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Abstract: Polarization can provide information largely uncorrelated with the spectrum and intensity.
Therefore, polarimetric imaging (PI) techniques have significant advantages in many fields, e.g., ocean
observation, remote sensing (RS), biomedical diagnosis, and autonomous vehicles. Recently, with the
increasing amount of data and the rapid development of physical models, deep learning (DL) and
its related technique have become an irreplaceable solution for solving various tasks and breaking
the limitations of traditional methods. PI and DL have been combined successfully to provide
brand-new solutions to many practical applications. This review briefly introduces PI and DL’s most
relevant concepts and models. It then shows how DL has been applied for PI tasks, including image
restoration, object detection, image fusion, scene classification, and resolution improvement. The
review covers the state-of-the-art works combining PI with DL algorithms and recommends some
potential future research directions. We hope that the present work will be helpful for researchers
in the fields of both optical imaging and RS, and that it will stimulate more ideas in this exciting
research field.

Keywords: polarization; polarimetric imaging; synthetic aperture radar; remote sensing; deep
learning; convolutional neural network

1. Introduction

Various sensing and imaging techniques are developed to record different information
from four primary physical quantities related to the optical field: intensity, wavelength,
phase, and polarization [1–4]. For example, traditional monochromatic sensors measure
intensity information of optical radiation in a single wavelength [5–8]. Spectral sensors,
such as color cameras and multispectral devices, measure intensity information in multiple
wavelengths simultaneously [9–12]. Holographic cameras record both intensity and phase
information of an optical field [13–15]. Polarization information relates to such physical
properties as physical shape, shading, and roughness [10,11,16–18], as well as provides
information significantly uncorrelated with other physical information (e.g., the spectral
and intensity), and thus has advantages in various applications [4,16,19–23]; Yet, it cannot
be directly observed via visual measurements.

The acquisition of polarization information must be via specially designed optical
systems, based on which polarization states of light scattered or reflected by scenes or
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objects can be extracted by inverting measured intensities/powers. As a promising tech-
nique, polarimetric imaging (PI) attracts more and more attention in the fields of remote
sensing (RS), ocean observation, biomedical imaging, and industrial monitoring [24–26],
due to its significant performance and advantages in mapping multi-feature information.
For example, in scattering media (such as cloud, haze, fog, biological tissues, or turbid
water), image quality and contrast can be enhanced by employing PI systems [27–34]
since the backscattering is partially polarized [35–37]. As polarized light is sensitive to
morphological changes in biological tissues’ structures on a microscopic scale, PIs, espe-
cially Mueller PIs, are widely used to distinguish healthy and pathological areas [38,39],
e.g., skin [40], intestine [41], colon [42], rectum [43] and cervix [44].

In the field of RS, polarization synthetic aperture radar, also known as PolSAR, makes
use of polarization diversity to improve the geometrical and geophysical characterization
of observed targets [45,46]. Compared with standard synthetic aperture radars (SARs),
PolSAR acquires more abundant physical information and allows for more effective recog-
nition of features and physical properties [46,47]. It thus has various applications, including
in agriculture, oceanography, forestry, disaster monitoring, and military [43,48–55]. Partic-
ularly, its capacity of natural disaster reporting and response significantly affects human
livelihoods and man-made infrastructures. For example, the Advanced Land Observing
Satellite-2 (ALOS-2), which carries on a Phased Array type L-band Synthetic Aperture
Radar-2 (PALSAR-2), has conducted more than 400 emergency observations to identify the
damages caused by natural disasters, including earthquakes, floods, heavy rains, and land-
slips [56,57].

However, PI could suffer from lower image quality, coming from hazy or cloudy
effects [6,58,59], complex noise sources [60–64], reduced-resolution or contrast [30,65–68],
as shown in Figure 1, due to limitations of optical systems and particularities of application
scenarios. This may significantly affect PI’s application effects, especially in complex
conditions and environments [43,69,70].

Figure 1. Scenes (a) with/without noise (b) turbidity or (c); (d) with low-resolution (LR) or high-
resolution (HR) [67].

For example, in automatic driving tasks, adding polarization analysis into the optical
imaging (OI) system can compensate drawbacks of conventional intensity-mode-based
methods [71,72]. Yet, these essential polarization parameters are non-linearly deduced
by polarized intensities and are pretty sensitive to noise [73–77]. This point can be found
in Figure 1a, which shows an image of the angle of polarization (AoP) in a low-light
condition. In ocean observation, underwater images (as shown in Figure 1b) may suffer
from reduced contrast and color distortion [78]. In RS, especially for PolSAR data, existing
speckles complicate the processes of interpretation and reduce the precision of parameter
inversion [69,79]. In scattering media or some particular atmospheric conditions, images
could be blurred, and their quality was significantly reduced owing to the phenomenons
of scattering and absorption by existing micro-particles [80,81], such as the clouds in RS
images shown in Figure 1c. When processing PolSAR images, a wide swath can be achieved
at the expense of a degraded resolution [9,82]. Yet, since wide swath coverage and high
resolution are both important, this poses challenges on both system design and algorithm
optimization. Figure 1d shows an RS image example with low/high-resolution.
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Generally, the existing PI systems mainly involve two aspects: acquisition of po-
larization information and applications based on this information, as shown on the left
of Figure 2. The first aspect of PI, i.e., polarization acquisition, consists in inverting the
intensity measurements captured by imagers to retrieve polarization information. The cor-
responding schematic is proposed on the right of Figure 2. One can get a series of intensity
measurements by adjusting the polarization states of incident light and adequately setting
the polarization analyzers. By inverting these measurements, we can obtain the polariza-
tion information that can be used to characterize the beams or samples [7,83–86]. This
polarimetric information may be the Stokes vector S, the Mueller matrix M, the degree of
polarization (DoP) P, or AoP θ [75,87,88]. Based on images of these polarization features,
one can perform such applications as target detection [89–93], classification [12,94–97], dis-
crimination [98–101]. Polarization information acquisition aims at acquiring high-quality
data, that is, clear images with high-resolution and low noise (such images are also il-
lustrated in Figure 1). On the other hand, polarization information application aims at
leveraging polarization features to satisfy a given application purpose.

Figure 2. (Left) General steps of PI: Polarization parameters S-Stokes vector, M-Muller matrix,
P-degree of polarization, and θ -angle of polarization. (Right) Schematic of Polarization acquisition:
~p denotes the polarization information of the sample/light-beam,~I the multi-intensity captured by
imagers and f the operator corresponding to the PI system.

Various methods have been proposed for handling the two aspects in Figure 2 to
improve image quality and application performance. For example, many approaches based
on principles of non-local means [102], total-variation (TV) [103,104], principal component
analysis (PCA) [105,106], K-times singular value decomposition (K-SVD) [107], variational
Bayesian inference [108], and block matching 3-D filtering (BM3D) [109] were developed
and had better performances for noise or speckle removal. These methods, however, are not
commonly applicable since they require prior knowledge and manual network parameter
modification. In addition, when we consider practical applications, the physical models that
relate polarimetric measurements to interested parameters significantly depend similarly
on prior knowledge of model parameters. The knowledge often has apparent uncertainty as
physical processes are highly complex, which may limit application performance [110,111].

Data-driven machine learning approaches have played important roles in various
imaging systems [112–115]. The rapid advances in machine learning and the increasing
availability of “big” polarization data create opportunities for novel methods in PI [116–120].
Moreover, thanks to their powers of being data-driven and deeply-data-learning, deep
learning (DL) approaches have been successfully applied for image inversion and process-
ing in recent years [5,69,111,116,121–124]. In fact, DL can approximate complex nonlinear
relationships between interested parameters owing to the multi-layer nonlinear learning,
which helps obtain the potential association between different variables for both polarimet-
ric images acquisition and application [5,78]. Besides, DL has shown significant superiority
in extracting multi-scale and multi-level features as well as in combining them, which
fits very well with inherent variety and multi-dimensionality of polarization [111,116,125].
Thus, it will contribute to a better performance in the two aspects of PI.
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Recently, combining imaging techniques/applications and DL has become a hot topic.
Many review articles have already been published to review such works, for example,
in domains of RS [116,126] or classification [43,116,127]. However, works related to the
DL in PI have not yet been reviewed. The motivation for this work is to introduce a
comprehensive review of the major tasks in the field of PI connecting with DL techniques,
which may include denoising/despeckling, dehazing, super-resolution, image fusion,
classification, object detection, etc. The reviewed works include representative DL-based
articles in both the fields of traditional visible OI and RS. The rest is organized as follows:
Section 2 introduces polarization and DL principles. Section 3 surveys the latest research in
DL-based polarization acquisition and DL-based processing of polarimetric images. Finally,
conclusions, critical summary, and outlook toward future research are drawn in Section 4.

2. Principles of Polarization and Deep Learning
2.1. Overview of Polarization and PI

Polarization is a physical characteristic of electromagnetic waves in which there is a
specific relationship between the direction and magnitude of the vibrating electric field.
Techniques that image the polarization (or polarization parameters) are called PI and are
widely used in two fields: optical polarimetric imaging (OPI) system and PolSAR [128–130].
In fact, OPI and PolSAR estimate the same polarimetric parameters. The main difference is
that they work at different wavebands. For comparison, two examples of SAR (similar to
the PolSAR) and OPI related to the same scenes are shown in Figure 3.

Figure 3. Comparison of SAR and OPI images [131,132].

OPI techniques can be used for both active and passive detection, and have the
advantage of low-cost and intuitive image interpretation. On the other hand, PolSAR,
or microwave polarimetric detection, is an active remote sensing technique. Since mi-
crowaves are less diffused by water, PolSAR is much less affected by rain clouds and fogs
than OPI [129,131,132]. Therefore, it can provide full-time and full-weather observation
for targets. However, PolSAR has poorer spatial resolution and higher noise than OPI in
visible or infrared bands. These characteristics are well observed in Figure 3.

In addition, although OPI and PolSAR measure basically the same physical phe-
nomenon (i.e., polarization), they often use different mathematical formalisms. In the
following section, we will introduce the basic of polarization and polarimetric imaging
principles. We will review the concepts that are identical in these two fields, such as the
Jones vector and matrix, Stokes parameters, DoP, and AoP [4], and describe the concepts
that differ, in particular, the scattering matrix/vector and the covariance matrix, which are
widely used in PolSAR [133,134].

