2Fsinvy,

0<p<n/2,—r<y<m). (127)
Some interesting specific cases are the following:
total diattenuator Tp (5,7,k1,0); linear diatten-
uator Tp(8,0,k1,k2), and circular diattenuator

Tp (m/4,7/2, k1, k2).
The inverse matrix of a non-singular Hermitian Jones
matrix is

T51 (6)77k1;k2) = TD (6;771/k171/k2)a

(0<ky<ky <1). (128)

We observe that this is a non-Jones matrix because it
violates the transmittance condition. For singular Hermi-
tian Jones matrices (ke = 0), the corresponding pseudoin-
verse is

TB(ﬁa’y’klao):TD(ﬁ5771/k170)7 (0<k1<1)7
(129)
so that
(TBTD) Tp =Tp. (130)
When ky; = ki the diattenuator degenerates into a

partially-transparent isotropic medium

Tp (8,7, k1, ki) = k1D (1,1). (131)

The matrix of a generic homogeneous elliptical diattenu-
ator can be written as

TD (ﬁ7 v kl; k2) - TR (07 0) _,7) TD (ﬁa 07 kl; k2)
X TR (Oa 07 ,Y) = TR (05 07 _’Y) TG (_ﬁ)
x Tp (0,0, k1,k2) T (8) Tr (0,0,7)

i.e. any elliptical diattenuator is optically equivalent to
a linear diattenuator placed between two linear retarders
whose fast axes coincide with the reference axes X and Y
respectively.

It should be noted that the limits established for k1, ks,
which are just the singular values of Tp, ensure the ful-
fillment of the transmittance condition

(132)

g(Tp)=k? <1. (133)
As in the case of pure retarders, the Mueller-Jones matri-
ces allow the matricial equivalences shown for the Jones
model to be replicated. Nevertheless, it is important to
consider the Mueller-Jones matrices because they can be
used in the general Stokes-Mueller model.

We have seen that any matrix of a pure homogeneous
diattenuator can be expressed as a product of simple
matrices corresponding to linear diattenuators, linear re-
tarders (aligned with the reference axes) and rotation ma-
trices. The Mueller matrix of an “aligned” (8 = 0) linear
diattenuator is

ND (07 0) kl; kl)

Rakd Bk 0 0

IR I - Ty 0 0

=31 o 0 ok, o | (139
0 0 0 2k1 ko

so that, as in the Jones model,

ND (6)77 kl; k2) = NR (07 0; 77) ND (67 0; kla k2)
x Ng (Oa 077) =Ng (Oa 07 7’7) Ng (76)

X ND (0,0,kl,k’g)NG (6) NR (0’07,-),) (135)

Mueller-Jones matrices corresponding to pure homoge-
neous diattenuators are symmetric and can be diagonal-
ized through the following similarity transformation

D (1,1,k7,k3) = N (0,0,7) Ng (8) CtNp (0,0, k1, k2)
X CNG (_ﬁ) NR (07 Oa _’7) (136)

Therefore, the eigenvalues of a pure diattenuator are
(k3. k3, k1ks, k1ks2), which correspond to the same eigen-
vectors as those obtained for the Mueller-Jones matrices
of pure retarders (but replacing «, 6 by 3, ) [147,148].
k%, k3 are the intensity transmittances of to the two phys-
ical eigenstates, whereas the duplicated eigenvalue kiko
corresponds to the other two non-physical eigenvectors.
The Mueller matrix of a homogeneous diattenuator can
be written as [149]
T
Nb = 1100 H ;D] (137)
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where

(mo, n20, n3o)T (n(n, no2, 7103)T

YT = _ 7
oo 100
T
Np=(1- T2)1/2D (1,1,1)+ [17(17T2)1/2} %;
r=m. (138)

These expressions show that the Mueller matrix is com-
pletely determined by its transmittance for unpolar-
ized light ngp and its “polarizance/diattenuation vec-
tor” Y [149], that is to say, N p is completely characterized
by the Stokes vector ngo (1, Y) [152].

The parameters (8, v, k1, k2) of the homogeneous diat-
tenuator can be calculated from Np as [16]

2 2 \1/2 2 2 \1/2
(nQO + nso) (noz + nos)
tan 2ﬁ = = ,
n1o no1
n30 103
tany = — = —,
n20 102

ki =n00(1+7); k3=mnop(1-7). (139)
Any serial combination of pure diattenuators is equivalent
to a diattenuator whose Jones matrix (Mueller matrix)
is a product of Hermitian (symmetric) matrices. Unlike
the case of unitary (orthogonal) matrices, the product of
Hermitian (symmetric) matrices is not a Hermitian (sym-
metric) matrix. This means that the most general case
of diattenuator has non-orthogonal eigenstates (inhomo-
geneous diattenuator). Moreover, general conditions for
pure systems to be dichroic (diattenuator) and birefrin-
gent (retarder) have been studied by Savenkov, Sydoruk
and Muttiah [153].

The effects of partial polarizers on the input field can
also be represented in quantum theoretical terms by re-
placing the classical amplitude transmittances with their
respective annihilation operators. This subject has been
studied by Agarwal [154], showing that the Wigner func-
tion of the field is transformed in a simple manner by
polarizing devices (squeezing devices) and finding the re-
lation of the Berry phase with this kind of transformation.

4.4 Polar decomposition of pure systems

A general matricial description of pure systems is given
by the polar decomposition of its corresponding matri-
ces [16,135]. This decomposition can be carried out in
both Jones and Mueller-Jones formalisms.

Any 2x2 complex matrix T that satisfies the transmit-
tance condition given by equation (107) is a Jones matrix
and can be written as the product of a Hermitian matrix
(pure diattenuator) and a unitary matrix (pure retarder)
in either of the two possible relative positions (Fig. 9):

T = TD (677a kl;k2)TR (Oz,&, A)a

T= TR (0/7515AI) TD (ﬁla’ylakllaké)' (140)

Fig. 9. (Color online) Retarder-diattenuator equivalent system
based on the polar decomposition of pure matrices.

Obviously, these expressions are directly translatable to
the corresponding Mueller-Jones matrices

N =Np (8,7, k1, k2) Ng (o, 6, A4) ;

N =Ng (o, 8, AYNp (8,7, k1, k) , (141)
where N is a symmetric Mueller-Jones matrix and Ng
is an orthogonal Mueller-Jones matrix.

The set of physical parameters (a,d, A, 3,7, k1, k2),
which are restricted to the limits

0<a<7/2,

I« *7T<(S<’/T,
0< B <7/2,

0< AL,
77T<’7<7T; 0<

ke < k1 <1, (142)
provides all the information obtainable through polarimet-
ric techniques.

Alternatively, (o/,d", A%, 8',+', ki, k%) can be used to
characterize the pure system.

When N is singular [det N = (det T)* = 0] the polar
decomposition is not unique and arbitrary values of 4, ¢’
can be chosen.

Regardless of whether N is singular or non-singular,
the parameters corresponding to the equivalent diattenu-
ators are [16]

K=k?=no(1+7), k=k?=nnl-1),

1/2
tan 23 = (ndo +130)
n1o ’
9 5 \1/2
tan 23’ = —( b2 + i) , tany = tanqy/ = —2 -2
nop1 n20 o2
(143)
where
-1 (ndy + ngy +nd )1/2 -t (nfo + n3o +n3 )1/2.
g o1 o2 Mo g M0 T M0 M3
(144)

This last equality expresses a particular property of pure
Mueller matrices.

It should be noted that k%, k%, kiko, k1ks are the sin-
gular values of N (T) and that, obviously, the value of the
maximum transmittance does not depend on the mathe-
matical formalism used, i.e.

g(N) =g (T) = ki
= %{tr (TTT)+ [(tr(T+T))2+ 4det (TTT) ] 1/2}

<1 (145)
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Moreover, the minimum transmittance k3 can be ex-
pressed as

B=1 {tr () — [(tr (T#T))” 4 et (TF)

(146)
Now, for the obtainment of the parameters of the equiva-
lent retarder, we distinguish two cases [16]:

(1) N non-singular (0 < ks)

As a first step, by applying the inverse matrices of the
respective diattenuators, the matrices of the retarders are
calculated

E= NR (Oé,&, A) = ND (ﬂa’yal/klal/kQ)N’

Nz (o, 8, A') = NNp (8,7, 1/k1,1/ks) = E. (147

Furthermore, the angular parameters ¢, x, A of the equiv-
alent retarder are obtained through the following relations

trE
cos A =cos A" = rT -1,
. . €12 — €21
2 = 2 = -
sin2x = sin2y = 5 a2’
. . €31 — €13
2p =sin2¢’ = 148
SHLEP =AY = 5 cos 2xsin (A/2) (148)

which lead to

cos 2a = cos 2a’ = cos 2 cos 2x = cos 2¢’ cos 2/,

tan2y  tan2y’

tand = tand’ = (149)

sin2p  sin2¢’’
(2) N singular (0 = k2)

In this case, the decomposition is not unique. An ar-
bitrary value can be chosen for 4, (or §’) for example
0 =0 (6’ =0), so that the equivalent retarder is a lin-
ear retarder. Then «, o are given by

n10 — No1
tan2a = tan 2o’ = ————,

Np2 — N2

and for A(4’), two different values Ay, Ay (A}, A}) are
possible

(150)

tan A, — tan A/ — 2780~ anos

b* —nfg
b
tan Ay = tan (7 — A}) = w, (151)
A

where
a = nop sina—np2 cos @, b= njgsina—ngcosa. (152)

In the case of ngs = 0, these results must be replaced by
A=A =x/2.

Each one of the pure components of the equivalent sys-
tem given by the polar decomposition is homogeneous [17],

i.e. has orthogonal eigenstates. In particular, the fact that
the equivalent diattenuator has orthogonal eigenstates
(and, hence, has not the most general form of a pure di-
attenuator) does not represent a lack of validity, but is a
peculiarity of the polar decomposition.

From the general expressions of the Jones ma-
trices (or the corresponding Mueller-Jones matrices)
of pure retarders, pure diattenuators and pure sys-
tems, several theorems can be stated. All of them
can be deduced from those mentioned in this sec-
tion [127,130,132,135-137,155].

The equivalent model (retarder-diattenuator) of a pure
system, which has been obtained by the polar decomposi-
tion of its corresponding matrix T, results in the singular
value decomposition of T. In fact, equation (140) can be
expressed as

T = [TR (O7 0, —’y) Ta (—ﬁ)] Tp (0, 0, kq, k’g)
X [TG (ﬁ) TR (0, O,’y) TR (a, (5, A)] .

This Jones algebra allows us to easily distinguish be-
tween “homogeneous” Jones matrices (i.e. the eigenvalues
coincide with the singular values) and “inhomogeneous”
Jones matrices (i.e. the eigenvalues are different from the
singular values). Homogeneous Jones matrices correspond
to systems in which the eigenvectors of the equivalent re-
tarder coincide with those of the equivalent diattenuator.
A particular case of homogeneous Jones matrices are those
that represent pure retarders. This subject has been stud-
ied by Lu and Chipman [17], who have defined an “in-
homogeneity parameter” 7 as the scalar product of the
eigenvectors of the system, so that for homogeneous sys-
tems 7 = 0, whereas the value n = 1 represents the max-
imum possible value of the inhomogeneity. An example
of system with n = 1 is a serial combination composed
of a retarder placed between two crossed total polarizers
(“black sandwich”) [156].

Obviously, given the direct relation between Jones
and Mueller-Jones matrices, the above arguments are also
valid for Muller-Jones matrices.