2.1.1. Jones Vector and Stokes Vector

In the 1940s, Refs. [135–137] introduced and developed the Jones formalism, which
links a two-element Jones vector that describes the polarization state of light, and the Jones
matrix, a 2× 2 matrix that describes optical elements. The Jones vector is complex-valued
and describes the amplitude and phase of light as [4]:

J =
[

E0xejδx

E0yejδy

]
, (1)
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In incoherent optical systems, it is handier to characterize polarization properties only
by a real-valued quantity (i.e., intensity-mode or power-mode measurement). This is done
by Stokes vector [138]. When light waves pass through or interact with a medium, their
polarization states change, which is described by a 2× 2 Jones matrix [4]:

S =

[
s11 s12
s21 s22

]
. (2)

A 2× 2 Hermitian matrix, i.e., C, can be deduced by the product of a Jones vector J
with its conjugate transposition JH [46], as follows:

C = JJH =
1
2

[
s0 + s1 s2 + js3
s2 + js3 s0 − s1

]
, (3)

where the superscript ∗ represent conjugation, s0, s1, s2, and s3 are the four Stokes param-
eters [4,46], and s2

0 ≥ s2
1 + s2

2 + s2
3. The Stokes vector, i.e., S = [s0, s1, s2, s3]

T , can be
obtained from only power or intensity measurements, and is sufficient to characterize the
magnitude and relative phase, i.e., the polarization of a monochromatic electromagnetic
wave [46]. The Stokes vector can also be written as a function of the polarization ellipse
parameters: orientation angle φ, ellipticity angle χ, and ellipse magnitude A, as [4,88]:

S =


E2

0x + E2
0y

E2
0x − E2

0y
2E0xE0y cos δ

2E0xE0y sin δ

 =


A2

A2 cos(2φ) cos(2χ)
A2 sin(2φ) cos(2χ)

A2 sin(2χ)

 (4)

Equation (4) is more commonly seen in the field of OPI. From S, one can get other
polarization parameters. Three of them are the DoP (i.e., P), the degree of linear polarization
(i.e., DoLP), and the AoP (i.e., θ):

P =

√
s2

1 + s2
2 + s2

3

s0
, DoLP =

√
s2

1 + s2
2

s0
, θ =

1
2

tan−1
[

s2

s1

]
. (5)

2.1.2. Scattering Matrix

PolSAR is one of the most important applications of PI in the field of RS. Different from
OPI, PolSAR works in the microwave band instead of the visible band. It is necessary to
introduce the parameters used in PolSAR-based RS. Figure 4 presents a scheme of general
PolSAR used to measure a target, characterized by its scattering matrix S [46].

Figure 4. Interaction of electromagnetic wave and target.

Any electromagnetic wave’s polarization state can be determined by combining two
orthogonal Jones vectors linearly [46]. As a PolSAR sensor transmits the horizontally
(H) and vertically (V) polarized microwave alternately, while receives independently the
returning H and V waves back-scattered in targets [139], the scattering process occurring at
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the target (shown in Figure 4) is expressed by using the scatter matrix S, whose foundation
is same to the Jones matrix in OPI systems shown in Equation (2) and that characterises the
coherent scattering of electromagnetic waves. The Scatter matrix is defined as follows:

EI = S · ES =

[
SHH SHV
SVH SVV

]
ES, (6)

where the incident and the scattered waves are represented by EI and ES, respectively. SHH
and SVV related to the returned powers in co-polarized channels, while SHV and SVH are
in cross-polarized channels. In particular, SHV is the scattering element of the horizontal
transmitting and vertical receiving polarization, with SHV = |SHV |ejφHV ; Similar definition
for SVH . When reciprocal back-scattering, SHV = SVH [133,134].

The covariance matrix or coherence matrix is another important parameter commonly
used in PolSAR data processing [46,140]. It is defined in the following way. One first
“vectorizes” the scattering matrix S and defines the 3D scattering vector below

X = [SHH ,
√

2SHV , SVV ]
T , (7)

under the assumption of SHV = SVH . One then defines the covariance matrix as the
average of the outer product of X as C =

〈
XXH〉 [140]:

〈
|SHH |2

〉 √
2〈SHHSHV∗ 〉

〈
SHHS∗VV

〉
√

2〈SHVSHH∗ 〉 2
〈
|SHV |2

〉 √
2
〈
SHVS∗VV

〉
〈SVVSHH∗ 〉

√
2〈SVVSHV∗ 〉

〈
|SVV |2

〉
, (8)

where the averaging, i.e., 〈·〉, involved in the computation of the covariance matrix can be
temporal or spatial. For example, to suppress speckle noises in PolSAR images, one can
average on several acquisitions (or “looks”):

〈C〉 = 1
L

L

∑
i=1

xixH
i =

 C11 C12 C13
C21 C22 C23
C31 C32 C33

, (9)

where L denotes the number of looks, xi the scattering vector of the i-th look. According to
Equation (8), one knows that the principal diagonal elements in 〈C〉 are real-valued; the
others are complex-valued and verify Cij = C∗ji, with i 6= j [141].

As C includes all polarization information of targets, one can obtain useful features
by decomposing this matrix [142]. Up to now, many decomposition algorithms have
been developed to achieve this purpose, such as (1) the coherent decomposition algorithms
including Krogager [143] and Target Scattering Vector Model [144]; and (2) the non-coherent
decomposition algorithms including Holm [145], Huynen [146], Vanzyl [147], H/A/α [148],
multiple component scattering model [149], Freeman [150], and adaptive non-negative
eigenvalue decomposition [151].

2.2. Overview of Deep Learning

Neural networks are inspired by mammal brains and primate visual systems in par-
ticular, which comprise neurons or units with certain activation parameters by a deep
architecture. In this way, a given input percept can be represented at multiple levels of ab-
straction [111,152]. DL, as a class of neural network-based learning algorithms, is composed
of multiple layers, which are often referred to as ”hidden.” These layers transform the
input into the output by learning progressively higher-level features. Notably, the network
depth is typically dependent on the number of multiple hidden. This is why we always
named the network “deep learning”.

In recent years, various novel deep architectures have been developed and applied in var-
ious fields, where they outperform the traditional non-data-driven methods [110,116,153,154].
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We still take the ALOS-2/PALSAR as an example. Ref. [155] proposed a DL-based approach
and achieved robust operational deforestation detection with false alarm rate smaller 15%,
as well as improved the accuracy by 100% in some areas. In this Section, we will introduce
several DL models commonly used in PIs, e.g., the convolutional neural networks (CNN),
autoencoders (AE), and deep belief networks (DBN) [116,152,153,156–158].

2.2.1. CNN

The concept of CNN was proposed by [159] and then revised by [160]. In the past
decades, CNN has attracted more attention and shown outstanding performance in various
fields including, but not limited to, optical sensing [161,162] and imaging [163,164]. CNN
has the prominent ability to learn highly abstract features and is a trainable multi-layer
architecture composed of an input layer, convolutional layers, pooling layers, fully con-
nected layers, and an output layer [165]. One example of the CNN architecture is shown in
Figure 5.

Figure 5. Example of CNN architecture.

Convolutional layer is used to extract image features. The former convolutional layers
aim at extracting shallow features, while latter ones aim to further learning abstract features.
The convolutional layer computes output multiple feature maps by convoluting the output
of the previous layer (or input layer) with a convolution kernel [166–168].

Pooling layer aims at reducing the size of the input (former) layer by, for example,
sampling convolved feature maps. By this way, useful features of the image are preserved
and redundant information is removed, thus effectively preventing the over-fitting problem
and speeding up computation [115,158].

Fully connected layer combines features transmitted in the former layers to achieve
the final feature representation. It is always used in the last layer and followed by the
output layer.

In addition, to boost the performance, many CNN models have been proposed, includ-
ing the LeNet [169], AlexNet [163], GoogleNet [170], ResNet [171], DenseNet [172]. Notably,
CNNs have been widely used in PIs, for such applications as image reconstruction [5,11,58],
target recognition [173–175], classification for PolSAR data [49,176]. We will introduce
these works in Section 3.

2.2.2. AE

AE is a symmetrical neural network composed of two connected networks: encoder
and decoder. Its architecture is shown in Figure 6. The two parts can be considered as
hidden layers between the input and output layers [177].

In the first encoder part, input data, which always has a high dimension, was reduced
to low-dimensional encoded data. During this part, the input data xi is processed by a
linear function and a NAF f to provide encoded data yi. On the contrary, the decoder
part raises the encoded data to a reconstructed data xr

i , having the same dimension as
xi. The network is optimized by minimizing the loss function, for example, with a back-
propagation algorithm, AE learns features from the input in an unsupervised way.

Many variants of AE have been developed to boost the performance according to
special applications, such as the sparse AE [177], convolutional AE [178], and variational
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AE [179]. In fact, these AEs can be directly employed as the feature extractor from polariza-
tion images, for example, in target detection and classification for PolSAR data [180–184].

Figure 6. Example of AE architecture.

2.2.3. DBN

DBN is an unsupervised probabilistic network [185]. It stacks multi-individual un-
supervised networks whose hidden layer is used as the input for the next layer. Usually,
DBN comprises the stacking of several Restricted Boltzmann Machines (RBMs) or AEs.
DBN has two layers: the hidden layer and the visible layer. Hidden units are conditionally
independent of visible ones. Its architecture is shown in Figure 7 [43,111,185].

Figure 7. Example of Deep belief network architecture.

DBN-based methods have been used in PI applications, especially the object recogni-
tion and scene classification [186–189], and have shown superior performance compared
with traditional methods, such as PCA [181] and support vector machines (SVM) [190].

2.2.4. Other Deep Networks

In addition to the above three network models, a few research works in the field
of PI are based on other late-model networks, such as the recurrent neural network
(RNN) [191,192], generative adversarial network (GAN) [97], residual network [5], and deep
stacking network (DSN) [193].

As a typical neural network, RNN uses a loop to store information within the network.
This gives the network a memory capacity to preserve information. The current input and
prior hidden states are used to compute a new hidden state, as ht = f (ht−1, xt; W); where
ht and ht−1 are hidden states at time t and t− 1, respectively; xt denotes the present input;
W is the parameter applied in all time sequences; and f denotes a NAF. Figure 8 presents
an example of RNN architecture.



Remote Sens. 2023, 15, 1540 9 of 42

Figure 8. Example of RNN architecture.

It can be seen that, in contrast with previously introduced networks, RNN provides a
feedback loop to previous layers. The advantage of RNN over the feed-forward networks
is that it can remember the output and use it to predict the next elements, while the feed-
forward one is not able to feed the output back to the network. Therefore, RNN works very
well with sequential data. The RNN with gated recurrent unit and the Long Short-Term
Memory (LSTM) are two of the most often used RNNs (GRU). They solve problems of
vanishing or exploding gradient [121,194], and have been successfully used to handle the
classification issues in PolSAR [191,192].

GAN is a class of DL systems developed by [195]. It contains Generator (G) and
Discriminator (D), i.e., two sub-networks. The GAN training algorithm involves training
both the G and D models in parallel, and having them compete against one another in a
zero-sum game. Figure 9 presents an example of GAN architecture.

Figure 9. Example of GAN architecture.

In other words, “G” tries to mislead “D” into distinguishing between the true and
fake. “D” is trained to recognize that information is true whenever it comes from a reliable
source and is false when it comes from “G”. GANs are now a very active research topic in
image processing applications, and there exist various types of GANs, such as Vanilla GAN,
conditional GAN (CGAN), WGAN, StyleGAN, deep convolutional generative adversarial
network (DCGAN) [196–198].

In fact, due to the well-known vanishing gradient problem, deep networks are actu-
ally challenging to train. In other words, when the gradient propagates back to earlier
layers, repeated multiplications may reduce it to an endlessly small value, saturating the
performance or even rapidly decreasing it as the network depth increases. To handle this
problem, Ref. [165] proposed ResNet, short for Residual Network, in 2015. The key of
ResNet is to create an “identity shortcut connection” that skips one or more layers, which
is called a “residual block” and is depicted on the left-side of Figure 10.
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Figure 10. (Left) Residual block. (Right) Densnet.

The ResNet is robust to exploding and vanishing gradients as residual blocks can
pass signals directly through, which allows information to be propagated faithfully among
multi-layers. Thanks to its excellent performance, the ResNet has become one of the most
popular architectures and has successfully been applied in many applications [5,11,165].

To further make use of shortcut connections and connect all layers directly with
one another, in 2016, Ref. [172] proposed a novel architecture called Densely Connected
network (DensNet) (As shown on the right of Figure 10). The figure shows that each layer’s
input consists of all earlier layers’ feature maps, and the related outputs are passed to the
subsequent layer. This operation makes networks highly parameter-efficient. In practice,
one can always get better performance with fewer layers. DensNet can also be combined
with the Resnet, the so-called Residual Dense Network, to further improve image quality
in PI systems for such tasks as super-resolution [199], denoising [5] and dehazing [78].

3. PI via Deep Learning

The performance of DL-based methods depends on the learned relations between in-
puts and outputs. For polarization information acquisition, one needs to obtain a database
of intensity images in multi-channels corresponding to different physical or polarimetric
realizations of targets. Depending on the practical applications at hand, the detecting
instrument may be the traditional Stokes imager [200], Mueller ellipsometer [201], or Pol-
SAR [151]. The DL structures are specially designed to enhance the quality of these outputs
by adding physical constraints. The outputs can be intensity images in different channels
or the corresponding polarization parameters presented in Figure 2.

The captured polarization information may become the input of the second step of PI,
i.e., polarization information applications. In other words, the second step is based on the
outputs of the first step, and its output nature depends on the task at hand. For example, it
can be a denoised image in denoising/despeckling applications, a clear image in haze and
cloud removal, and a feature map in object classification and detection.

Based on captured polarization dataset, physical relations between inputs and out-
puts can be learned by adjusting connection weights and other parameters of the DNN
structure. Consequently, data-driven approaches effectively seek and handle polarimetric
information with high imaging performance [5,11,43,58]. Besides, compared with tradi-
tional solutions, PI using DL-based solutions are also very fast because it is a feed-forward
architecture [121,168,202]. Recently, some researchers have tried to develop DNNs that
embed physical priors, models, and constraints into, for example, the forward operators,
regularizers, and loss functions [5,11,168,174]. They have verified that such DNNs have
significant superiority compared with those that do not consider physical priors.

In the following two sections, we will review DL-based methods for improving the
performance of PI in terms of acquisition and application, respectively. A brief outline of
these Sections is shown in Figure 11. Specifically, we will introduce a series of representative
DL-based works in polarization applications and processing, respectively, and show how
DL enhances the PolSAR and OPI.
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Figure 11. Brief outline of Sections 4 and 5.

4. Polarization Information Acquisition

In some scenes, polarimetric images could suffer from the noise, speckles, haze, clouds,
or reduced resolution, which compresses their quality and limits practical applications.
Employing DL at the level of PI acquisition can significantly improve image quality thanks
to the power of data-driven methods and their ability to extract features.

4.1. Denosing and Despeckling

PI aims to measure and image polarization parameters and has been widely applied to
many fields. Yet, essential polarization parameters are deduced by intensities or powers via
nonlinear operators, which could magnify the noise distorting intensity/power measure-
ments [203,204]. As such, they are quite sensitive to the noise. This is illustrated on the left
of Figure 12, where details in noisy DoLP/AoP images are challenging to distinguish [5,205].
In RS, the speckle noise is one of the leading reasons for SAR data quality reduction. Addi-
tionally, PolSAR data has a far more complex speckle model than conventional SAR data.
This is due to the fact that the speckle noise can be seen both in intensity images and in
complex cross-products between various polarization parameters [69,79]. Figure 12 (Right)
presents the illustration of non-stationary speckles in a PolSAR image (F-SAR airborne
image DLR). As the radiometry and polarimetric behaviors differ, the two enlarged regions
appear at different noise levels, making speckles removal more difficult [206].

Figure 12. (Left) Noisy images of DoP/AoP (Right) F-SAR airborne image DLR.

4.1.1. PI Case

In visible PIs, many non-data-driven denoising methods have been proposed and
generally shown positive performances. For instance, Ref. [106] proposed a PCA-based
denoising method that fully takes advantage of the spatial connection between various
polarization states. To specifically suppress noise, two crucial processes—dimensionality
reduction and linear least mean squared-error estimation in the transformed domain—are
used. In 2018, Ref. [207] proposed a novel K-SVD-based denoising algorithm for polariza-
tion imagers. This algorithm can efficiently eliminate Gaussian noise and well-preserve
the targets’ details and edges. In addition, BM3D-based denoising methods have also been
employed to handle polarimetric images [109,208] and well preserve the details and edges
of these images. However, they have two drawbacks: (1) the type of noise is assumed as
additive white Gaussian, while the practical type may be more complex and will be affected
by many factors; in other words, the methods can not well address practical applications.
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(2) Most methods rely on prior knowledge and need human structure parameter tuning; as
a result, they are not solid for different conditions [5].

DL methods perform particularly well in various fields thanks to their excellent
abilities in extracting features. They are more effective for image denoising or despeckling
in complex and strong noisy environments than others. In 2020, Ref. [5] proposed a
residual dense network-based denoising method. Its structure is shown on the left side
of Figure 13a. This network considers a multi-channel polarization image input and
outputs the corresponding residual image. Figure 13(a-3) presents denoising results for
different polarization parameters (i.e., intensity, DoLP, and AoP) by varying methods (i.e.,
the PCA, BM3D, and the proposed DL-based solution). Obviously, the DL-based one has
the best performance for all polarization parameters, and all image details are well restored.
Especially for such details in AoP images, the noise seems to be removed significantly.
Moreover, the efficiency of this method on different materials has been verified. This is the
first report about denoising for PI using DL.

Figure 13. (a) DL-based denoising for visible polarimetric images [5]: (a-1) Network architecture;
(a-2) Residual Dense block; (a-3) Restored results comparison. (b) Denoising for chromatic polariza-
tion imagers in low-light [11]: (b-1) Network architecture; (b-2) Restored results in outdoor.

As the low photon count, polarimetric images captured in a low-light environment
always suffer from strong noises, resulting in low image quality, affecting the accuracy of
object detection and recognition [73,209,210]. Therefore, denoising in low-light conditions is
another essential task for visible PIs. In 2020, Ref. [11] first collected a chromatic polarimetric
image dataset and proposed a three-branches (intensity, DoLP, and AoP) network, called
IPLNet, to improve the quality of both polarization and intensity images.

In contrast with the network developed in their previous work [5], the present one
has two sub-networks, i.e., RGB-Net and Polar-Net. An RGB feature map is produced
using the RGB-Net. The features above are divided into three different channels, followed
by the Polar-Net, which aims to predict polarization information. Besides, a polarization-
related loss function is well designed to balance the intensity and polarization features
in the whole network. Indoor and outdoor (see Figure 13b) experiments were performed
to verify its effectiveness. The corresponding models and results can be extended to
automatic drive directly to enhance target recognition accuracy in complex conditions
further. In 2022, Ref. [211] proposed an attention-based CNN for PI denoising. In this work,
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a channel attention mechanism is applied to extract polarization features by adjusting the
contributions of channels. Another interesting contribution of this work is its adaptive
polarization loss, which makes the CNN focus on polarization information.

4.1.2. RS Case

In RS, various methods aim to suppress speckle noises, e.g., multi-look process-
ing [212], filtering [213,214], wavelet-based despeckling, BM3D algorithm [215] and TV
methods [216]. These PolSAR speckle filters are based on the traditional adaptive spatial
domain filters proposed by [45,213,214]. Besides, although the NLM-filter was initially
developed to remove the noise in traditional digital images [217], it was successfully ex-
panded to denoise PolSAR images recently [105,218]. From 2014 to 2016, merging a Wishart
fidelity term from the original PolSAR TV model with a non-local regularization term
created for complex-valued fourth-order tensor data [104,216,219] innovatively developed
TV-based methods for PolSAR despeckling. More details of these methods can be found in
two representative reviews of PolSAR despeckling, i.e., Refs. [69,220]. However, the meth-
ods also have significant limitations: (1) Due to the nature of local processing, spatial
linear filter approaches would be unable to completely preserve edges and features [61];
(2) NLM methods have a low computational efficiency of similar patch searching, which
limits their applications. (3) Variational methods significantly depend on model parameters
and are time-consuming. In general, these techniques occasionally fail to maintain sharp
features in fields with complex textures or generate unwanted block artifacts in images
with speckles [61].

In most traditional denoising methods for SAR images, a statistical model about the sig-
nal and speckle is necessary. To release it, some researchers extended DL approaches to SAR
image despeckling [51,60,61,221,222]. Some of these methods are based on U-Net [221,222]
and Residual-Net [61,223]. The corresponding network structure and denoising results are
shown in Figure 14.