The above-mentioned authors, Lu and Chipman, have
analyzed the retardation and diattenuation properties for
both homogeneous and inhomogeneous cases through the
polar decomposition of their Jones matrices [17,149]. In
terms of the elements of the Mueller-Jones matrix N, the
polarizance and diattenuation vectors are defined as

(153)

1 T 1 T
Y;=— (nw,n20,n3) , Y,=— (no1,no2,N03) ,

00 oo
(154)
so that Y contain all the information about the polariz-
ing power for incident unpolarized radiation, whereas Y,
describes completely the transmittance properties of N.
Taking into account the reciprocity conditions for
Mueller matrices, we see that

Ty(N) =7, (N), Y.(N)="7;(N"),  (155)

and, from equation (144), we observe that, for pure sys-
tems, the modulus of both polarizance and diattenuation
vectors are equal.
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The properties of non-singular Jones and Mueller-
Jones matrices can be studied by means of their represen-
tation in the SL(2C) group or in the proper orthochronous
Lorentz group respectively [157-160]. In the case of di-
attenuators, this requires a normalization which violates
the transmittance condition. As we will see, a powerful
group-theoretic framework for the representations of the
polarimetric properties of material media arises from the
concept of the coherency matrix associated with a Mueller
matrix [41,161-163].

5 Interaction of polarized light with
non-deterministic passive optical systems

Many scientific and industrial applications of polarimetry
involve depolarization phenomena. The study and char-
acterization of the general polarimetric behavior of mate-
rial samples is of considerable importance in order to take
maximum advantage of the potential possibilities of these
non-destructive techniques.

In general, for an incident totally polarized light beam,
a material system produces a superposition of totally po-
larized outgoing light pencils with different polarizations.
Depending on the spectral distribution of the incident
light, on the nature of the material target and on the
nature of the interaction, these pencils can present differ-
ent relative degrees of coherence. Thus, the superposition
of some pencils can be coherent (so that their respective
Jones vectors must be added in order to obtain the cor-
responding resultant Jones vector), the superposition of
some pencils can be incoherent (so that their respective
Stokes vectors must be added in order to obtain the corre-
sponding resultant Stokes vector) and the superposition of
other outgoing pencils can be partially coherent (so that
their coherent parts are “Jones-added” and their incoher-
ent parts are “Stokes-added”). Taking into account the
principle of optical equivalence of polarization states [33],
the above observation implies that the polarimetric effect
of a material medium is equivalent to that of a system
composed of a parallel combination of several pure optical
systems. Therefore, the state of polarization of the outgo-
ing light beam is physically equivalent to the state of po-
larization of the superposition of the light beams emerging
from each one of the pure components of the equivalent
parallel combination.

In this paper, we deal only with physical (or physi-
cally realizable) Mueller matrices, i.e. 4 X 4 real matrices
that represent the linear polarimetric behavior of mate-
rial systems. In accordance with the above considerations,
we will show that the Mueller matrix of the whole mate-
rial system is given by a convex sum of the Mueller-Jones
matrices of the incoherent pure elements included in the
parallel combination. This definition of general Mueller
matrices is equivalent to saying that the Mueller matrix
of the system can be considered as an ensemble average
of pure Mueller matrices [161,164-168].

Although in the literature the properties of matrices
transforming Stokes vectors into Stokes vectors (i.e. sat-

isfying the so-called “Stokes criterion”) have been stud-
ied [152,160,167,169-175], this kind of matrix, hereafter
named “Stokes matrices”, does not coincide with the set
of “Mueller matrices”, which is derived from the “ensem-
ble criterion”. Some properties of Stokes matrices have
been obtained from the Stokes criterion, which means
that the degree of polarization of outgoing light must
be less than, or equal to, unity (i.e. the Stokes matrix
does not “overpolarize”) [169,170,173]. These and other
relevant results have been derived from the properties of
the eigenvectors of GMTGM, or MY GM and from their
spectral decomposition, where G is the diagonal matrix
G=D(1,-1,—1,-1) [160,172,174].

Obviously, any physical Mueller matrix is a Stokes ma-
trix but, in general, the converse is not true. No method
has been quoted to physically realize a Stokes matrix be-
ing non derivable from the ensemble criterion. It is obvious
that only physical Mueller matrices (from now on, Mueller
matrices) are the subject of physical interest and, as sev-
eral authors have pointed out [165,167,168], the ensemble-
based model represents a suitable theoretical framework
for the study of polarimetric phenomena. In the following
sections we formulate mathematically the conditions for a
4 x 4 real matrix to be a Mueller matrix.

5.1 Construction of a Mueller matrix

In general, an optical system can exhibit spatial hetero-
geneity over the area illuminated by the incident light
beam, as well as dispersive effects, producing depolariza-
tion. The emerging light is consequently composed of sev-
eral incoherent contributions, and the optical system can-
not be represented by means of a Jones matrix. However,
taking into account that, essentially, any linear effect is
due to certain sort of scattering, the system can be consid-
ered as being composed of deterministic-nondepolarizing
elements, each one with a well-defined Jones matrix, in
such a manner that the light beam is shared among
these different elements. In other words, the system is a
parallel combination of polarimetrically-pure components
(Fig. 10).

Let I be the intensity of the portion of light that
interacts with the “i” element. The ratio between I and
the intensity I of the whole beam is denoted by a respec-
tive coefficient p; so that

7@
pi:T’ Zpizl. (156)

Now we denote by T(), N the respective Jones and
Mueller-Jones matrices representing the “” element.
Thus, the Jones vector of the light pencil emerging from

each element is given by

ei(t) = T [ypie(t)], (157)
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Fig. 10. (Color online) Physical transformation of Stokes vec-
tors.

and the corresponding Stokes vector is given by

L (T ypie) @ (TVypie)" )
- L < (TO @ T (ege )>

=pL(TY @ TV (e ® "))
— s [L(T“) ® TW*)L~ 1}

si=L{;0e;)=

(158)

The polarization state of the complete emerging beam
is obtained through the incoherent superposition of the
beams emerging from the different elements, resulting in
the following Stokes vector

s’ = Zs’i = (ZpiN(i)> s = Ms,
i i

(159a)

where
M= (ZZHN(Z ) ., NO = L(T(i) ® T(i)*)Lfl,
= 0, Zpi =1

We have obtained this result by considering the optical
system as composed of a set of parallel elements, but it
is worth pointing out that the same result is obtained by
considering the system as an ensemble, so that each real-
ization “i”, characterized by a well- deﬁned Jones matrix
T occurs with a probability p;. Therefore, we can con-
sider the optical system as composed of such an ensem-
ble [165]. We will refer to ensemble averages by means of

(159b)

z), = Zpix(i) ; >0, Zpi =1, (160)
so that
=(N),=L(T®T"), L, (161)
or, in components [165],
1
mer = (ki) = 9 (tr(oxTouTT)), , k,1=0,1,2,3.

(162)

5.2 Coherency matrix associated with a Mueller
matrix and covariance conditions

A high degree of knowledge of the relationships between
the elements of a Mueller matrix is important for an-
alyzing the information contained in such matrices ob-
tained from experimental measurements. As we have
indicated above, contributions of various authors who
have dealt with this subject provide several sets of con-
straining conditions for the elements of Mueller matri-
ces [130,164,167,170,172,174,176,177]. As we will see, the
non-negativity of the four eigenvalues of the Hermitian
matrix H associated with a Mueller matrix M plays a fun-
damental role in the general characterization of Mueller
matrices. This criterion was introduced by Cloude [161]
and derives directly from the ensemble model. Another
criterion which must be added in order to complete the
mathematical characterization of Mueller matrices, is that
the Mueller matrix of any passive optical system must sat-
isfy the “transmittance condition”, i.e. gy < 1, where gy
is the maximum transmittance (gain) with regard to all
possible incident polarization states [124].

As a step previous to the definition of the coherency
matrix associated with a Mueller matrix, we introduce the
following notation for the elements of T ty = t11, t1 = t12,
ty = to1, t3 = tzp, which allows the matrix (T ® T*)_ to
be written in the following manner

tots). (tot1), (tits). (t1
tot;> <t0t3>e <t1t2>e <
tat5), (t2t1). (tsth). (ts
taty), (t213), (tat3), (ts

(
(TeT"), = é ., (163)
(

where, by attending to the subscripts, we observe that

the elements can be suitably reordered to construct the

matrix H [121,168,178] whose elements are defined as
hklz k,l:0,1,2,3.

ity | (164)

2
This matrix was first introduced by Simon [121], who dis-
tinguished between two cases H positive semidefinite and
H negative definite [178]. As we will see in next para-
graph this last case never corresponds to physical Mueller
matrices.

This definition of the Hermitian matrix H shows that
its elements are, in fact, the second-order moments of the
variables ¢y, / V2. A necessary and sufficient condition for
a Hermitian matrix H to be a matrix of second-order mo-
ments is that H be positive semidefinite [88]. Moreover, a
Hermitian matrix H is positive semidefinite if, and only
if, its eigenvalues A; are non-negative [103].

Through symbolic calculus it is possible to obtain the
very complicated algebraic expressions for the four eigen-
values of H and, hence, to express the conditions of their
non-negativity.

Another equivalent set of conditions, whose algebraic
expressions are simpler, is derived from the non-negativity
of four nested principal minors of H [168]. This explicit
formulation of the conditions could be useful in order to
show some properties of the structure of Mueller matrices,
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Mmoo + Mo1 + Mio + M1

1| mo2 +mi2 —i(mos + mi3) Mmoo — mo1 + Mo — M1

moz + miz + i (mos + mi3)

27

M2z + mas + i (M3 — ma2)
Mmoo — ma1 — i (M3o — Mma31)

mao + mo1 — @ (M3o + m31)
Moz — ma3 — i (Mmas + mas2)

H=- . . .
mao + mo1 + 4 (M3o +m31) Moz —ma3 + 4 (ma3 +ms2) Mmoo + Mo1 — Mo — M11 Moz — Mmiz + @ (Mo3 — ma3)
maz + ma3 — i (Ma23 —Mm32) mao — ma1 + 14 (M3o —ms31) Moz —mi2 — i (mo3 — mi13) Moo — Mo1 — Mo + Mi1,
(171)
hoo + h11 + ha2 + hss hoo — h11 + ho2 — hs3 hot + hio + h2z + ha2 —i(hor — h1o) —i(h2s — hs2)
M — hoo + hi1 — ha2 — hss hoo — h11 — ha2 + hss hot + hio — h2z — ha2 —i (ho1 — hio) + 4 (h2s — h32)

ho2 4 hao + hi13 + h31 ho2 + h2o — h1z — h31

i (ho2 — hao) + i (his — hs1) @ (hoz — ha2o) — @ (his — hs1) @ (hos — hso) + 4 (hi2 — ha21)

ho3 + hao + hi2 + ho1 —i (hos — hso) + i (h12 — h21)
hos 4+ h3o — h12 — ho1

(172)

to analyze polarimetric measurements and to study physi-
cal models. To obtain convenient expressions of these con-
straining conditions, it is useful to write the hy; elements
in terms of statistical parameters

hiki = prioyor, (165a)
where
1 1 * 1
2 2
o =hi, = (| —=t —t =3 <t > )
== ((50) (G0) ), =3 (108,
Iyt i
p = —— (i = prae’™). (165b)
OL0]
Thus, H can be written as follows
o} [10100071 [020002 (10300073
w0001 02 1120102 (41130103
H- (166)

2
020002 [1120102 03 H230203

2
1030003 (1130103 Ha30203 03

From the non-negativity of four nested principal minors,
we can write the set of necessary and sufficient conditions
(hereafter called “covariance conditions”) for a Hermitian
matrix H to be a matrix of second-order moments [168]

hoo = 0;

1= poi;
1+ 2p01p12p02¢08 (Bo1 + Brz — Boz2) = piy + pla + Poas
(167)
det(H) = 1 + 2p12p23p13c08 (B12 + B2z — f13)
+ 2po2p23p03¢0s (Boz + P23 — Bos)
+ 2po1p13p03c0s (Bo1 + F13 — Bos)
+ 2po1p12P02¢08 (Bo1 + Fr2 — Bo2)
— 2p01P02013p23¢08 (Bo1 — Boz + B13 — [23)
— 2p01po3p12p23¢08 (Bor — Bos + Bi2 + Ba3)
— 2po2p03p12p13¢08 (Boz — Boz — P12 + B13)
+ p31P33 + Poapis + Pospia
- P31 - /%2 - ng - P%2 - P%g - Pg?, 2 0.
It should be noted that, regardless of the fact that
the above four inequalities provide a set of sufficient

conditions; all the fifteen principal minors of H are non-
negative.