Figure 14. (Up) U-Net [221]. (Down) ResNet [61].

Notably, most DL-based despeckling methods are developed only for intensity-mode
images. However, images captured from SAR polarimeters or interferometers have mul-
tiple channels and complex values, making the corresponding despeckling process more
challenging [63,206,224]. In 2018, Ref. [206] first applied DNNs to despeckling in PolSAR
images. It decomposes the complex-valued polarimetric and/or interferometric matrices
into real-valued channels with a stabilized variance. And then, a DNN is applied, in an
iteration way, until all channels are restored. The bottom part of Figure 15 presents a
restoration result on an airborne image captured by the DLR’s ESAR sensor (image over
Oberpfaffenhofen provided with PolSAR).
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Figure 15. DNN-based PolSAR despeckling method [63].

The despeckling of PolSAR images can be further developed by adding non-local
post-processing into the CNN-based MULog method. In 2019, Ref. [225] designed a
novel approach along this line. The first step is a network named MuLoG, using a ma-
trix logarithm transform and a channel decorrelation step to iteratively remove noise in
each channel. The patches obtained by the CNN step are filtered in the following step,
i.e., non-local filtering, to smooth artifacts. The authors claimed that point-like artifacts
in homogeneous areas are significantly reduced via the second step, which verifies that
combining the non-local processing and the DL technique is a promising idea for despeck-
ling [225]. In addition to these works, in 2021, Ref. [226] proposed a dual-complementary
CNN network, which includes a sub-network to repair the structures and details of noisy
RS images. By combining a wavelet transform operation with a shuffling operation to
restore image structures and details, this solution can recover structural and textural details
with a lower computational cost.

Although the DL technique is a dramatic solution to image denoising or despeckling,
it usually needs vast datasets. Significantly, scenarios always suffer from different types
of noises or speckles (e.g., the Gaussian, Poisson, sparse, etc.), and it is challenging to
obtain enough data corresponding to the same scene but different types of noise. To handle
this issue, in 2022, Ref. [227] proposed a user-friendly unsupervised hyperspectral images
denoising solution under a deep image prior framework. Extensive experimental results
demonstrate that the method can preserve image edges and remove different noises,
including mixed types (e.g., Gaussian noise, sparse noise). Besides, as there are no processes
of regularization and pre-training, it is more user-friendly than most existing ones.

4.2. Dehazing

As the backscattering light is partially polarized, PI is also an effective solution for
restoring imaging in scattering media [28,29,35,58,78,228]. Utilizing polarization informa-
tion makes it possible to effectively remove the backscattering light (this problem is also
collectively known as dehazing) and extract target signals. Dating back to 2001, Ref. [35]
originally suggested using the polarization relationship between two orthogonally polar-
ized images and the object radiance to achieve hazy removal. Refs. [228,229] proposed to
analyze the DoLP and AoP of backscattering to remove haze/veiling in scattering media.
In 2018, Ref. [6] proposed a method combining computer vision and polarimetric analysis,
and this method had a significant performance for gray-level image recovery in dense
turbid media. However, in these traditional methods, the physical model of the underwater
PI system is often simplified and thus different from an actual situation. For example, they
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consider that backscattering light’s DoP has a specific value and estimate it based on a
small local background region [229,230]. This deviates from practical situations.

Applying DL for polarimetric dehazing/de-scattering is promising, especially when
the scattering media are strong. In 2020, before proposing a dense network for underwater
image recovery, Ref. [58] first built a dataset containing 140 groups of image pairs using a
DoFP polarization camera. The upper part of Figure 16 shows the network structure. We
can see that the input of Polarimetric-Net is a set of polarimetric images, while the Intensity-
Net is based only on an intensity image. This design is used to verify the superiority of PI
in haze removal. The recovered results by different methods are shown on the down part of
Figure 16 for comparison. From the figure, the water is densely turbid, which results in an
image of poor quality where the details are severely degraded. In sharp contrast, the image
recovered by the method, labeled by Polarimetric-Net, is the best. The details, even the
ruler’s scale, can be clearly seen. This is the first report about dehazing with polarimetric
DL. The design and the main idea could easily be extended to RS cloud removal.

Figure 16. (Up) Architecture of polarimetric dense network. (Down) The raw image in turbid water
and the images recovered by different methods [58].

In 2022, to break the dependence on strictly paired images, Ref. [64] proposed an unsu-
pervised polarimetric GAN for underwater-image recovery, and merged polarization losses
into the network to boost details restoration. Results (as shown in Figure 17) demonstrate
that it improves the PSNR value by an average of 3.4 dB, verifying the effectiveness and
superiority in different imaging conditions. For the underwater color polarized images,
Ref. [231] proposed a 3D-convolutional neural network to handle the color intensity in-
formation and polarization information. This network considers the relationships among
different information and contains a well-designed polarization loss. Restoration results
demonstrate that it can significantly improve image contrast, restore details, and solve
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color distortion. Besides, compared with the traditional network structure (i.e., 2D-Net in
Figure 17c), this 3D-Net has a significant performance in avoiding artifacts.

Figure 17. (a) Recovered results for different materials and the experiment in the natural underwater
environment. (b) The imaging system includes a target board, a homemade polarized light source,
and a polarization camera [64]. (c) Comparison of 3D- and 2D-Network for underwater color
polarized images [231], where A is the intensity image, B and C are the results related to 3D-Net and
2D-Net, respectively.

4.3. Super Resolution

While capturing polarimetric images, the resolution may be reduced due to the limitation
of detectors and optical systems. For example, DoFP polarimeters are frequently employed in
visible PIs to acquire polarimetric data such as the Stokes vector, DoLP, and AoP in a single
shot. This exceptional real-time performance is made possible by periodically integrated
micro-polarizers on the focus plane; however, doing so lowers the spatial resolution. As a
result, they affect the acquisition of the following polarization parameters.

Up to now, various interpolation algorithms have been developed to enhance res-
olution. This problem is also called demosaicing. The bilinear interpolation algorithm
is one of the first two techniques utilized for DoFP imagers and has low computational
complexity and accuracy. In contrast, the bicubic interpolation algorithm, though much
more computationally intensive, achieves a reduced interpolation error in high contrast
areas [232–234]. Recently, with the rise of interest for DL, Ref. [235] first proposed a CNN
solution for polarization demosaicing, also named PDCNN. This technique divides the
mosaicked polarization image into four channels, interpolates them using the bicubic ap-
proach, and then feeds the channels into a CNN that combines U-Net and skip connections.
They compare the results with other methods for both DoLP and AoP images, which shows
that the PDCNN outperforms the others by a large margin. This is the first report in the
literature about DL-based demosaicing for PI.

The motivation of Zhang’s approach is to minimize the interpolation error of intensity-
mode images with various polarization states. However, for a practical application, re-
searchers really want to see such polarization parameters as intensity, DoLP, and AoP.
For this purpose, Fork-Net, a four-layer, end-to-end completely CNN that [234] introduced,
attempts to enhance the image quality of the tree parameters (S0, DoLP, and AoP). Its
architecture is simple and it allows for direct map relations between polarization features
and mosaicked images. This architecture ensures a coherent optimization strategy and
prevents accumulation errors from the stepwise method, which first captures various polar-
ization orientations before computing the DoLP and AoP. In addition, they also designed
a customized loss function with a variance constraint to guide network training. Table 1
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compares average PSNRs of images produced by different methods. One can see that this
network realizes the highest quality of S0, DoLP, and AoP estimation.

Table 1. The PSNRs for Different Methods on Test Set.

Bicubic Correlation-Based PDCNN Fork-Net

S0 38.0604 42.1540 42.9584 43.7225
DoLP 31.7751 29.8021 34.5301 35.0061
AoP 9.3744 7.6640 9.8273 11.0450

Subsequently, Ref. [236] extended this method to the case of chromatic polarimetric
images and proposed a color polarization demosaicing network, named CPDNet, to jointly
handle RGB and polarization image demosaicing issues. In 2019, Ref. [212] presented a
conditional generative adversarial network (cGAN) architecture-based. In this network,
the generator’s architecture is a U-Net, and the discriminator is based on a 64× 64 Patch-
GAN. To encourage physically realizable and accurate demosaiced images, they introduced
physics-based constraints and Stokes-related losses into loss functions. The performance of
this DL-based method for PI, which lacks ground truth, is comparable to that of methods
that rely on ground truth. In 2022, Ref. [22] proposed a new AoP loss calculation method
and applied it to a well-designed color polarization demosaicking network. This network
contains multi-branch and has an increased convergence speed, i.e., three times compared
with networks with the traditional AoP calculation method. This benefits from the fact that
the AoP calculation method solves the “discontinuity” problem at s2 = 0, thus effectively
shortens the network’s optimization paths. We must note that the demosicing is not the
total of resolution enhancement because that the reduced resolution of images comes from
not only down-sampling, but also the effects of blurring and noisy. In 2023, Ref. [237]
considered the fact and designed two models, i.e., “down-sampling” and “down-sampling
+ blurring + noisy”, and developed a residual dense network-based polarization super
resolution solution. Compared to other methods, the method can well restored details of
polarization images with a resolution-reduction factor of four.

All the above models and methods can also be directly applied to the resolution en-
hancement of PolSAR images. PolSAR images sacrifice spatial resolution for more accurate
polarization information [46]. This lower resolution may be a limit in some applications,
so it is necessary to improve spatial resolution [82,238]. When considering polarimetric
channel information, one can obtain a robust reconstruction result, but the process is com-
plex, as well as relationships between different channels are also relatively complicated as
the special imaging mode in a coherent superposition of echoes [239]. In other words, it is
hard to linearly fit relationships between different polarization channels [82]. It makes the
resolution enhancement of PolSAR images more difficult.

Although CNN-based methods have been widely used for despeckling PolSAR im-
ages [82,240,241], techniques for improving resolution have yet to be considered. In 2020,
Ref. [82] opened this door and proposed a residual CNN for PolSAR image super-resolution.
It is the first CNN-based method used to improve PolSAR images’ resolution. The method
improves spatial resolution and keeps detailed information, as shown in Figure 18.
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Figure 18. PolSAR image super-resolution performance comparison (Bicubic [242], SRPSC [243],
PSSR: the proposed) for the urban and the forest in San Francisco [82].

Compared with traditional methods, the mean PSNR value is improved by up to 12%.
In 2021, Ref. [244] proposed a fusion network to produce high-resolution PolSAR images
based on fully PolSAR images and single-polarization synthetic aperture radar (SinSAR)
images. This network developed a cross-attention mechanism to extract features while
taking into account the polarization information of low-resolution PolSAR images and
the spatial information of high-resolution single-polarization SAR images. Average PSNR
values are increased by 3.6 dB, while MAE values are reduced by 0.07.

4.4. Image Fusion

Image fusion or multi-modal image fusion is another critical step to boost applications,
e.g., the detection and classification [245]. It consists of registering images acquired with
different imaging modalities. For example, RS aims to obtain data simultaneously with
high spectral and spatial resolutions. PolSAR data are the first choice for classification tasks
because they can characterize geometric and dielectric properties of scatters [46,246,247].
Therefore, fusing the two data sources, i.e., the hyperspectral and PolSAR images, is of
great interest and has high potential application [248].

There are many traditional examples of multi-data sources fusion for RS applications.
For example, multispectral and panchromatic image fusion [245,249,250], hyperspectral
and multispectral image fusion, hyperspectral and polarimetric image fusion [52,251–253].
In particular, for the classification of land cover using PolSAR and hyperspectral data,
Ref. [254] developed a hierarchical fusion technique. To be more precise, the hyperspectral
data are first utilized to discriminate between vegetation and non-vegetation areas, while
the PolSAR data classify non-vegetation areas into manufactured objects, water, or bare
soil. Ref. [255] fused PolSAR and hyperspectral data, and a features concatenation was
produced by concatenating the hyperspectral data’s features. Then, decision fusion is used
to combine the classification results from multiple classifiers. Ref. [256] used the two data
sources to detect oil spills. Recently, extending DL methods to RS data fusion has become a
hot topic [248,257]. Next, we will introduce some typical examples.

For the question of how to extract features and fuse hyperspectral images and PolSAR
data, Ref. [52] proposed an effective solution, a two-stream CNN. For each data, this
network generates identical but independent convolutional streams. The two streams are
then combined with comparable dimensionalities inside a fusion layer. With this design,
informative features from two data sources—namely, hyperspectral and PolSAR—are
effectively extracted for fusion and classification purposes. Examples of classification
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results indicate that the CNN-based fusion approach may effectively extract features and
fuse the complementary information from two data sources in a balanced manner.

In 2019, Ref. [97] proposed a generative-discriminative network, named PolNet, for fus-
ing and classifying polarization and spatial features. A generative network and a discrimi-
native network share the same bottom layers in this network. As a benefit, the problem of a
finite number of labeled pixels in PolSAR applications can be effectively addressed. This
design enables sharing labeled and unlabeled pixels from PolSAR images for training in a
semisupervised manner. Additionally, the network informs a Gaussian random field prior
and a conditional random field posterior on the learned fusion features and the output
label configuration to increase fusion precision. By comparing the label maps and median
overall accuracies (OAs), the authors found that the Pol-Net has the best accuracy among
the list, and almost all pixels are well matched with ground truths visual quality. It should
be noted that the PolSAR images used here are Flevoland.

Ref. [174] suggested using an unsupervised DNN to handle this problem. The sug-
gested network, also known as PFNet, learns maps for fused intensity and DoLP images
without using ground truths or complex activity level measurement and fusion rules.
The best visual quality can be seen when comparing the PFNet to other approaches. In 2020,
using CNN and a feature extractor to provide the distribution of polarization information,
Ref. [90] proposed a polarization fusion approach. Experimental results demonstrate that
the method can effectively extract polarization information; then, this information can
improve the detection rate.

In 2022, Ref. [258] proposed a semantic-guided polarimetric fusion solution, which
is based on a dual-discriminator GAN (i.e., SGPF-GAN). This network has a generator
and two discriminators, as shown in Figure 19. The dual discriminator aims to identify
the polarization/intensity of multiple semantic targets; and the generator’s objective is to
construct a fused image by the weighted fusing of each semantic object image. Qualitative
and quantitative evaluations verify the superiority of both visual effects and quantitative
metrics, as shown by the results of qualitative and quantitative evaluations. Addition-
ally, the performance can be greatly improved by using this fusion approach to detect
transparent, camouflaged hidden targets and image segmentation.

Figure 19. (a) Overall network structure of the proposed SGPF-GAN, (b) A polarized image fusion
result [258].

For underwater imaging, in 2022, Ref. [259] proposed a DL-based method that uses a
multi-polarization fusion GAN-based solution to learn relationships between objects’ polar-
ization and radiance information, and its network architecture is presented in Figure 20a.
Compared with different methods (as shown in Figure 20b), we can observe that this
method preserves more details of the foreground and background under turbid water.
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Figure 20. (a) Architecture of the multi-polarization fusion generator network for underwater image
recovery [259]. (b) Comparisons of different methods on the images captured in natural underwater
environments. (b-1) [260], (b-2) [230], (b-3) [261], (b-4) [262], (b-5) [263], (b-6) [264], (b-7) [265],
(b-8) [266], (b-9) [267], (b-10) [259].

5. Polarization Information Applications

Once high-quality polarimetric images have been obtained, various practical appli-
cations can be addressed, such as object detection [268,269], segmentation [270,271] and
classification [95,96]. Employing deep learning with network architecture and constraints
adapted to each application can help to extract useful polarimetric information and thus
significantly improve the performance [116,119,121,123,126].

5.1. Object Detection

Polarization information can characterize important physical properties of objects,
including geometric structures, material natures, and roughness, even under complex
conditions with poor illumination or strong reflections. The fundamental idea behind
polarization-encoded imaging is to identify the polarization characteristics of light that
come from objects or scenes. Therefore, PI has significant application in object detec-
tion [4,46,268].

In visible imaging, as a fundamental task, road scene analysis plays an significant
role, e.g., in autonomous vehicles, and advanced driver assistance systems. PI can pro-
vide generic features of the target objects under both good and adverse weather condi-
tions [71,175,272]. For example, Ref. [175] explored the advantages of polarization parame-
ters in discriminating objects and powerful of DNNs in extracting features to detect road
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scene contents in adverse conditions. By this way, detection tasks in adverse conditions
(e.g., fog, rain, and low-light) were improved by about 27%.

In RS, PI and PolSAR have also shown to be effective methods for finding marine oil
spills. The accuracy of conventional detection techniques depends on the quality of feature
extraction, which is dependent on artificially derived polarization characteristics [256,273].
DL-based solutions are capable of automatically mining spatial features from data sets.
For example, Ref. [273] developed an oil spill detection algorithm, which benefits from
the multi-layer deep feature extraction by CNN. Figure 21 presents the flowchart of this
algorithm. This figure shows how the PolSAR data (symmetrical 3× 3 complex coherency
matrix) is first transformed into a nine-channel data block before being fed to the CNN.
For the purpose of extracting two high-level features from the original data, it then con-
structs a five-layer CNN architecture. By using PCA and an SVM approach using a radial
basis function kernel, the features dimension is reduced and merged. The comparison of the
results of several approaches for spill detection is shown in Figure 21 (Down). The figure
demonstrates how this technique can increase detection precision and successfully identify
an oil spill from a biogenic slick.

Figure 21. (Top) Flowchart of ocean oil spill identification. (Down) The marine oil spill detection
classification results of different methods for one dataset [273].

Ship detection, one of the most significant RS applications, is crucial for commercial,
fishing, vessel traffic service, and military applications [91,274–276]. In 2019, Ref. [91]
proposed a pixel-wise detection method for compact polarimetric SAR (CPSAR) images
based on a U-Net. It detects ships accurately both near and far away from the shore.
However, false alarms can be generated by cross side-lobes. Examples of detection results
are shown in the upper part of Figure 22. White and red rectangles refer to detected
targets and false alarms, respectively, while white circles refer to missed targets. Compared
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with the Faster RCNN, the method has an increase of 6.54% and 8.28% in the indices
of precision [277] and recall [277], which verifies the ability and advantages in detecting
ships. This work also compares CPSAR images with other PolSAR modes such as single
polarization and linear dual-polarization configurations, and shows that CPSAR is better at
detecting ships, as shown in the bottom part of Figure 22.

Figure 22. (Up) Illustrations of CPSAR images, corresponding label images, and detection results.
(Down) Illustration of results from different polarization modes [91].

Combining PI with DL can also be used for Change Detection (CD), such as urban
change, sea ice change, and land cover/use change [92,173,278–281]. In 2018, Ref. [92]
proposed a local restricted CNN for CD of PolSAR images. It can recognize not only
different types of change but also reduce noise’s influence. Based on the multi-temporal
PolSAR data, Ref. [278] developed a weakly supervised framework for urban CD. The tech-
nique achieves label aggregation in feature space using a multi-layer perceptron after
learning multi-temporal polarimetric information using a modified unsupervised stacked
AE stage. The authors test its efficacy and precision using an L-band UAVSAR dataset (in
Los Angeles).

In 2020, Ref. [173] proposed a CNN Framework for the land cover/use CD in RS
data from several sources. Three RS benchmark data are used to evaluate its efficiency
and dependability (i.e., the multispectral, hyperspectral, and PolSAR). Examples and
comparisons with several representative CD methods are shown in Table 2. From the
results, i.e., the first column of Table 2, all CD methods’ OA values are higher than 91%,
but the proposed method’s OA is over 98%. In addition, the values of BA, sensitivity,
and F1-Score are over 90%. The FA, MD, and precision of CD are also greatly improved
compared with other methods. In 2021, Ref. [282] proposed a ship detection method for
land-contained sea without a traditional sea-land segmentation process. This method
includes two stages and can well-addressed the ship detection under complex conditions,
i.e., an offshore area. Experimental results demonstrate that the accuracy and the F1 score
can reach 99.4% and 0.99, respectively.

Table 2. The accuracy of different change detection methods for the PolSAR-San Francisco dataset.