The pure case occurs when the following nine indepen-
dent conditions are satisfied

Pij = 1 (Za.] = 07]-;273);

Bo1 + Bi2 = Bo2, Bi2 + Baz = P13, Bo2 + P2z = Pos.
(168)

This “deterministic” case corresponds to a Mueller-Jones
matrix N (H) [168].

As a basis for the expansion of H, let us now con-
sider the following set of Hermitian trace-orthogonal ma-
trices [161,179]

Eij=0i®0; (i,j=0,1,2,3), (169)
which are defined as direct products of the o; matrices
used for the expansion of the 2D coherency matrix (i.e.
the Pauli matrices plus the identity matrix).

As occurs with the basis used for the expansions of
the 2 x 2 and 3 x 3 coherency matrices, these matrices E;;
are Hermitian E;; = E;;, trace-orthogonal tr (E;;Eg) =
401,051, and satisfy E; = D(1,1,1,1). Thus, these ma-
trices are unitary and, except for Eqgg = D (1,1,1,1), are
traceless. This basis allows H to be expressed as a linear
combination of E;;

3
1
H=- E :O miEij,  mi; = tr(E;H),
ij=

(170)

where the sixteen real coefficients m;; are just the elements
of the Mueller matrix associated with the “coherency ma-
trix” H. It should be noted that the term “coherency ma-
trix” is used by Cloude [161], van der Mee [169] and other
authors to refer to other Hermitian matrices defined from
M in a different way.

The formulation given by equation (170), together
with the non-negativity of H has been considered by
Ajello, Puentes and Woerdman [180], who have analyzed
the connection between classical polarization optics and
quantum mechanics of two level systems. The explicit re-
lations between the coherency matrix H and its corre-
sponding Mueller matrix M are [121,168,178].

see equations (171,172) above
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The constraining inequalities between m;; (derived from
the non-negativity of the eigenvalues of H) are of higher
degree of complexity than in the 2D and 3D Stokes param-
eters, and involve the invariants trH, tr (H?), tr (H*) and
tr (H4). Leaving aside the fact that the 4 x 4 coherency
matrix H represents the polarimetric properties of mate-
rial media, from H we can reproduce easily the coherency
matrices ® and R representing the polarimetric proper-
ties of light in the respective 2D and 3D models. Therefore,
by eliminating the corresponding extra components of the
variables ¢;, the 2D model arises as the upper-left 2 x 2
matrix, by placing

Sp = Mmoo + M10, S1 = Mo1 + M1,

(173)

The restriction to the 3D model can be straightforward
performed but, as occurs in the restriction 3D-2D, the
explicit expressions for the 3D Stokes parameters in terms
of m;; are more complicated because of the mathematical
asymmetry of the Gell-Mann matrices with respect to the
E;; matrices.

The expansion given by equation (170) provides a fun-
damental significance for the elements of the Mueller ma-
trix, deeper than their simple phenomenological signifi-
cance as coefficients of the linear transformation of Stokes
vectors. We see that the relation between the complex cor-
relation matrix H and its corresponding Mueller matrix
is, in fact, analogous to the relation between the 2 x 2 co-
herency matrix and its corresponding Stokes parameters.
Thus, leaving aside the physical meaning of the elements
m;; of the Mueller matrix, they can be mathematically
considered as 4D Stokes parameters. This shows the sym-
metry of the operators representing polarization quantities
for both light and material media.

Recently, Sudha, Gopala Rao, Usha Devi and
Rajagopal [181] have emphasized the mathematical anal-
ogy between the formulation of the coherency matrix H,
derived from the ensemble criterion, and the positive op-
erator valued measures (POVM) of the quantum density
matrix and have proposed a way of realizing different types
of Mueller devices.

So = M2 + Mi2, S3 = —Mo3 — M13.

5.3 Transmittance conditions

The covariance conditions have been obtained from the
construction of the Mueller matrix as the average given
by equation (159a) — or equation (161) —, where T()
are 2 X 2 complex matrices, but without taking into ac-
count the conditions derived from T being passive Jones
matrices. Thus, in order to complete the set of conditions
for a 4 x 4 real matrix to be a Mueller matrix, it is neces-
sary to consider the conditions derived from the fact that
all the pure Mueller matrices of the elements involved in
the average satisfy the transmittance condition.

The direct application to a Mueller matrix of the con-
dition of passivity (i.e. its transmittance never exceeds the
value 1) leads to the well-known condition [124,126]

moo + (M2, +m2y +m2) % < 1. (174)

Nevertheless, through calculations based on two main hy-
potheses: (1) the system is considered as an ensemble (the
Mueller matrix is given by an ensemble average of pure
Mueller matrices) and (2) each single realization is a pas-
sive system (i.e. its pure Mueller matrix satisfies the trans-
mittance condition), the following pair of conditions can
be demonstrated [168]

gr<l, g- <1
1/2
gf = moo + (m<2n +mgy + m<2J3) /

1/2
gr = Moo + (mfo +m§0 +m§0) / .

(175)

Thus, the procedure followed to construct the general
Mueller matrices as a convex sum (or as an ensemble av-
erage) of passive pure Mueller matrices, leads to the fact
that any Mueller matrix must satisfy, not only the “for-
ward transmittance condition”

1/2
Mmoo + (mgl + m(2)2 + m(2)3) / <1, (176)
but also the “reverse transmittance condition”
1/2
moo + (miy + m3g + m3) / < 1. (177)

The origin of these names derives from the fact that g, rep-
resents the maximum transmittance for light which passes
through the system in the reverse direction.

A good example for analyzing these properties of
Mueller matrices is the following matrix associated with a
“transparent ideal circular polarizer”

1000
0000
0000
1000

(178)

It is easy to check that this matrix satisfies the covariance
conditions as well as the forward transmittance condition,
but it does not satisfy the reverse transmittance condition.
This is consistent with the fact that this matrix cannot
be obtained as an average of pure Mueller matrices and,
hence, it is impossible to realize it and is not a Mueller
matrix.

5.4 Characterization theorem for Mueller matrices

Let us now consider the starting premises for obtaining
the characterization of Mueller matrices:

(1) a2x2complex matrix is a Jones matrix if, and only if,
it satisfies the transmittance condition given by equa-
tion (107);

(2) a Mueller-Jones matrix is defined as a 4 x4 real matrix
which can be derived from a Jones matrix. Therefore,
a Mueller-Jones matrix can be expressed by means
of equation (105) in function of its corresponding
Jones matrix. In consequence, a Mueller-Jones matrix
satisfies the transmittance condition given by equa-
tion (110), which can also be expressed by means of
equation (112);



J.J. Gil: Polarimetric characterization of light and media

20020002¢02 2p010001S01
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oy +0o1+03+03 | 05 =01 —02+03 | 42p530203C23 | —2p230203523

2010001 o1 20010001501
M= 1 o6 + 0t — 03 — o3 | 06 —of — 03 + 0} —2p0230203C23 | +2p230203523
2 20020002¢02 20020002¢02 2p030002¢02 +2p030003503
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—2p020003502 —2p020003502 —2p030001503 20030001¢03
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(179)

(3) the set of Mueller matrices is defined by all the 4 x 4
real matrices which can be obtained by means of a
convex sum (or by an ensemble average) of Mueller-
Jones matrices;

(4) characterization theorem. The results of the previous
sections lead to the following statement: “A real 4 x 4
matrix M is a Mueller matrix if, and only if, the four
eigenvalues of H (M) are non-negative and M satisfies
the transmittance conditions given by equation (176)
and equation (177)”.

In terms of simpler algebraically explicit expressions,
this statement can be formulated as: “a real 4 x 4 ma-
trix is a Mueller matrix if, and only if, it satisfies the
following six inequalities: the four covariance condi-
tions given by equation (167) and the two transmit-
tance conditions given by equations (176) and (177)”.

Evidently, in all the previous paragraphs we use the terms
“Jones matrices” and “Mueller matrices” to refer to phys-
ical Jones and Mueller matrices respectively. Despite the
reiteration, we consider it appropriate to emphasize this
in order to avoid any confusion due to the several terms
and definitions used in the literature [182].

When a Mueller matrix is obtained from an experimen-
tal measurement, we of course expect that, leaving aside
experimental errors, it corresponds to a real optical sys-
tem. However, it is of interest to consider the above general
constraints in order to know the range of possible expec-
tations as well as if the results obtained are consistent.
Furthermore, the knowledge of a general characterization
of Mueller matrices allows us to interpret the results in
terms of parameters with specific physical meaning.

A useful way to explicitly show most of the covari-
ance conditions (although not all) in the expression of the
Mueller matrix M, is to write it in function of the statis-
tical parameters, so that we get

see equation (179) above

where c;; = cos 35, si; = sin (5.

From equation (179) we observe that the following
Stokes vectors can be constructed in terms of the ele-
ments of M

Moo + Mo ] [ og+oi ]
5(01) — mo1 + M1 _ 0(2) — U%
mo2 + m12 2p010001C01
| mo3 + M3 L 2p010001501 |
(Mmoo —mio| [ o3+0F ]
§23) — |mor—ma| _ | o3—03
Moz — M12 2p230203C23
| M3 — M3 ] | 2p230203523 |
(moo+mo1] [ og+o05 ]
02) — | Mo+ mi| _ og — o3
Mo + Ma1 2po20002c02 |’
| M3 + m31 | L —2p020002502 |
Mmoo — mo1 ] T 0?4032
S(13) = mip — M1 | _ 0% - Ug
Mog — Ma1 2p130103€13 |’
| m30 — m31 | L —2p130103513 |
[ Mmoo + M1 ] o2+ 02
5(03) — |10 +mo1 | _ o8 — o3
Moz + Mma33 2p030003C03
L M23 — Mm32 | L 20030003503
Mmoo — M1 ] [ 0?2+ 03
s(12) = | M0 = Mot | _ of o3 | (180)
Maog — M33 2p120102€12
| Moz + M3z | L —2p120102512

These expressions are formally identical to those corre-
sponding to certain Stokes vectors where the magnitudes
a,% are the mean quadratic amplitudes and pg;,Bk; are the
respective modulus and arguments of the degrees of co-
herence.

It is important to point out that the first four Stokes
vectors given by equation (180) can be obtained as

sO) = M" (1,1,0,0)", s*) =M"(1,-1,0,0)" ,
s =M (1,1,0,0", s =M (1,-1,0,0)" (181)

whereas the last two s(93) and s(!2), cannot be obtained
by means of direct transformations of Stokes vectors. This
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property arises from the peculiar structure of Mueller ma-
trices and not from the fact that they transform Stokes
vectors into Stokes vectors.

Obviously, any Mueller matrix is a Stokes matrix.
The converse statement is not true because there are
Stokes matrices such as X = D (1,0,1, 1), whose corre-
sponding vector s(%3) (X) = (1,0,2,0)T is not a Stokes
vector. Another counterexample is the Stokes matrix
Y =D (1,1,1,0), whose corresponding vector s(!?) (Y) =
(0,0,1, O)T is not a Stokes vector.

Since any Mueller matrix is a Stokes matrix, we con-
clude that the numerous inequalities quoted in the lit-
erature for Stokes matrices are all deducible, as neces-
sary conditions, from the above general characterization
of Mueller matrices.

5.5 The purity criterion for Mueller matrices
and the degree of polarimetric purity of material media

The study of the necessary and sufficient conditions
for a Mueller matrix to be a pure Mueller matrix
is an important subject dealt with by several au-
thors [121,122,125,164-167,178,182-188].

We can now analyze this subject in the light of the
properties of the matrix H.