Method CVA MAD PCA IR-MAD SFA 3D-CNN Proposed

OA (%) 91.74 92.17 91.36 91.37 95.64 95.62 98.31
Sensitivity (%) 44.11 52.62 27.57 22.56 71.75 64.00 93.06

MD (%) 55.88 47.37 72.42 77.43 28.24 35.99 6.93
FA (%) 3.78 4.11 2.64 2.16 2.11 1.41 1.19

F1-Score (%) 47.85 53.58 35.41 30.98 73.88 71.49 90.43
BA (%) 70.16 74.25 62.46 60.19 84.82 81.29 95.93

Precision (%) 52.27 54.57 49.47 49.42 76.14 80.95 87.94
Specificity (%) 96.21 95.88 97.35 97.83 97.88 98.58 98.80

KC 0.434 0.493 0.311 0.271 0.715 0.691 0.895
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5.2. Target Classification

The classification tasks for SAR/PolSAR data are the most prioritized aspects for RI.
Moreover, as PolSAR provides more information than other SAR systems, using polariza-
tion information obtained by PolSAR images can further improve classification accuracy
and has many applications in oceanography, agriculture, forestry, and disaster monitor-
ing [43,95,96,283,284]. Among these applications, classifying land use or cover in PolSAR
images is one of the most challenging tasks. It mainly consists of different land classes,
such as desert, lake, agricultural, forest, and urban [46,116]. Studies on PolSAR classifi-
cation help understand different environmental elements and study the corresponding
impact [285,286]. Figure 23 presents a general classification scenario [43].

Figure 23. General classification scenario of SAR images.

In practice, one can perform classification processes based on multi-channel PolSAR
or use specific parameters. Back in 2014, Shang and Hirose et al. have applied a neural-
network-based technique named quaternion neural-network (QNN) to handle land classifi-
cation [287–290]. Compared to methods at that time, the applied QNN method is effective
and achieves higher classification performance because the used polarization parameters
(e.g., Poincare-sphere-parameter [287,288] and Stokes vector [289]) are multidimensional.
With the development of different but fruitful DL models, DL has successfully been used
in classifying PolSAR data and well addressed the issue of big and multidimensional
polarization data processing.

In 2016, Ref. [181] first designed an AE model for the task of terrain and achieved
remarkable improvement in classification accuracy. Ref. [291] proposed a novel PolSAR ter-
rain classification framework using deep CNNs. They used 6-D real-valued data, computed
from the coherency matrix, to represent original PolSAR data, and naturally employed
spatial information to perform terrain classification thanks to the power of CNN. Table 3
lists the accuracy for the labeled area in the image of Flevoland. From this table, we may
observe that the overall accuracy for 15 classes reaches 92.46%. Ref. [292] found that in
previous methods, as all PolSAR image’s pixels are classified independently, inherent
interrelations of different land covers are always ignored. To solve this problem, they used
a fixed-feature-size CNN, named FFS-CNN, to classify the pixels in a patch simultaneously;
as a result, this solution is faster than other CNN-based methods.

Table 3. Accuracy for the labeled area in the image of Flevoland.

Classes Accuracy [%] Classes Accuracy [%]

0. Stembeans 92.58 8. Grasses 79.20
1. Peas 88.89 9. Rapeseed 93.10
2. Forest 93.95 10. Barly 96.90
3. Lucerne 92.21 11. Wheat2 91.82
4. Wheat 93.62 12. Wheat3 94.46
5. Beet 89.74 13. Water 98.88
6. Potatoes 87.24 14. Building 87.18
7. Bare soill 99.94 Overall 92.46
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Notably, these methods only consider the pixels’ amplitude; as a result, they cannot
obtain enough discriminative features. In 2019, Ref. [140] designed a complex-valued
convolutional auto-encoder network named CV-CAE. The phase information of PolSAR
images could be utilized because all encoding and decoding operations are extended
to the complex domain. To further improve performance, they also suggested a post-
processing technique called spatial pixel-squares refinement. By calculating a blocky land
cover structure, this method can increase refinement efficiency. Figure 24 presents the
classification results and compares the performance of different algorithms. The intra-class
smoothness and the inter-class distinctness outperform those of the compared algorithms.

Figure 24. The classification results of our algorithms and compared algorithms (a) WAE [293]
(b) WCAE [293] (c) RV-CAE (d) FFS-CNN [292] (e) CV-CAE [140] (f) CV-CAE+SPF [140].

Generally speaking, distinctions between PolSAR and OPI are rarely taken into ac-
count in published works. Since complex-valued PolSAR data are frequently converted to
real-valued data to fit the OPI processing and prevent complex-valued operations, CNNs
are typically not designed for PolSAR classification. This is one of the reasons CNNs are un-
able to utilize all of their capabilities when doing the PolSAR classification assignment [70].
To solve this problem, in 2019, Ref. [70] developed a CNN architecture specifically for Pol-
SAR image classification. A crucial step in the processing is looking for better PolSAR data
as the input. They suggested a multi-task CNN (MCNN) structure for the network archi-
tecture to fit the enhanced inputs; MCNN is made up of the interaction module, amplitude
branch, and phase branch. They also added a depth-wise separable convolution, known as
DMCNN, to MCNN in order to effectively model potential correlations from the PolSAR
phase. Figure 25 compares classification performances of different methods. From this
figure, we may find that the proposed methods, the improved DMCNN, in particular, reach
a better level of terrain completeness in classification maps.

Recently, based on the C-band SAR, i.e., Gaofen-3 satellite with the dual-polarization
state, i.e., VV and VH, in the western Arctic Ocean from January to February 2020), Ref. [294]
designed a network framework aims to handle classification issue of the Arctic sea ice in
winter. The results showed that, using two polarization states (i.e., VH + VV) improves the
classification accuracy by 10.05% and 9.35%, respectively, compared with that only using
VH or VV polarization.
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Figure 25. Classification results of whole map on AIRSAR Flevoland [70]: (a) Pauli RGB map.
(b) Ground truth map. (c) CNN-v1. (d) VGG-v1. (e) CNN-v2. (f) VGG-v2. (g) MCNN. (h) DMCNN.

An open question is how to apply PolSAR’s spatial and polarization information at
the same time. DCNNs are able to produce high-level spatial features and achieve cutting-
edge performance in image analysis because of their sophisticated designs and vast visual
databases. However, because PolSAR data are multi-band and complex-valued, a standard
model cannot be used to handle PolSAR data straightforwardly. Ref. [295] built a dataset
to explore the abilities and DCNN’s potential on PolSAR classification. This work used
six pseudo-color images (i.e., intensity, C11, C22, C33, C11, H − α− A decomposition image,
and Yamaguchi decomposition image) to characterize one random sample in each category.
By a transfer learning framework, which incorporates a polarimetric decomposition into a
DCNN, taking spatial analytic ability into account, the framework’s validation accuracy ups
to 99.5%. Ref. [296] proposed a Dual-CNN for PolSAR classification. The main procedures
are displayed in Figure 26 and contain two deep CNNs: extracting polarization features
from a coherency matrix deduced 6-channel real matrix (i.e., 6Ch), and extracting spatial
features in Pauli RGB images. A fully connected layer combines all extracted polarization
and spatial property features. And then, a softmax classifier is used to classify features.
The results displayed in Figure 26b verify the effectiveness of combining 6Ch-CNN and
PauliRGB-CNN via fully connected layers. They claim that the classification precision on
14 land cover types is 98.56%.

Figure 26. (a) The main procedures of PolSAR images classification based on the Dual-CNN model.
(b) Comparison results with different methods, where (b-1–b-4) represent the classification results of
the ground-truth, Dual-CNN, 6Ch-CNN, and PauliRGB-CNN, respectively [296].

According to the type of PolSAR image datasets, i.e., whether prior data is needed,
one can divide the classification into supervised and unsupervised methods. In contrast to
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the unsupervised one, which simply requires scattering and statistical distributions derived
from PolSAR data, the supervised one requires human interaction to acquire previous
knowledge. Recently, semi-supervised methods have attracted more attention for using
labeled and a few unlabeled samples to handle limited training sets. For example, Ref. [184]
proposed a super-pixel restrained DNN with multiple decisions (SRDNN-MDs). It extracts
effective super-pixel spatial features and reduces speckles based on only a few samples.
This method is a semi-supervised classification model and yields higher accuracy.

Further, to release the classification from prior knowledge, in 2021, Ref. [297] proposed
an unsupervised classification network via a decomposition and large-scale spectral clus-
tering method with super-pixels, also called ND-LSC. Figure 27 depicts the architecture,
which mainly consists of two parts.

Figure 27. (Left) (a) The proposed architecture of the work in this paper. (b) Flowchart of new
decomposition and large-scale spectral clustering with superpixels (ND-LSC) unsupervised classi-
fication method. (Right) Classification results of three methods in the study area. (c) HFED and
spectral clustering with superpixels (HED-SC) [298], (d) Random Forest Classifier (ND-RF) [299],
and (e) proposed method (ND-LSC) [297].

They first extracted polarization scattering parameters by a new decomposition (ND);
it contributes to understanding the polarimetric scattering mechanisms of sandy land [297].
Then, to speed up the processing of PolSAR images, they used large-scale spectral clus-
tering (LSC), which creates a bipartite graph. The solution is effective and adaptable for
wide regions thanks to this design. They tested the efficacy of the approach using the
RADARSAT-2 fully PolSAR dataset (Hunshandake Sandy Land in 2016), with an OA value
of 95.22%. The detailed results and the corresponding comparison can be found in Table 4
and Figure 27. In 2023, Ref. [284] developed a hybrid attention-based encoder–decoder
fully convolutional network (HA-EDNet) to handle the PolSAR classification. The network
input can be an arbitrary-size image and used a softmax attention module to boost the
accuracy. Considering the insufficient number of labeled data, in 2023, Ref. [300] proposed
a vision transformer-based framework (named PolSARFormer) by using 3D and 2D CNNs
as feature extractors, as well as the local window attention. Extensive experimental results
demonstrated that PolSARFormer got better classification accuracy than the state-of-the-art
algorithms; for example, the results over the San Francisco data benchmark illustrated the
accuracy improvement compared with the Swin Transformer (5.86%) and FNet (17.63%).
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Table 4. Confusion Matrix of the ND-I SC Method (PA: %; UA: %).

Class
HED-SC ND-RF ND-LSC

PA UA PA UA PA UA

RT 81.17 95.19 85.42 73.64 90.22 96.94
RD 89.05 64.51 91.35 68.69 98.75 95.45
SS 91.31 84.28 93.45 85.36 94.62 87.28
DL 87.82 89.64 86.19 90.39 93.21 87.13
SL 81.69 94.37 84.67 94.75 91.02 87.07
V 75.20 90.54 79.89 94.47 97.87 69.65
L 96.35 99.67 96.86 99.68 98.07 74.59

OA (%) 89.68 90.02 95.22

Kappa 0.8717 0.9205 0.9404

5.3. Others

In the above Sections, we mainly introduced examples of combining DL and PI in
RS and some specific visible-wavelength applications. However, combining PI and DL
can also be successfully used in other fields, such as biomedical imaging and computer
vision [301–304].

For example, based on a trained deep CNN, Ref. [303], in 2021, found that holographic
images can be reconstructed from a single polarization state via a single-shot computational
polarization microscope. This work opens a new door for reconstructing multi-dimensional
information from one-dimensional input. The main idea can be extended to other fields,
such as road detection, to achieve real-time PI. In 2020, Ref. [305] proposed a Polarized CNN
to handle the problem of transparent object segmentation and increase the corresponding
accuracy. The top of Figure 28 shows the results.

Finally, to find effective solutions to the multi-species classification problems of algae,
Ref. [304] proposed a Mueller system to classify morphologically similar algae via a CNN
and achieved a 97% classification accuracy. This is the first report about the combination
of PI and DL in marine biology. Besides, learning-based solutions can further improve
the reconstruction accuracy of polarization-based 3D-reconstruction techniques. In 2022,
a physics-informed CNN was designed to estimate the scene-level surface normal from
a single polarization image. The corresponding indoor and outdoor experiments are
presented at the bottom of Figure 28. This approach needs prior knowledge of viewing
encoding to help address the increase of polarization ambiguities caused by complex
materials and non-orthographic projection in the scene-level polarization shape [306].
Although these applications have large differences, the networks designed for polarization
images in all these applications can learn from each other.
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Figure 28. (Top) Qualitative comparisons [305]. (Bottom) 1st row: polarization provides geometry
cues. 2nd and 3rd rows: polarization provides guidance for planes with different surface normal. Iun:
unpolarized data; φ: AoP [306].
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Finally, we summarize the reviewed works chronologically in Figure 29 to help the
reader follow the chronological evolution of the methods and the different applications,
as well as to find the target works as quickly as possible.

Figure 29. Chronological evolution of the reviewed works.The references mentioned here are
chronologically listed as 2014 [287], 2015 [188,189], 2016 [181,291], 2017 [52,184,278,304], 2018 [92,
199,206,235,292,295], 2019 [70,91,97,140,212,221,225,234,236], 2020 [11,58,82,173–175,222,273,303,305],
2021 [226,244,282,297], 2022 [22,64,211,227,231,258,259,294,306], and 2023 [210,237,284,300,302].

6. Conclusions

This paper have systematically reviewed advanced DL-based techniques for PI anal-
ysis. From two aspects of PI, i.e., the acquisition and the applications, we have shown
that the DL-based methods have had significant success in such domains as denoising
or despeckling, dehazing, super-resolution, object detection, fusion, and classification.
In particular, depending on practical needs, different network models have been designed
to handle each application. All the research works reviewed here can be considered strong
evidence that DL-based PIs can break the limitations of traditional methods and provide
irreplaceable solutions, especially for tasks in complex and hostile conditions. It’s worth
noting that the reported DL models and researches largely depend on a special dataset,
and it is difficult to guarantee similar performance for other datasets. This is the main
disadvantage compared with other representative traditional models. Still, we always
believe that the DL techniques are revolutionary in PIs.

In short, there is an excellent synergy between PI and DL techniques. DL boosts PI
and vice versa. PI techniques and related applications enable DL since they constantly
develop advanced systems to collect datasets, which is an essential part of DL development
physically. Also, DL boosts PI since it enhances the capability and performance of optical
technology in a data-learning way [307]. Many desired functions in both DL (e.g., small
dataset, physical interpretation, and unsupervised) and PI (e.g., multi-data interaction,
real-time process, and system simplified) techniques may be solved by reasonable integra-
tion [308–312], as shown in Figure 30. However, the research on the combination of PI and
DL is still at the initial stage, and various key questions or directions remain unanswered
and need consideration [116,121]. Some of these questions belong to the everyday problems
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of DL [122,308], and some are caused by the specificity of PI [93]. We list hereafter some
potentially interesting topics in this field.

Figure 30. Synergy between PI and DL techniques.

The number of training samples. Although DL-based models can learn hidden features
from the polarimetric images or PolSAR data, their performance and accuracy extremely
depend on the number of data available for training. In other words, the more data,
the higher quality [308,309]. However, acquiring large datasets for PI systems is difficult,
especially for practical applications in complex conditions, such as underwater/ocean
images or high-resolution PolSAR data for RS. For example, in Li et al.’s work [5], the used
dataset only contains 150 groups of full-size image pairs, and 140 groups in Hu et al.’s
work [58]. In order to get enough data, they increase the dataset scale using a well-designed
pixels window and flipping it horizontally or vertically with a fixed step of pixels. As a
result, they obtained more than 100,000 images. This is indeed a compromise strategy.
How to keep the considerable learning performance of DL approaches with fewer samples
remains a significant challenge. This problem may be solved by introducing new network
architecture, such as that based on transfer learning [309,311], or bound by solid physical
and apriori knowledge [313–315].

The inherent limitations of PI systems. One needs to invert the acquired multi-intensity
images to obtain the polarization information [75,78,85]. This time-consuming process
makes it challenging to handle changing scenes in real-time. Although the pseudo-
polarimetric method can take the corresponding tasks based on only a single sub-polarized
image, such as the dehazing in Li et al.’s work [28], these methods are based on a model
with physical approximation. Learning the relations between single-channel and multi-
channel data and finding an efficient way to transform them is a possible solution. In the
optical imaging fields, the DoFP polarization camera makes it possible to capture the linear
Stokes vector in one shot. Yet, the image resolution is reduced due to the integrating pix-
els [316,317]. Compared with traditional resolution improvement methods, DL techniques
may break the limitations of systems computationally [22,318,319].

Embedding physics in network models. DL models were originally derived from the
field of computer vision and are thus adapted to input data consisting of a single image
without any physical constraint. But in PIs, we have multi-images, and internal physical
connections exist between them. Adding these physical connections or prior knowledge can
boost networks’ ability [307,310,315,320–322]. How to add these physical constraints and
where to add them needs to be investigated and balanced. Besides, most existing DL-based
models need ground truth to guide the extraction of features and learning. Of course,
some models can achieve this function in an unsupervised way, such as the GAN network,
but the performance of these methods is limited and always significantly worse than the
performance of supervised methods. How to further enhance, especially by adding prior
physical knowledge into training, the performance of unsupervised solutions is a burning
problem [64,227].
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Image translation and fusion between PolSAR and OPI. PolSAR and OPI systems have
essential differences in geometry and radiometry owing to varying instruments, wave-
lengths, and viewing perspectives [312,323–327]. Therefore, PolSAR data mainly charac-
terize objects’ structural and dielectric properties. At the same time, OPI data contain
spectral information [326–328]. Exploring PolSAR-to-OPI translation is beneficial for many
applications, such as image interpretation, spatial information transfer, and cloud re-
moval [329,330]; but this type of image translation is difficult to accomplish by a simple
physical model [116,128,131,312]. Deep learning has the ability to simulate complicated re-
lationships and maintain the advantages of both PolSAR and OPI techniques by performing
image-to-image translation or fusion tasks [130,312,331].

This review only covers a part of representative works in PI; therefore, we encourage
readers to review other relevant works further to get broader views. As more and more
people are getting involved in working on the above topics, we believe that the age of “Big
PI” will eventually come.

Author Contributions: Conceptualization, X.L. and L.Z.; funding acquisition, H.H. and J.Z.; method-
ology, X.L., L.Z. and P.Q.; resources, X.L.; validation, X.L.; visualization, X.L.; writing—original draft,
X.L.; writing—review and editing, X.L., L.Y., T.L. and F.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62205243,
62075161).

Data Availability Statement: Data underlying the results presented in this paper are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bass, M.; Van Stryland, E.W.; Williams, D.R.; Wolfe, W.L. Handbook of Optics; McGraw-Hill: New York, NY, USA, 1995; Volume 2.
2. Tyson, R.K. Principles of Adaptive Optics; CRC Press: Boca Raton, FL, USA, 2015.
3. Fowles, G.R. Introduction to Modern Optics; Courier Corporation: North Chelmsford, MA, USA, 1989.
4. Goldstein, D.H. Polarized Light; CRC Press: Boca Raton, FL, USA, 2017.
5. Li, X.; Li, H.; Lin, Y.; Guo, J.; Yang, J.; Yue, H.; Li, K.; Li, C.; Cheng, Z.; Hu, H.; et al. Learning-based denoising for polarimetric

images. Opt. Express 2020, 28, 16309–16321. [CrossRef] [PubMed]
6. Li, X.; Hu, H.; Zhao, L.; Wang, H.; Yu, Y.; Wu, L.; Liu, T. Polarimetric image recovery method combining histogram stretching for

underwater imaging. Sci. Rep. 2018, 8, 1–10. [CrossRef] [PubMed]
7. Wang, H.; Hu, H.; Li, X.; Guan, Z.; Zhu, W.; Jiang, J.; Liu, K.; Liu, T. An angle of polarization (AoP) visualization method for

DoFP polarization image sensors Based on three dimensional HSI color space. Sensors 2019, 19, 1713. [CrossRef] [PubMed]
8. Li, X.; Zhang, L.; Qi, P.; Zhu, Z.; Xu, J.; Liu, T.; Zhai, J.; Hu, H. Are indices of polarimetric purity excellent metrics for object

identification in scattering media? Remote Sens. 2022, 14, 4148. [CrossRef]
9. Song, L.M.W.K.; Adler, D.G.; Conway, J.D.; Diehl, D.L.; Farraye, F.A.; Kantsevoy, S.V.; Kwon, R.; Mamula, P.; Rodriguez, B.; Shah,

R.J.; et al. Narrow band imaging and multiband imaging. Gastrointest. Endosc. 2008, 67, 581–589. [CrossRef]
10. Zhao, Y.; Yi, C.; Kong, S.G.; Pan, Q.; Cheng, Y. Multi-band polarization imaging. In Multi-Band Polarization Imaging and Applications;

Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2016; pp. 47–71.
11. Hu, H.; Lin, Y.; Li, X.; Qi, P.; Liu, T. IPLNet: A neural network for intensity-polarization imaging in low light. Opt. Lett. 2020,

45, 6162–6165. [CrossRef]
12. Guan, Z.; Goudail, F.; Yu, M.; Li, X.; Han, Q.; Cheng, Z.; Hu, H.; Liu, T. Contrast optimization in broadband passive polarimetric

imaging based on color camera. Opt. Express 2019, 27, 2444–2454. [CrossRef]
13. Hariharan, P. Optical Holography: Principles, Techniques, and Applications; Cambridge University Press: Cambridge, UK, 1998.
14. Kim, M.K. Full color natural light holographic camera. Opt. Express 2013, 21, 9636–9642. [CrossRef]
15. Levoy, M. Light fields and computational imaging. Computer 2006, 39, 46–55. [CrossRef]
16. Tyo, J.S.; Goldstein, D.L.; Chenault, D.B.; Shaw, J.A. Review of passive imaging polarimetry for remote sensing applications.