As with the 2 x 2 and 3 x 3 coherency matrices, we
consider here the Euclidean norms of H and M

1/2
3
IH,= 3 nl* | = [ (BH)]Y = [ (12)] 7,
i,j=0
5 1/2
IMly=( S0 m2 | = (MTM)] 7, (182)
i,j=0
and we define the norm
=, = trH = H\/ﬁHz (183)

It is easy to show that these norms satisfy the following
relations

1 2
I = 1 (181
[H][q = moo (185)
1 2 2
L < g < g2, (136

The last relation shows that HHHg = ||H||g, or equiva-

3
lently 420 m?j = 4m,, is a necessary and sufficient con-
,)=
dition for H to have only a nonzero eigenvalue and, in
consequence, is a necessary and sufficient condition for a
4 x 4 coherency matrix to correspond to a Mueller-Jones
matrix [168]. The other limit ||HH§ =1 ||HH(2) is reached
when the system is composed of an equiprobable mixture
of pure elements.

The inequality ||H|3> < |[H||? was first shown by Fry
and Kattawar [164] in terms of the elements of the Mueller
matrix, and they found that the equality

tr (M"M) = 4mg, (187)
is satisfied by any Mueller-Jones matrix. However, the
question whether, given a Mueller matrix M, this is
a sufficient condition for M to be a Mueller-Jones
matrix has been a subject discussed in various pa-
pers [121,122,165,173,176,178,182,186,187,189,190]. It is
clear that, under the premise that a Mueller matrix is ex-
pressible as a convex sum of Mueller-Jones matrices, we
can state: “given a Mueller matrix M, equation (187) is
a sufficient condition for M to be a Mueller-Jones ma-
trix”. All the arguments contrary to this statement arise
from considering real 4 x 4 matrices which do not sat-
isfy the eigenvalue conditions or the transmittance condi-
tions [173,178,182,186,189,190].

The degree of polarimetric purity P4y of a material
sample is defined as [41,131,168]

L) i
3\ (tzH)? .
This invariant non-dimensional parameter is restricted
to the interval 0 < FPy) < 1. The minimum Py = 0
corresponds to an ideal total depolarizer, characterized
by the fact that all eigenvalues of H are equal, i.e. the
medium is composed of an equiprobable mixture of ele-
ments, and does not exhibit any polarimetric preference
(ms; = 0 except mgp). The maximum corresponds to a
pure system (Ag > 0, A\ = Ao = A3 =0).

This fundamental physical quantity P4y was first in-

troduced by Gil and Bernabéu in the form of a “depolar-
izing index” in terms of the elements of M [131]

Py = (188)

- 3 1/2
2
ms.
1 i,jz::O "
Po=l3| "ng, !
00
r 1/2
1 (tr (MTM)
=z | ——= -1 : (189)
3 mg,

In function of both norms of H, Py is expressed as

5 1/2
PO E N
4) — 2
3\ Hf

This parameter gives an objective measure of the global
polarimetric purity of the system, as well as of its depo-
larizing power, and provides criteria for the analysis of
measured Mueller matrices [58,191,193].

Moreover, the “depolarizance” D of an optical system
can be defined as

(190)

D=1- P(4) (191)
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This definition is proper because D can be obtained as
an average measure of the depolarization produced by the
system over all incident pure states [131]. This quantity
has been studied by Chipman [194] and compared with
another scalar measure of the depolarizing power of a ma-
terial sample: the “average degree of polarization” A. Both
measures are defined from averages of the degree of polar-
ization of the exiting states. The difference between these
two quantities is particularly significant for systems in-
volving an asymmetric serial arrangement of diattenua-
tors and depolarizers. This is a direct consequence of the
fact that, whereas D is an invariant quantity defined from
a symmetric average involving exiting states for both di-
rect (M) and reciprocal (M") Mueller matrices, A only
takes into account the effects of direct propagation. Al-
though the definition of A seems to be more natural, the
symmetric nature of the characteristic properties of the
Mueller matrices leads to a simple geometric interpreta-
tion of D as a normalized distance from M to an ideal
depolarizer [194].

5.6 Parallel incoherent decompositions of matrices
representing material media

As with the case of 3 x 3 coherency matrices we consider
here the possible parallel decompositions of the coherency
matrix H (M) representing the properties of a material
sample. Any such physically realizable decomposition re-
quires having the form of a convex linear combination.
That is to say, the incident light is shared among the com-
ponents, so that the emerging pencils are recombined into
the whole emerging beam. The convex linear combination
of passive components ensures the passive behavior of the
whole system.

5.6.1 The spectral decomposition of the coherency matrix
of a material medium

Since H is a positive semidefinite Hermitian matrix, it can
be diagonalized through a unitary transformation

H = UD (A, A, Ao, A3) U™, (192)

where D (g, A1, A2, A3) represents the diagonal matrix
composed of the four non-negative eigenvalues ordered
so that 0 < A3 < XA < A < Ao. The columns
u; (1=0,1,2,3) of the 4 x 4 unitary matrix U are the
respective unitary, and mutually orthogonal, eigenvectors.

Therefore, H can be expressed as the following convex
linear combination of four rank-1 coherency matrices that
represent respective pure systems

_ o +
H= trHUD (trH,0,0,0) U

A Y N
+ o UD (0,67H,0,0) U* 4 Z2UD (0,0,:H,0) U

A3 N
+ L7 UD (00,0, uH) UT,  (193)

where each term in the sum is affected by its corresponding
eigenvector u;, so that

3
s . .
- O HO = o ut
Hf;:() HY. HO = (uH) (weuf).  (19)

This spectral decomposition shows that any linear system
can be considered as a parallel combination of, up to four,
pure systems with weights proportional to the eigenvalues
of H. Given the physical meaning of the concept of parallel
decomposition, it is very important to keep in mind that
any physically realizable parallel decomposition must be
expressed as a convex linear combination. Several prob-
lems and controversies about the properties of Mueller
matrices are derived from neglecting this physical requi-
site.

Due to the practical importance of this kind of decom-
position, it should be noted that when an eigenvalue \; has
a multiplicity r (1 < r < 4), the eigenvectors of the corre-
sponding invariant r-dimensional subspace are not unique
and can be chosen arbitrarily as a set of orthonormal vec-
tors covering the corresponding subspace.

Moreover, the statistical nature of H leads to a prob-
abilistic interpretation of its eigenvalues. This fact has di-
rect consequences in the interpretation of quantities such
as the von Neumann entropy and the indices of purity,
which will be considered in later sections.

5.6.2 The trivial decomposition of the coherency matrix of
a material medium

Let us now consider the 4D trivial decomposition of the
coherency matrix H as a convex linear combination of four
systems with equal mean transmittances

H = UD (Ao, A1, A2, A3) U

+4ti\—13{B(3)
A =trH [UD (1,0,0,0) U],
B() = LuH [UD (1,1,0,0) U],
B®) = LuH[UD(1,1,1,0)U"],
B® = LuH [UD (1,1,1,1)U*]. (195)

We observe that any state of the material system is po-
larimetrically equivalent to a convex linear combination of
up to four components with equal mean transmittances:
a pure component, a “2D unpolarized system”, a “3D un-
polarized system” and a “4D unpolarized system”.
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This result can also be expressed in terms of Mueller
matrices as follows

M= 20— N+2’\1 — A2 ) (B<1>)

trH trH
A2 = A3 1(2) (R(2) A3 ~r(3) (R(3)
+32 M (B )+4U—HM (B®). (196)

As expected, it is straightforward to reproduce the trivial
decomposition for 3D and 2D coherency matrices.

Moreover, it is clear that, in general, a non-pure sys-
tem cannot be decomposed into a pure system and a 4D
unpolarized system. As we have observed previously, a
n X n coherency matrix of a mixed state depends, in gen-
eral, on n? independent real parameters, whereas a n x n
coherency matrix of a pure state depends, in general, on
2n — 1 independent real parameters. It is obvious that the
trivial decomposition of a n x n coherency matrix (n? pa-
rameters) into a convex sum of the coherency matrix of a
pure state (2n—1 independent real parameters) and a fully
random state (1 parameter) is only possible for n = 2.

The trivial decomposition constitutes the appropriate
framework for distinguishing the pure component from the
random or noise component of the material sample. It also
allows a proper treatment of the measurement errors when
it is known that the target under measurement is pure.

5.6.3 The arbitrary decomposition of the coherency matrix
of a material medium

Given the simple linear relation between a coherency ma-
trix and its corresponding Mueller matrix, it is possible to
classify Mueller Matrices according to the rank of H, lead-
ing to the possible “target decompositions” [113,191,192].
The methods for decomposing measured Mueller matrices
play an important role in several applications of polarime-
try because they can be used for different purposes as, for
example, to identify elements in the sample and to im-
prove the contrast of images obtained by radar polarime-
try [59,195].

As we have demonstrated for 3 x 3 coherency matrices,
the spectral decomposition is not the only possibility for
decomposing a mixed state. It can also be decomposed
through the arbitrary decomposition. This decomposition
can be applied to n x n coherency matrices [102] and,
in particular, to H. Moreover, the physical possibility of
synthesizing experimentally non-pure systems by means of
different parallel combinations of pure systems suggests
the existence of decompositions other than the spectral
decomposition.

Let us consider a non-pure 4 X 4 coherency matrix
H (1 < rank(H) < 4).

Using the same arguments as for the arbitrary decom-
position of 3 x 3 coherency matrices, we obtain the follow-
ing arbitrary decomposition of the coherency matrix into

a linear convex combination of pure coherency matrices

3

. 1. . .
(1) i (1) — A+
A, ;:0 OH 1, AW =AWT,

rank (A(i)) =1, trA® = trH. (197)

l;
H= ; trH

This arbitrary decomposition can also be expressed as

3
Ho Yo (@) (o)), wi-1  (99)

=0

where v;,v; are linearly independent vectors and consti-
tute a generalized orthogonal basis of the subspace gener-
ated by the eigenvectors of H with nonzero eigenvalues. It
is evident that the spectral decomposition is a particular
case of the arbitrary decomposition. Each pure component
can be expressed in function of the corresponding unitary
vector v;. Moreover, in order to ensure a convex sum, the
coherency matrices of the components have been chosen
satisfying trA() = trH = myp.

When rank (H) = 4, any pure system can be con-
sidered as a component and, once chosen, the succes-
sive choices of the second and third components are
restricted by the exigency that the eigenvector with a
nonzero eigenvalue of A belongs to the subspace gen-
erated by the eigenvectors with nonzero eigenvalues of
the coherency matrix resulting from the previous subtrac-
tions. The fourth component is fully determined by the
previous choices of the other pure components.

Obviously, as occurs in the spectral decomposition, the
number of pure components of the equivalent system is
equal to the rank of H.

We see that any non-pure system is polarimetrically
equivalent to a parallel combination of one to four pure
components with the same mean transmittance mgg. As in
other sections of this paper, “parallel combination” here
means that the set of pure elements of the equivalent sys-
tem are illuminated by exclusive portions of the incident
light, so that their respective emerging beams are incoher-
ently superposed.

It is very important to point out that, among these
mathematically possible decompositions, only those where
all the components satisfy the transmittance condition
are physically realizable, i.e. the corresponding maximum
gains satisfy k%l) (AD) < 1.

These inequalities are not ensured by the conditions
trA® = trH and, given a component A9, different pro-
cedures can be followed in order to check the transmit-
tance condition. For instance, by observing the condition
in terms of the elements a},; of A [168]

. 4 2
g =gl = (k§ ))
i i i i \2
=tr (H) + [(aoo —afy + aby — aj)

+4 (gl + aby) (ai +aiy)] P <1, (199)
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or by checking equation (110), which expresses the trans-
mittance condition in terms of the elements of the pure
Mueller matrix N (A(z)).

For many experimental cases where the target under
measurement contains a known (or suspected) pure com-
ponent, the arbitrary decomposition provides a procedure
for a proper subtraction of the known component and,
thus, to isolate the unknown part of the sample. The pro-
cedure can be iterated if there exists more than one known
pure component.

Moreover, the arbitrary decomposition has important
consequences because it allows the identification of all
the possible physically realizable target decompositions.
In fact, it provides a method for analyzing measured sam-
ples and adjusting the target decomposition in order to
obtain improvements in identifying unknown components.
When applied to imaging polarimetry, this polarimetric
subtraction can be applied to improve strongly the con-
trast of particular elements of the target with respect to
the homogeneous substrate.

The arbitrary decomposition can be expressed in terms
of the corresponding Mueller matrices as follows

3 3
li . ,
_ v (7) . o (1) _
M = ;:0 p— NY, [; >0, ;:0 li = Mmoo, Mgy = Moo

(200)
where the Mueller matrix M of the system is obtained as
a convex linear combination of, up to four, Mueller-Jones
matrices N

As we have observed, although the Mueller-Jones ma-
trices N() of the pure components are normalized through
the condition ngzo) = myp, this does not ensure the fulfill-
ment of the transmittance condition. As an example, let
us now consider the Mueller matrix O of an ideal depo-
larizer (0;; = 0, except ogp = 1). The canonical spectral
decomposition of H (O) leads to the following decomposi-
tion of O

1000 1100 1-100
0000] _1[1100], 1{1-100
0000 =72 |0000] 2|0 000
0000 0000 0000

1 100 1-100

1{-1-100) 1[-1100

T71 0 o007l 0 000

0 000 0 000

(201)

Obviously, the components of this linear convex combina-
tion do not satisfy the transmittance condition (the factors
1/4 are the coefficients of the convex sum). This example
demonstrates that not all the mathematically possible de-
compositions are physically realizable.

Nevertheless, the transmittance condition is satisfied
by all the elements of the following alternative decompo-
sition

1 1
O = N& (0,0,7/2) + {N& (0,0, ~7/2)
1 1
+ ZNR (w/4,0,7) + ZNR (r/4,7/2,7) (202)

whose explicit matricial expression is

1000 100 0 10 00
0000] _1fo100 ), 1fo1 00
0000 |~ 7lo00-1|"7l00 01
0000 001 0 00—10

10 00 1000

1{o=1 00| 1{0=100

Taloo-10] "7 0o01 0

00 01 000-1

(203)

This result constitutes a method for constructing a syn-
thetic perfect depolarizer through the parallel combina-
tion of these four pure retarders (two quarter-wave plates
and two half-wave plates) with equal cross sections.

5.7 Geometric maps of the degree of polarization

Let us consider now some possible graphical representa-
tions of the polarimetric effects of material media. As is
well-known, the Poincaré sphere plots states of polariza-
tion with intensity equal to one, so that the distance to the
origin is the degree of polarization. Points on the surface
represent pure states, whereas points inside represent non-
pure states. The linear interaction of polarized light with
material targets produce changes in both intensity and
degree of polarization and, therefore, the Poincaré sphere
representation (defined for states with intensity equal to 1)
is not directly applicable for mapping the output states.

As a geometrical and visual tool for analyzing and
classifying material samples, based on their effects on
the degree of polarization, some authors have studied the
“P-image” defined by the points [2,196-199]

1
S_/ (3117 512) Sg)v
0

(204)
which correspond to the output Stokes parameters

T
(S/O,S/I,S/Q,Sé) :M(50751a52753)T
(1=s5>s7+s5+s3). (205)

The input Stokes vectors map all the points of the solid
Poincaré sphere. The distance of each point of the P-image
to the origin is just its degree of polarization and, in gen-
eral, varies depending on the corresponding input Stokes
vector.

The surface of this solid object is called the “DoP
surface” [198] and corresponds to totally polarized input
states.
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Moreover, given M, the I-image is defined as the sur-
face [198,199]

50

(87 + 85 + s57)

5 (545, 55). (206)

These representations allow the classification of the differ-
ent polarimetric behaviors:

(a) pure homogeneous diattenuators: the I-image is not
spherical, whereas the surface shape of the P-image
remains a sphere of radius 1. Notice that the Mueller
matrix is symmetric. Topologically the points are
more concentrated around two poles on the surface.
The position of these poles is given by the intersection
of the maximum and minimum polarizance vectors
with the surface. The rectilinear segment connecting
these points intersects the image point of the origin of
the Poincaré sphere;

pure retarders: none of the objects is deformed (nei-

ther morphologically nor topologically). The result is

a rotation of both objects with respect to the axis de-

fined by the two antipodal eigenstates of the retarder;

(c) parallel combination (or statistical mizture) of diat-

tenuators: the surface of the P-image is deformed and

its origin is displaced. The I-image is also deformed.

When the diattenuators are homogeneous, some sym-

metries of the objects correspond to the property

MT=M,;

parallel combination (or statistical mizture) of re-

tarders: the surface of the P-image is deformed and

the origin remains unchanged. The I-image is not de-
formed,;

(e) parallel combination (or statistical mizture) of diat-
tenuators and retarders: the surface of the P-image is
deformed and its origin is displaced. The I-image is
also deformed;

A detailed study of these kinds of representations, in-
cluding plane maps, has been developed by DeBoo,
Sasian, and Chipman [198].

5.8 Indices of purity

Given the statistical nature of the coherency matrices
H representing material media, we emphasize the impor-
tance of obtaining parameters that give a measurement
of their polarimetric purity. Usually the degree of pu-
rity P4y [131,200] or, alternatively, the polarization en-
tropy [57], is used as a quantity characterizing the overall
purity.

Thus, in a similar manner that to the cases of 2 x 2
and 3 x 3 coherency matrices representing states of light,
the study the “structure purity” of H requires considering
several relative differences between the four eigenvalues of
H. Thus, in addition to P4, three new invariant and non-
dimensional “indices of purity” can be defined from the
eigenvalues of H.

This set of three quantities contains all the informa-
tion concerning the polarimetric purity. It should be noted
that neither P4y nor the polarization entropy cover all the
information mentioned, but they can be calculated from
the indices of purity.

At this point, it is important to consider the concept
of “polarimetric contrast” introduced by Réfrégier, Roche
and Goudail [107] for 3D coherency matrices. These au-
thors have pointed out that for 3D polarization states with
Gaussian fluctuations, three invariant quantities are rele-
vant to characterize the contrast in polarimetric imagery.
There are several cases where a 3 X 3 representation of the
coherency matrix is enough for the characterization of the
measured polarimetric quantities (e.g. monostatic radar
polarimetry). Nevertheless, a complete Mueller polarime-
try requires the consideration of the 4 x 4 coherency ma-
trix H and, in consequence, at least four invariant quan-
tities must be considered for a complete characterization
of the polarimetric contrast. A proper set of such quan-
tities is constituted by the three indices of purity (de-
fined below) and the transmittance for unpolarized light
moo = ttH = Ao + A1 + A2 + A3, A; being the eigenvalues
of H.

An examination of the expressions of the eigenvalues
of H obtained by algebraic computation shows that it is
possible to write them in terms of three non-negative non-
dimensional parameters

1 1
Ao = S trH (1+Py+2P), M= J0H (1+ P, —2P),

1 1
Ao = JtiH (1= Py +2P3), M= JtrH (1= P, — 2P),

(207)

where the “indices of purity” Py, P»,Ps, are defined as

(Ao + A1) = (A2 + A3)
trH ’
Ay — A3
Ps=——.
3 trH

o=\

P,
! trH

PQE

(208)

We see that they are expressed in a similar way to the
degree of polarization. In fact:

— Pj is a non-dimensional relative measure of the differ-
ence between the weights of the two more significant
pure components of the system;

— P, is a non-dimensional relative measure of the dif-
ference between the combined weight of the two more
significant pure components and the combined weight
of the two less significant pure components of the sys-
tem;

— P3 is a non-dimensional relative measure of the dif-
ference between the weights of the two less significant
pure components.

We see that the indices of purity can be interpreted as
probabilistic relative measures, which provide complete in-
formation about the relative amounts of the “equivalent
pure components” of the target.
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From the above equations, the following quadratic re-
lation between P4y and the three indices of purity P, P,
P53 is obtained

1
PRy = 3 (2P + P} +2P5). (209)
Another interesting expression of Fy) as a symmetric

quadratic mean of all the relative differences between pairs
of eigenvalues is given by

3
1 ANi — A
2 2 — J
P(4)*§ E Pijr Pis = "y (210)
1,7 =20
1<

Pure systems are characterized by Py = P = P =
1, P35 = 0. Moreover, the values P4y = Pr =P =P =0
correspond to certain equiprobable mixtures of four (or
more) incoherent elements, resulting in a Mueller matrix
O whose elements are zero except for ogg.

The degree of purity provides a global measure of the
purity of the system, whereas a detailed analysis requires
a consideration of the three indices of purity.

By applying the starting conditions for the eigenvalues
0 < A3 < A2 < A1 < Ao, we find that the indices of purity
are restricted by the following conditions

PL>0, Ps>0, PP+Ps< P, 3<=-(1—-P).

(211)
Some useful inequalities derived from these conditions, but
less restrictive and hence insufficient for re-obtaining the
conditions given by equation (211) are the following

N~

0SP<P<1, 0SPA<PA<], 0<SP< 5 (1-P).

(212)

Figure 11 shows the feasible region of the purity indices in
the purity space. The restriction to the plane P; = 0 re-
produces the feasible region for the indices of purity Py, P>
corresponding to 3 x 3 coherency matrices, and the feasi-
ble region for the degree of polarization of 2 x 2 coherency
matrices corresponds to the segment P, =1, 0 < P, < 1.

Figure 11 summarizes the different physically realiz-
able possibilities in terms of the values of the indices of
purity. Nevertheless, it is worth considering some partic-
ular cases in order to understand the physical meaning
of P;, as well as to reproduce the feasible regions for 3D
and 2D representations of the indices of purity.

Given a fixed value of Py, the maximum of P5 is P3 =
% (1 — Py) which is reached when Py = % (1+2P).

Given fixed values for P; and P,, the maximum of Ps
must be analyzed through the two following cases

Wl

(1) P2< (1+2P1) $P3<P2—P1

1
3
1

1
(i) P> o (1+2P) = B<g(l-P)

w

Next we consider some interesting cases based on the val-
ues of the indices of purity.

P

C (0,1/3,13)

B (0,1,0)
0 (0,0,0)

Py
A(O,LD

Fig. 11. (Color online) Feasible region for Pi, P, P> in the
purity space.

(a) The face OBA corresponds to states with P3 =
0. Here we analyze the ranges 0 < P <
P< 1 (0 < Py < 1). The system is composed
of two or four pure elements (if there are four,
the two less significant have equal cross sections
A2 = A3). The feasible region is determined by
the points placed on the triangle OBA (vertex O
excluded). This case is mathematically equivalent
to that obtained for 3 x 3 coherency matrices (3D

polarization states).

Py =0,P =0,0<P <1(0< Py <1/V3).
The system is composed of four pure elements. The
two more significant have equal cross sections A\g =
A1 and the two less significant have equal cross
sections Ay = A3. The feasible region is the edge
OB (vertices O and B excluded). These states are
mathematically equivalent to states of light with
random ellipse and whose direction of propagation
is not fixed.

Py=0,0< P <1, P=1(1/V3<Py<1).
The system is composed of two pure elements.
The feasible region is the edge BA and P is
mathematically equivalent to the 2D degree of
polarizationP(3).

P3 = 0, P1 = P2 =1 (P(4) = 1). Pure Sys-
tem (non-depolarizing deterministic system) char-
acterized by a Mueller-Jones matrix. The vertex A
represents this state.

Py =0, P =0, P, =1 (P4 =1/V3). The sys-
tem is composed of two pure elements with equal
cross sections. The point B represents this state
and the case is mathematically equivalent to 2D
unpolarized light.

The face OBC corresponds to states with P, = 0.
Here we consider the ranges 0 < P>, < 1, 0 <
Ps (0 < Py < 1/\/5) The system is composed
of three or four pure elements. The two more
significant have equal cross sections \g = g
whereas the two less significant have different
cross sections Ay # A3. The face OBC (excluding
the segment OB) determines the feasible region.
These states are exclusive of the 4D representation

(a.2)

(a.2.1)

(a.2.2)
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because the reproduction of 3D states (and, hence,
possible 2D states) requires the equality Ay = As.

(b1) P =0, 0<P,=P; (Puay<1/V3). The sys-
tem is composed of three pure elements with equal
cross sections (0 < Ag = A\ = A2, A3 = 0) and is
represented by the edge OC (vertex O excluded).

(b.1.1) P, =0, P,=Py=1 (P4 =1/V3). The sys-

tem is composed of three pure elements with equal
cross sections. The vertex C represents this state.

(c) The face CBA (excluded the edge BA) corresponds

to states with % <P<l1 P3= % (1-Py), P <

Py (1/\/§ < P(4) < 1). The system is composed

of three or four elements. If there are four, the two

less significant have different cross sections. These
states are exclusive of the 4D representation.

The face OCA (vertex O excluded) corresponds to

states with Py :P1+P3,P1 < P (OgPM) < 1)

The system is composed of four pure elements. The

three more significant have equal cross-sections

A1 = Ay = A3 and different from the least sig-

nificant. These states are exclusive of the 4D rep-

resentation. The edge CA corresponds to P, =

3 (1+2P1).

(e) Py, =0= Py = P, = P3 = P4 = 0. This system,
equivalent to an ideal depolarizer, is composed of
four pure elements with equal cross sections and
is represented by the vertex A. All the elements of
the Mueller matrix are zero except for mqg.

5.9 Polarization entropy

Experimental and industrial polarimetry involve the mea-
surement of up to 16 physical magnitudes which are con-
strained by several complicated non-linear relations. Thus
considerable efforts have been made to take advantage
of the polarimetric measurements. Polarization entropy
S [57] is a concept related with non-purity of the ma-
terial samples. The measurement of S is useful for several
purposes and is commonly used in problems concerning
light scattering, SAR polarimetry and, in general, situa-
tions where depolarization is a relevant subject. This non-
dimensional parameter, which is directly related with the
degree of purity of the material sample, is defined as

S0 =t (B A) = -3 (An,)

=0

(213)

where H = H/trH is the density matrix and Xos A1, Az, Ag
are the eigenvalues of H.

As we have seen, the indices of purity provide com-
plete information about the depolarization properties and
about the polarimetric purity of material samples, in such
a manner that they cover a scope of information wider
than S and Pyy. In fact, S and Py can be directly ob-
tained from the indices of purity.

The study of the relation between the relevant parame-
ters P4y and S leads to the result that all scattering media
must satisfy some universal constraints [193,201]. These

constraints apply to both classical and quantum scattering
processes and have important applications in fields such as
quantum communication where depolarization is related
with decoherence.

Moreover, given the practical importance of having
suitable techniques for improving the analysis of polari-
metric images, as we have indicated previously, some re-
cent works [108,115] have dealt with the concept of Shan-
non entropy and Kullback relative entropy for optical
waves, and their relations with the n-dimensional degrees
of polarization. We see that these concepts can be applied
not only to n-dimensional partially polarized light, but
also to the analysis of the polarimetric purity of material
systems.

Following the idea introduced in the section devoted
to the entropy of 3 X 3 coherency matrices, it is possi-
ble to extend to 4 x 4 coherency matrices the concept of
partial entropies by defining the following quantities: di-
rectional entropy Sy (Pe); polarization entropy Sy (Pr),
and residual entropy S(2y (Ps). The latter is exclusive of
n X n coherency matrices with n > 4.

5.10 Unified polarization algebra

The intimate relation between n X n coherency matrices
and the Lie groups SU(n) has been pointed out and stud-
ied by Cloude [161-163] who has shown that this is a suit-
able and fruitful framework for polarization algebra.

The polarization states are characterized by means of
their respective coherency matrices, which contain all the
physical measurable information [202].

In fact, throughout the sections devoted to the math-
ematical representation of the polarimetric properties of
light and optical systems, we have seen that there exists
a strong and clear symmetry in the description of these
properties. The expansion of the n X n coherency matrix
in a basis of n trace orthogonal Hermitian matrices leads
to the corresponding nD Stokes parameters. The overall
polarimetric purity is defined by means of the degree of
purity F,), whereas the detailed information about purity
is given by the corresponding (n — 1) set of indices of pu-
rity. The relation between the norms associated with the
coherency matrix provides an appropriate purity criterion.

Thus, if €@ is a n X n coherency matrix and
®;; (i,j =0,n — 1) constitute a basis of Hermitian trace
orthogonal n X n matrices composed of the n — 1 traceless
generators of the SU(n) group plus the identity matrix,
all of them satisfying ©7; = 1 and tr (©;;O;) = ndidi,
the real coefficients ¢;; = tr(®;;€2) of the expansion

n—1
1
Q=— g 11 Oi5, 214
n Cij©ij (214)

4,3=0

are the measurable quantities (nD Stokes parameters)
characterizing completely the polarimetric properties of
the system.
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The following relations are satisfied

2 1 2 1 2 2 2
1203=—1Cl5, 12lg=coo, — 1205 < 2l < [I1€l5

(215)
where |||, stands for Euclidean norm; the norm ||[|, is

defined as ||, = trQ2 = H\/ﬁ}

whose elements are ¢;;.
Therefore we can state the following purity criterion:
. . 2 2.
given a coherency matrix €2, ||Q||5 = ||2[; is a necessary
and sufficient condition for € to represent a pure system.
The degree of purity is defined as the following invari-
ant non-dimensional quantity

1 (alez N\

n

Py = 2 1 216
" ln—1<mn3 )] - B

which gives a global measure of the purity of the system,
so that 0 < P(n) < 1. The minimum value of the degree
of purity P,y = 0 corresponds to a fully random system,
whereas the maximum value P,y = 1 corresponds to a
pure system.

The degree of purity can also be expressed as

2
, and C is the matrix
2

1 = Ai — )
2 _ 2 P j
P(")_n—l ‘ E Pijy P = (217)
Za]:()
1< ]

This has a particular relevance because it provides in-
formation similar to the entropy, but in a simpler and
meaningful way. Through the indices of purity, the invari-
ant information is structured in an optimum manner, so
that these results can be useful in other fields of Physics.
For example, in the same way that the Bloch equations
lead to a set of parameters with the same mathematical
properties as the Stokes parameters [46,203-205], the de-
gree of purity and the indices of purity can be applied to
n-dimensional density matrices characteristics of n-level
systems [180].

In general, the above-mentioned invariant quantities
can be applied to any problem susceptible to modeling by
means of n X n positive semidefinite Hermitian matrices.

Therefore, n — 1 indices of purity P; are necessary for
the complete characterization of the polarimetric purity
of the system.

Concerning the different decompositions of the co-
herency matrix €2, it is straightforward to generalize the
spectral, trivial, and arbitrary decompositions. Unlike the
spectral decomposition, which is widely known and used,
the two others are generally not known and we emphasize
the high potential of their applications in polarimetry and
in other fields.

5.11 Macroscopic polarimetric behaviors of material
media.

In previous sections, we have analyzed the properties of
pure retarders and pure diattenuators. Now we consider

the overall properties of systems composed of an incoher-
ent mixture of pure elements (incoherent parallel combi-
nation).

An alternative view of the Stokes-Mueller model is
based on a consideration of the spectral Stokes vec-
tor s(v) (related with the corresponding spectral co-
herency matrix). Under the assumption of cross-spectral
purity [7,118], s () can be expressed as

(218)

where g (v) is the normalized spectral distribution of the
light beam and § is a Stokes vector independent of fre-
quency. The medium is represented by its corresponding
“spectral Mueller-Jones matrix” IN (v) so that the spectral
stokes vector of the outgoing light is given by

S () =N@)sv), (219)
and, integrating over all frequencies,
s’ = M, (220)

where § is the resulting integrated Stokes vector and M is
the integrated Mueller matrix defined by Dlugnikov [118]

s_’E/OOOs'(V)dy, ME/OOOg(V)N(V)dV. (221)

By means of this formulation, some authors have studied
the effects of dispersive media on the degree of polarization
of the transmitted light [117,119,206].

Let us now analyze the polarizance/diattenua-
tion [131,149,200,207] properties of M. All the infor-
mation about diattenuation is included in its first row,
whereas all information about polarizance is included in
its first column. Taking into account the reciprocity prop-
erties of Mueller matrices, we will at times refer to the
polarizance vector as the “forward polarizance vector” Y¢
and to the diattenuation vector as the “reverse polarizance
vector” Y,

1
Y j=—— (m10, M2o, mso)’, Xy=—— (mo1, moz2, mo3) ",
Mmoo Mmoo
(222)

whose modules are the “forward polarizance” (polar-
izance) 7y and the “reverse polarizance” (diattenuation)
T.. Thus, in general, we will use the terms diattenuator
and polarizer as synonymous.
The polarizances are restricted to the following values
0<7y<1, 0<7, <1 (223)
Following the notation suggested by Xing [152] and Lu and
Chipman [149,208], a Mueller matrix can be written as

1 YT _ 1 mi1 M1z M3
Mmoo< —T>; M= — | ma1 ma2 ma3
Ty M 00\ mgq m3o ma3

(224)
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Taking into account the expressions of the extreme values
of the transmittance

moo (1 + Tf) g 17 moo (1 + T,«) g 1, (225)
it is clear that X, X provide all the information about
forward and reverse diattenuation respectively.

In general, depolarization and diattenuation appear
in a combined form. Pure systems are characterized by
their respective Mueller-Jones matrices and do not pro-
duce depolarization effects on incoming totally polarized
light. Mueller-Jones matrices are Mueller matrices that
satisfy P4y (M) = 1 and, consequently, have the property
Yy =1,.

Incoherent mixtures (parallel combinations) of pure
systems produce depolarizing effects, which can appear
combined with retardation and polarization properties. It
is important to observe that 1y = 7. is a necessary but not
a sufficient condition for a Mueller matrix to be a Mueller-
Jones matrix. Moreover, Ty # 1. implies that the system
is non-pure, while 7y = 7;. = 1 implies total purity.

It is interesting to consider some cases that are repre-
sentative of different physical behaviors of material media.

(a) Ty > 0, 7. = 0. The system exhibits forward po-
larizance, zero reverse polarizance and depolarization.
An example of this is a system composed of an ideal
depolarizer followed by a total polarizer.

1000 100 000
0000] [7n10000
Np (6,0,1,1) 0000 | nyp000
0000 n30 000

(b) ¥, > 0, Ty = 0. The system exhibits reverse polar-
izance, zero forward polarizance and depolarization.
An example is a system composed of a total polarizer
followed by an ideal depolarizer. The resulting matrix
has the form of the transposed matrix of the above
matrix.

(¢) Tr =1, 0 <7, < 1. The system exhibits maximum
forward polarizance, reverse polarizance and depolar-
ization. An example is a serial combination consti-
tuted by a partial polarizer, an ideal depolarizer and a
total polarizer, in this order. Although the system pro-
duce totally polarized light for all incoming states, the
“internal” depolarizing effect affects the correspond-
ing Mueller matrix, so that this non-pure system can-
not be represented by a Jones-Mueller matrix.

(d) 0 <7y <1, 7, = 1. The system exhibits maximum
reverse polarizance, forward polarizance and depolar-
ization. An example is a serial combination consti-
tuted by a total polarizer, an ideal depolarizer and a
partial polarizer, in that order. Obviously, this case is
the “reciprocal” of the previous one.

() 0 <Yy <1,0<7,. <1, T # 7.. The system
exhibits forward polarizance, reverse polarizance and
depolarization. An example is a serial combination
constituted by an ideal polarizer placed between two
partial polarizers.

(f) 0< Ty <1, Ty =7,. The system exhibits equal po-
larizances. This condition does not determine if the
system exhibits depolarization or not. The global pu-
rity of the system is given by P4.

(g) T = Y, = 1. The system exhibits maximum for-
ward polarizance and maximum reverse polarizance
and is equivalent to a serial combination of pure or
non-pure elements placed between two total polariz-
ers. It is important to note that the system behaves as
pure regardless of the possible existence of depolariz-
ers placed between the total polarizers. An interesting
example is an ideal depolarizer placed between two to-
tal polarizers

1000
0000
0000
0000

M =N’ (8,1,1) N(6,1,1).

It is easy to show that in this case Py) = 1, despite
the effect of the intermediate depolarizer, which af-
fects only to the transparency of the complete system
represented by M.

5.12 The generalized polar decomposition

Some models for the serial decomposition of Stokes ma-
trices have been introduced by Xing [152] and Sridhar
and Simon [160] on the basis of the Stokes criterion. As
van der Mee has pointed out [167], these decompositions
are not totally general. Moreover, Lu and Chipman have
emphasized the necessity of serial decompositions where
the basic physical behaviors (diattenuation/polarization,
retardation and depolarization) appear explicitly in the
different components of the equivalent serial system and
have presented an algorithm to decompose a Mueller ma-
trix into a serial combination of a diattenuator, a retarder
and a partial polarizer-depolarizer [149]. This “generalized
polar decomposition” of a Mueller matrix is currently used
for many purposes concerning the physical interpretation
of experimental measures as well as for studying physical
models of several kinds of material targets [209-211].

5.12.1 The Lu-Chipman decomposition

In this sub-section we summarize the main results of the
cited work of Lu and Chipman [149].

Taking into account the expression of a Mueller matrix
M given by equation (224) these authors have shown that
M can be written as [149]

M = m (1 T;‘“F) Moo CNRA:
= 00 \ - 00 R4A,
Y, M
(1 07
C<mé>’

Nr

10" A= (L _xr
ONgr /)" 7~ \Y.Np(Y,) )’

(226)
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where 07 = (0,0, 0) and:

— the matrix A is proportional to a pure diattenuator;

— the matrix Ny represents a pure retarder;

— the matrix C is proportional to a polarizer-depolarizer
with zero diattenuation. This class of system exhibits
simultaneously both depolarizing and polarizing prop-
erties.

As indicated in equation (226), the matrix A can be calcu-
lated from the diattenuation vector Y, of M. Moreover,

T, - MY,
Y=t 227
4 1— 12 (227)

For the calculation of C and Np the cases of M non-
singular and M singular must be distinguished

(a) M non-singular

In this case A is non-singular, so that it is possible to
define the matrix M/ = MA ~'. This matrix has no diat-
tenuation and can be written as

1 1 /1 of
M = —CNp=— a
moo " moo (TA M’)’
and the calculation of the matrices C and N can be

performed through singular value decomposition of the
matrix M’ = CNgx

(228)

M =U[D(di,dy,d3)]V, di>dy>ds>0, (229)

where U,V are 3 x 3 orthogonal matrices and d; are the
eigenvalues of the positive semi-definite symmetric matrix
MMT,

Finally the matrices C and N are given by

— det UV
[det OV
N - (ﬂ) oV
|det UV|
We observe that C is a positive semidefinite symmetric
matrix and N is a proper rotation matrix (det Np = 1).
Moreover, C, Ny are the symmetric and orthogonal com-
ponents corresponding to the polar decomposition of M.
This is the origin of the name “generalized polar decom-
position” given by Lu and Chipman to the decomposition
(226) despite the fact that, as we will see in the next sec-
tion, the direct application of the polar decomposition to
M results in an unphysical orthogonal component.
It should be noted that the matrices A, C do not sat-

isfy the transmittance conditions. A physical decomposi-
tion must be expressed as

)I‘JD (dy,dy,d3) U7,

(230)

M = cCbNgaA; a,b,c>0, abc= mqp, (231)

where b < 1 and a, ¢ must be small enough to satisfy

a(l1+7,)<1, ¢c(1+7a)<1. (232)

Thus, the following condition is required for a physically
realizable decomposition

(1+7.)147Ta) < L.

233
o~ (233)

It is clear that the components of the generalized polar
decomposition are Stokes matrices. Nevertheless, the con-
ventional form of the generalized polar decomposition as-
signs the coefficient mgg to the equivalent diattenuator so
that the resulting polarizer-depolarizer component does
not satisfy the reverse transmittance condition. Thus, fur-
ther work is required in clarifying the conditions under
which all the components of the generalized polar decom-
position are Mueller matrices, i.e. they satisfy the trans-
mittance conditions as well as the covariance conditions.

Provided equation (233) is satisfied, the Mueller ma-
trix M can be decomposed as a product M = M aANgrNp
of a pure diattenuator Np, a pure retarder Nr and a
polarizer-depolarizer M 4.

(b) M singular

In this case, at least one of the following equalities is sat-
isfied: 7y =1, 7, = 1 and M can be decomposed as

1 YT
M = myg (Tf Yo .L?) = mooMNgB;

107 107
0x,D1,1,1) ) V= |oNg )

_(1 X7y
B= (TT TT®TTT)7

where myoB is the Mueller matrix of a homogeneous pure
diattenuator and M represents a “pure depolarizer”.

M; =

(234)

5.12.2 The forward and reverse generalized polar
decompositions

Let us now consider now the possible different decompo-
sitions obtainable by changing the order of the three com-
ponents. Lu and Chipman [149], Morio and Goudail [212]
and Ossikovski, De Martino and Guyot [213] have stud-
ied the six possible decompositions as well as some ex-
amples where certain decompositions lead to unphysical
components. According with the results of Morio and
Goudail [212], the following decompositions, where the di-
attenuator is placed before the polarizer-depolarizer (“for-
ward generalized polar decompositions”), always lead to
components represented by Stokes matrices

M = MaNriNp; = MasNpaNgs = NrsMasNps,

(235)
whereas the other possible decompositions, where the
polarizer-depolarizer is placed before the diattenuator
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(“reverse generalized polar decompositions”), are not al-
ways composed of Stokes matrices

M = Ngr3NpsMaz = NpsNrsMas = NpeMasNgrs.
(236)
Concerning these kinds of decompositions and their physi-
cal validity it is necessary to check the transmittance con-
ditions for M and for the matrices of the different com-
ponents. Some examples have been used in the literature
where mgp = 1 and 7, # 0 (or ¥y # 0). These values
never correspond to a Mueller matrix because at least one
of the transmittance conditions is not satisfied.
Prior to analyze other possible decompositions of M,

let us consider the Stokes matrix of a “diattenuator-
depolarizer”
_ (1YY
MA(ﬂl\_/IA)’ (237)

which exhibits zero polarizance, non-zero diattenuation
and depolarization. We observe that to convert this Stokes
matrix into a Mueller matrix, it must be multiplied by a
coefficient a < 1/(1 + 2).

In a previous section we have shown that, given a
Mueller matrix M, M7 is also a Mueller matrix so that,
given a Mueller matrix M, always exist a Mueller matrix
M’ = M7 satisfying M = 1Y Thus, by applying the
Lu-Chipman decomposition to M’ we obtain

M=M7T = (M/A1NIR1NID1)T
= (M'A2N'D2N'R2)T = (NIR5MIA5NID5)T

= NpyNrsM gy = NrsNpsM g3 = NpsM6Ngs.
(238)

We see that the operation of transposing does no af-
fect the nature of the matrices of the pure components,
whereas leads to replacing the polarizers-depolarizers by
diattenuators-depolarizers.

Some relations between the pure components of each
one of the three sets of decompositions can be derived
from the polar decomposition of a pure Mueller matrix.

Experimental validation of one of the forms of the re-
verse generalized polar decomposition has been presented
recently by Anastasiadou, Ben Hatit, Ossikovski, Guyot
and De Martino [214].

5.12.3 The general decomposition of a Mueller matrix

Although the Lu-Chipman decomposition has been
demonstrated to be a powerful tool for analyzing mea-
sured Mueller matrices, the depolarizer component com-
bines polarizing and depolarizing properties. Thus, an ad-
ditional effort to separate the retarding, polarizing and
depolarizing properties is desirable.

The general characterization of the Mueller matrix in-
troduced in Section 5.4 reveals a fundamental symmetry
of Mueller matrices in the sense of any general property of
a Muller matrix M can also be appropriately formulated

for its transposed matrix M”. We now translate this ba-
sic symmetry to the Lu-Chipman decomposition in order
to introduce a general decomposition of a Mueller matrix
where the depolarizing properties are isolated from that
related with retardation and polarization-diattenuation
properties.

Let us consider a Mueller matrix M and apply one of
the forward forms of the Lu Chipman decomposition, so
that

M = M AN paNgs. (239)
Moreover M a2 can be expressed as the transposed ma-
trix of the matrix of a diattenuator-depolarizer M 4 with
the form given by equation (237). Thus, the Lu-Chipman
decomposition can be applied to M4 and obtain

Mz = [My]" = [M/AN/pN5]" = NN O M4,
(240)
where N’ ﬁ represents a pure retarder, N’ E represents a
pure diattenuator and M’ Z represents a depolarizer with

zero diattenuation and zero polarizance. Thus, M’ Z has
the following form

T _ (10"
M MQ<0MQ>, (241)
where My, is a symmetric matrix which contain all in-
formation about the depolarizing properties of M. Con-
sequently, we can finally formulate the following general
decomposition

M = NroNpoMoNprNg; (242)

where Ngrr, Nro represent respectively the “input and
output equivalent pure retarders”, Np;, Npo represent
respectively the “input and output equivalent pure diat-
tenuators” and My, represents the “equivalent depolar-
izer”.

Thus, if we assume that the components of the Lu-
Chipman decomposition are Mueller matrices (and not
only Stokes matrices) and we take into account the po-
lar decomposition of a pure system, we see that the pre-
vious result can be formulated by means of the follow-
ing statement: Any system is polarimetrically equivalent
to a serial combination constituted by a depolarizer placed
between two pure components. Or, in other words: Any
Mueller matrix can be expressed as the ordered product of
the Mueller matrices of an “output pure system” a depo-
larizer and an “input pure system”.

As we have seen in the section devoted to the polar de-
composition of a pure system, always is possible to choose
the order of the diattenuator and the retarder of the pure
equivalent system and, consequently, any Mueller matrix
can be decomposed in the following different alternative
ways

M = NroNpoMoNprNgy,
M = N'poN'roMoN' g/ N'py,
M = N'poN'roMoNpNgy,

M = NRONDOM_QNIRINID]. (243)
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5.13 The Kernel matrix of a Mueller matrix

To complete the study of the general properties of Mueller
matrices, in this section we consider the problem of iden-
tifying the Mueller component which is invariant from a
physical point of view and, consequently, obtaining the
corresponding set of physically invariant quantities in-
volved in a Mueller matrix.

Although the polar decomposition is very useful for
the study of pure systems, we will see that this kind of
decomposition cannot be applied directly to the case of
depolarizing systems because the orthogonal component
is not, in general, a Mueller matrix. Nevertheless, some al-
gebraic rearrangements allow us to construct a new model
where the Mueller matrix is decomposed into Mueller ma-
trices (and not only Stokes matrices) and the invariant
physical quantities appear grouped in the Kernel-matrix
whose definition will be introduced below.

Let us consider a Mueller matrix M and its singular
value decomposition (denoted from now on as SVD)

M = XDY, (244)
where X,Y are 4 x 4 orthogonal matrices and D is the
diagonal matrix whose elements are the non-negative, or-
dered, singular values

do > di > do > ds. (245)
Except for the particular case of M is a diagonal matrix,
the orthogonal matrices X,Y are not Mueller matrices.
In fact, they can be written as products of six elementary
4 x 4 rotation Givens matrices

[coser 00 sinep; ]

0 100
Qiler) =1 010 ’

L —sing; 0 0 cos ¢y |

[coswa 0sings 07
0 10 0
—sing 0 cos 2 0

L0 00 1

sins 007

Q2 (p2) =

[cos 3
—sin s cospsz 00
QB(SD3): 0 9030 80310
LO 0 01 ]
100 0 7
010 0

G1 (o) = 00cosa; sinag |’
L0 0 —sina; cosa |

r. o 00
0 0 si
G (a2) = X cgsag 15161042 7

L 0 —sinas 0 cosas
10 0 0
0Ocosag sinaz 0
0 —sinag cosag 0 |
L00 0 1

G3 (a3) = (246)

LT~
Jad =

— _/

Z

Fig. 12. (Color online) The kernel matrix of a Mueller matrix.

It should be noted that the order of the factors can be
chosen arbitrarily. Then X,Y can be written as

X = G1 (a1) G2 (a2) Gs (a3) Q1 (¢1) Q2 (v2) Qs (¢3),
Y = Q3 (¢6) Q3 (5) Q1 (1) G5 (a6) G5 (a5) G (0ua).

(247)
> X =RU, Y = VL, (248)
where
R = Gy (1) G2 (a2) Gz (a3),
U = Q1 (v1) Qa2 (92) Qs (p3) »
V =Q3 (v6) Qs (95) Qf (#4)
L =G (a6) GE (a5) GT (o). (249)

The matrices R, L are Mueller matrices that represent
pure retarders, whereas the matrices U, V are neither
Mueller matrices nor Stokes matrices. It is easy to see
that they do not satisfy some of the conditions to be
Mueller matrices. For example Qi applied to the Stokes
vector (1,1,0, O)T is not a Stokes vector.

The polar decompositions of M can be written as

M =KW;K = (MM")/2=RUDU”R”,W = RUVL

M=W'K'; W =RUVL,K'=M"M)"/2=LTVI'DVL
(250)

where the symmetric components K, K’ are Mueller ma-
trices whereas the orthogonal components W, W' are not
Mueller matrices.
Nevertheless, it is possible to arrange the products so
that the Mueller matrix can be written as (Fig. 12)
M =RZL, (251)
where

Z =UDV. (252)
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We observe that this “kernel matrix” Z = RTML” is a
product of Mueller matrices and, hence, is a Mueller ma-
trix. Thus, all the three components of the decomposition
given by equation (251) are Mueller matrices (i.e. satisfy
the transmittance conditions as well as the covariance con-
ditions).

Moreover, the input and output retarders L, R, corre-
spond to that obtained in the general decomposition given
by equation (242), so that L = Np;, R = Ngo and

M = NgoZNpg;, Z=NE ,MN%,. (253)

5.14 Physical invariants of a Mueller matrix

Having extracted the overall retarding properties exhib-
ited by the medium represented by M and characterized
by means of the matrices Nrr and N o, we will analyze
the properties and physical information contained in Z.

Concerning the matrix D, it is easy to show that this is
a Stokes matrix. Nevertheless, taking into account equa-
tion (245), the following inequality is required for D to
satisfy the eigenvalue conditions

do +d3 > di + da, (254)
whereas the condition for D to satisfy the transmittance
conditions is

do < 1. (255)

Moreover, U and V are not Mueller matrices, in such
a manner that the serial combination given by equa-
tion (252) is always a Mueller matrix.

By examining the nature of these different matrices,
we see that D always exhibits depolarizing properties,
including the case where M represents a pure medium.
We observe that Py (D) < 1, except for the degener-
ate case dy = dy = dy = d3 corresponding to a retarder
M = dyNroNg; with transmittance dy. On the other
hand, the non-Mueller matrices U and V produce “over-
polarizing” effects, so that the distances to the origin of
the points representing some states on the corresponding
P-Images (or DoP surfaces) are higher than 1.

As we have seen, all the depolarization properties are
given by the three indices of purity P;, which are non-
dimensional magnitudes defined from the eigenvalues of
the coherency matrix H associated with M [41]. These
quantities are invariant under changes of the laboratory
reference axis, as well as changes of the generalized basis
used for the representation of the states of polarization.

Usually, linear polarizations along the axes XY are
used as physical reference axes, so that in the Poincaré
sphere representation the Stokes parameter s; corresponds
to the X axis, so corresponds to the XY bisector axis and
s3 corresponds to right-handed circularly polarized light.
Nevertheless, it is possible to construct different physi-
cal bases by choosing orthogonal pairs of circularly or
elliptically polarized light. All the possible changes of the
reference basis for the representation of Stokes vectors cor-
respond to rotations in the Poincaré sphere and, in con-
sequence, are performed by means of similarity transfor-

mations whose orthogonal matrix has the form of the R,
L matrices, and not the form of the U, V matrices.

According to the SVD of Z, U and V are the “output”
and “input” orthogonal non-Mueller matrices, whose re-
spective columns are the output and input singular vectors
of Z. Moreover, if we consider the SVD of the complete
Mueller matrix M, the orthogonal matrices Ny and N ro
represent the input and output orthogonal physical trans-
formations, i.e. respective rotations in the Poincaré sphere.
Thus, different respective bases for the representation of
input and output Stokes vectors can be specified, so that
the form of Nz and N o depend on the particular bases
chosen, whereas the kernel matrix Z is physically invari-
ant. No physical transformation can produce changes in
Z. Hence, all quantities derived from Z are physical in-
variants. The input and output equivalent retarders Ngy,
Nro depend on three respective independent parameters,
whereas Z depends on ten independent parameters.

Thus, it is easy to show that the indices of purity (and
hence the degree of purity) of Z are the same than those
of M. It is also important to note that Z and M have the
same transmittance for unpolarized light

Z00 = Moo- (256)
Concerning the polarizances of Z, it is easy to show that,
as expected, their values are also physical invariants,
Nevertheless the polarizance vectors 1., 7y are not phys-
ically invariant

Yy (Z)#Xr (M),

Y. (2)# Y, (M), (258)

(134

and, therefore, they must be distinguished from the “in-

trinsic polarizance vectors” I'y, I, defined as

1 1
r'r=— (210, 220, 230)" , Tp = ——

T
(2017 202, 203) )
moo moo

(259)
which depend only on the elements of Z and, hence, are
physically invariant.

In consequence, a complete description of the objective
physical quantities embedded in M is the following:

(a) 6 parameters of overall birefringence:

e “input birefringence”, given by Ngy (v, 0;, A;),
e “output birefringence”, given by Nro (o, 90, Ao);

(b) 10 physically invariant parameters:

e transmittance for unpolarized light (“mean trans-
mittance”) mgyo,

e indices of purity P;, P>, P3, which characterize
completely the polarimetric purity of the system,

e intrinsic polarizance vectors I'y, I, (we observe
that the polarizances ¥y (M), 7, (M) are the re-
spective modulus of these vectors).
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The obtainment of this set of objective physical parame-
ters constitutes an important mean of exploiting the po-
larimetric techniques, as well as a tool for analyzing exper-
imental results. In particular, not only the mathematical
invariants (mgg, Pr, P2, P3), but all the physical invariants

(77100,P1,P2,P3,1"T7 I‘,T) can be used for the objective

characterization of material samples.

We observe that the indices of purity can be obtained
directly from numeric calculus of the eigenvalues of the co-
herency matrix H associated with the measured Mueller
matrix M. To complete the calculation of the set of ob-
jective physical quantities, we present below a procedure
to obtain the parameters of the SVD of M

e through numeric calculus, the singular values
do,d1,do,ds are calculated as the positive square
roots of the eigenvalues of the positive semidefinite
symmetric matrix MTM = NZ VI D2VNg/;

o the eigenvectors of M7 M, which are the rows of the di-
agonalization orthogonal matrix VN gy are then calcu-
lated. From now on, the elements of the matrix VN gy
can be used as data;

e the elements of V are calculated from the first column
of VNg; and, hence, all the angles characterizing V
and Ny are calculated;

e in the same way, the eigenvectors of MM’ =
N ROUDQUTNQO are numerically calculated so that,
once is NroU obtained, its elements can be used as
data;

o the elements of U are calculated from the first row of
NroU and, hence, all the angles characterizing U and
Nro are obtained.

Some important theorems derived from the SVD of M are
the following

(a) the diagonal matrix D, corresponding to the SVD of

M, is a Stokes matrix;

if the kernel matrix Z is diagonal, then ¥y =71, = 0;

(c) any Mueller matrix M that satisfies 7y = 2, = 0

can be written as M = NroDNpgr. This matrix cor-

responds to a parallel combination of retarders and

depends on up to ten independent parameters;

TfZT:,-Zl :>P(4):1;

(e) an ideal depolarizer can be synthesized through the
parallel combination of pure retarders given by equa-
tion (202);

> d?
=
(f) P(24) (Z) = P(24) (M) = 3 777(%0 -1
d2—m?
= P2, (D) + %,
(8) di = miy; dj =md, & Z=D;
.2

2 _ p2 _1 2 o | ig=1 |,
(h) PGy (Z) = Py (M) = 5 [ 17 + 77 + =— |;

(i) Z is a Mueller-Jones matrix if, and only if, the follow-
ing equalities are satisfied Z = ZT (1 = @4, Y2 = @5,
P3 =6 ), p1 = m/4,dy = d3.

An examination of the kernel matrix enables the following
classification of the measured media to be made:

o Z # Z7T: the system represented by M is optically
equivalent to a parallel combination of pure diatten-
uators and pure retarders placed between two pure
retarders. It would be interesting to analyze the non-
demonstrated hypothesis that, in this case, Z is a par-
allel combination of non-homogeneous diattenuators;

e Z = ZT | Z # D: the system represented by M is op-
tically equivalent to a parallel combination of pure di-
attenuators placed between two pure retarders;

e 7Z = D: the system represented by M is optically
equivalent to a parallel combination of pure retarders.
Z represents a depolarizer (also called a “pure depolar-
izer” [149] but, in order to avoid confusions, we retain
the term “pure” to refer to deterministic nondepolar-
izing systems).

6 Some applications of polarimetry

The term “polarimetry” extends over a wide range of sci-
entific, medical and industrial applications. An exhaustive
summary of all these applications would require a volu-
minous treatise. Nevertheless, in order to provide a brief
panoramic view, we include here some references to several
fields where the polarimetric techniques play an important
role.

Light scattering [8,34,215,216]: remote sensing [217],
lidar, atmospheric phenomena, aerosols, hydrosols, surface
roughness [26,218-222], particle sizing, particle character-
ization (contaminants, biological microorganisms.. . ), sur-
face characterization. . .

Optical fiber and photonic devices [145,146,223,228]:
communication systems; characterization and control of
polarization mode dispersion, fiber optic sensors. ..

Synthetic aperture radar (SAR) polarimetry [59,195,
229]: airborne and spaceborne remote sensing, imaging
and detection; vegetation, agriculture, crop classification,
forestry, sea ice, sandy areas; Geoscience [230], digital ter-
rain models, ground topographic mapping, Meteorology,
observation and prediction of hurricanes, detection of dev-
astated areas, oil spills, immersed targets, buried targets,
anti-personnel mines [231]...

Medicine & Biology [232-236]: study, detection and
imaging of immunological reactions, biological tissues,
optical coherence tomography [232,233,237-240], human
eye [241,242], oral precancer [209], DNA structure. ..

Ezperimentation under microgravity conditions [243,
244].

Photoelasticity [127,245,246].

Astronomy & Astrophysics [36,247]: X-ray polarime-
try, Solar polarimetry, interstellar dust, planetary atmo-
spheres, black holes, satellite missions. ..

Optics industry & research: fabrication [248], charac-
terization of optical components [249], analysis of optical
systems [250,251], ray tracing [252], spectral filters design
and fabrication [253]...

Imaging polarimetry [32,233,239,241,254-257].
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Plasma physics, nuclear fusion, ITER, Tokamak [35,

38]; synchrotron, particle physics...

Microelectronics Industry & Metrology [258,259).
Research in Quantum Physics [85,96,260-262]: Bell in-

equalities, optical computing, teleportation, cryptology...

LCD Technologies, [263-265].
Thin films, Stratified & Layered Media [266-268)].
Microwave transmission systems [269].

The author would like to thank Drs. I. San José, J.M. Correas,
C. Ferreira, P. Melero and J. Delso, colleagues of the Group of
Optical Polarimetry, for their helpful comments. The author
is also obliged to Dr. R. Navarro for his valuable advice and
encouragement in writing this paper.
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