Appl. Opt. 2006, 45, 5453–5469. [CrossRef]
17. Morio, J.; Refregier, P.; Goudail, F.; Dubois-Fernandez, P.C.; Dupuis, X. A characterization of Shannon entropy and Bhattacharyya

measure of contrast in polarimetric and interferometric SAR image. Proc. IEEE 2009, 97, 1097–1108. [CrossRef]
18. Li, X.; Xu, J.; Zhang, L.; Hu, H.; Chen, S.C. Underwater image restoration via Stokes decomposition. Opt. Lett. 2022, 47, 2854–2857.

[CrossRef]
19. Chen, W.; Yan, L.; Chandrasekar, V. Optical polarization remote sensing. Int. J. Remote Sens. 2020, 41, 4849–4852. [CrossRef]

http://doi.org/10.1364/OE.391017
http://www.ncbi.nlm.nih.gov/pubmed/32549456
http://dx.doi.org/10.1038/s41598-018-30566-8
http://www.ncbi.nlm.nih.gov/pubmed/30127366
http://dx.doi.org/10.3390/s19071713
http://www.ncbi.nlm.nih.gov/pubmed/30974823
http://dx.doi.org/10.3390/rs14174148
http://dx.doi.org/10.1016/j.gie.2008.01.013
http://dx.doi.org/10.1364/OL.409673
http://dx.doi.org/10.1364/OE.27.002444
http://dx.doi.org/10.1364/OE.21.009636
http://dx.doi.org/10.1109/MC.2006.270
http://dx.doi.org/10.1364/AO.45.005453
http://dx.doi.org/10.1109/JPROC.2009.2017107
http://dx.doi.org/10.1364/OL.457964
http://dx.doi.org/10.1080/01431161.2020.1743529


Remote Sens. 2023, 15, 1540 32 of 42

20. Liu, T.; Guan, Z.; Li, X.; Cheng, Z.; Han, Y.; Yang, J.; Li, K.; Zhao, J.; Hu, H. Polarimetric underwater image recovery for color
image with crosstalk compensation. Opt. Lasers Eng. 2020, 124, 105833. [CrossRef]

21. Meriaudeau, F.; Ferraton, M.; Stolz, C.; Morel, O.; Bigué, L. Polarization imaging for industrial inspection. Image Process. Mach.
Vis. Appl. Int. Soc. Opt. Photonics 2008, 6813, 681308.

22. Liu, X.; Li, X.; Chen, S.C. Enhanced polarization demosaicking network via a precise angle of polarization loss calculation method.
Opt. Lett. 2022, 47, 1065–1069. [CrossRef]

23. Li, X.; Han, Y.; Wang, H.; Liu, T.; Chen, S.C.; Hu, H. Polarimetric Imaging Through Scattering Media: A Review. Front. Phys.
2022, 10, 153. [CrossRef]

24. Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote sensing image scene classification meets deep learning: Challenges, methods,
benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [CrossRef]

25. Demos, S.; Alfano, R. Optical polarization imaging. Appl. Opt. 1997, 36, 150–155. [CrossRef]
26. Liu, Y.; York, T.; Akers, W.J.; Sudlow, G.P.; Gruev, V.; Achilefu, S. Complementary fluorescence-polarization microscopy using

division-of-focal-plane polarization imaging sensor. J. Biomed. Opt. 2012, 17, 116001. [CrossRef]
27. Fade, J.; Panigrahi, S.; Carré, A.; Frein, L.; Hamel, C.; Bretenaker, F.; Ramachandran, H.; Alouini, M. Long-range polarimetric

imaging through fog. Appl. Opt. 2014, 53, 3854–3865. [CrossRef] [PubMed]
28. Li, X.; Hu, H.; Zhao, L.; Wang, H.; Han, Q.; Cheng, Z.; Liu, T. Pseudo-polarimetric method for dense haze removal. IEEE Photonics

J. 2019, 11, 6900611. [CrossRef]
29. Li, X.; Wang, H.; Hu, H.; Liu, T. Polarimetric underwater image recovery based on circularly polarized illumination and histogram

stretching. In AOPC 2019: Optical Sensing and Imaging Technology; SPIE: Bellingham, WA, USA, 2019; Volume 11338, p. 113382O.
30. Zhanghao, K.; Chen, L.; Yang, X.S.; Wang, M.Y.; Jing, Z.L.; Han, H.B.; Zhang, M.Q.; Jin, D.; Gao, J.T.; Xi, P. Super-resolution dipole

orientation mapping via polarization demodulation. Light. Sci. Appl. 2016, 5, e16166. [CrossRef] [PubMed]
31. Hao, X.; Kuang, C.; Wang, T.; Liu, X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt. 2010,

12, 115707. [CrossRef]
32. Li, X.; Goudail, F.; Chen, S.C. Self-calibration for Mueller polarimeters based on DoFP polarization imagers. Opt. Lett. 2022,

47, 1415–1418. [CrossRef]
33. Li, X.; Liu, W.; Goudail, F.; Chen, S.C. Optimal nonlinear Stokes–Mueller polarimetry for multi-photon processes. Opt. Lett. 2022,

47, 3287–3290. [CrossRef]
34. Goudail, F.; Terrier, P.; Takakura, Y.; Bigué, L.; Galland, F.; DeVlaminck, V. Target detection with a liquid-crystal-based passive

Stokes polarimeter. Appl. Opt. 2004, 43, 274–282. [CrossRef]
35. Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Instant dehazing of images using polarization. In Proceedings of the 2001 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001;
Volume 1, p. I.

36. Treibitz, T.; Schechner, Y.Y. Active polarization descattering. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 385–399. [CrossRef]
37. Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Polarization-based vision through haze. Appl. Opt. 2003, 42, 511–525. [CrossRef]
38. Ghosh, N.; Vitkin, A.I. Tissue polarimetry: Concepts, challenges, applications, and outlook. J. Biomed. Opt. 2011, 16, 110801.

[CrossRef]
39. Rehbinder, J.; Haddad, H.; Deby, S.; Teig, B.; Nazac, A.; Novikova, T.; Pierangelo, A.; Moreau, F. Ex vivo Mueller polarimetric

imaging of the uterine cervix: A first statistical evaluation. J. Biomed. Opt. 2016, 21, 071113. [CrossRef]
40. Jacques, S.L.; Ramella-Roman, J.C.; Lee, K. Imaging skin pathology with polarized light. J. Biomed. Opt. 2002, 7, 329–340.

[CrossRef]
41. Wang, W.; Lim, L.G.; Srivastava, S.; Bok-Yan So, J.; Shabbir, A.; Liu, Q. Investigation on the potential of Mueller matrix imaging

for digital staining. J. Biophotonics 2016, 9, 364–375. [CrossRef]
42. Pierangelo, A.; Benali, A.; Antonelli, M.R.; Novikova, T.; Validire, P.; Gayet, B.; De Martino, A. Ex-vivo characterization of human

colon cancer by Mueller polarimetric imaging. Opt. Express 2011, 19, 1582–1593. [CrossRef]
43. Parikh, H.; Patel, S.; Patel, V. Classification of SAR and PolSAR images using deep learning: A review. Int. J. Image Data Fusion

2020, 11, 1–32. [CrossRef]
44. Pierangelo, A.; Manhas, S.; Benali, A.; Fallet, C.; Totobenazara, J.L.; Antonelli, M.R.; Novikova, T.; Gayet, B.; De Martino,

A.; Validire, P. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant
treatment for colorectal carcinomas. J. Biomed. Opt. 2013, 18, 046014. [CrossRef]

45. Lee, J.S.; Grunes, M.R.; De Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci.
Remote Sens. 1999, 37, 2363–2373.

46. Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2017.
47. Yan, L.; Li, Y.; Chandrasekar, V.; Mortimer, H.; Peltoniemi, J.; Lin, Y. General review of optical polarization remote sensing. Int. J.

Remote Sens. 2020, 41, 4853–4864. [CrossRef]
48. Mullissa, A.G.; Tolpekin, V.; Stein, A.; Perissin, D. Polarimetric differential SAR interferometry in an arid natural environment.

Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 9–18. [CrossRef]
49. Shang, R.; He, J.; Wang, J.; Xu, K.; Jiao, L.; Stolkin, R. Dense connection and depthwise separable convolution based CNN for

polarimetric SAR image classification. Knowl.-Based Syst. 2020, 194, 105542. [CrossRef]

http://dx.doi.org/10.1016/j.optlaseng.2019.105833
http://dx.doi.org/10.1364/OL.451335
http://dx.doi.org/10.3389/fphy.2022.815296
http://dx.doi.org/10.1109/JSTARS.2020.3005403
http://dx.doi.org/10.1364/AO.36.000150
http://dx.doi.org/10.1117/1.JBO.17.11.116001
http://dx.doi.org/10.1364/AO.53.003854
http://www.ncbi.nlm.nih.gov/pubmed/24979415
http://dx.doi.org/10.1109/JPHOT.2018.2890771
http://dx.doi.org/10.1038/lsa.2016.166
http://www.ncbi.nlm.nih.gov/pubmed/30167126
http://dx.doi.org/10.1088/2040-8978/12/11/115707
http://dx.doi.org/10.1364/OL.452621
http://dx.doi.org/10.1364/OL.459457
http://dx.doi.org/10.1364/AO.43.000274
http://dx.doi.org/10.1109/TPAMI.2008.85
http://dx.doi.org/10.1364/AO.42.000511
http://dx.doi.org/10.1117/1.3652896
http://dx.doi.org/10.1117/1.JBO.21.7.071113
http://dx.doi.org/10.1117/1.1484498
http://dx.doi.org/10.1002/jbio.201500006
http://dx.doi.org/10.1364/OE.19.001582
http://dx.doi.org/10.1080/19479832.2019.1655489
http://dx.doi.org/10.1117/1.JBO.18.4.046014
http://dx.doi.org/10.1080/01431161.2020.1724350
http://dx.doi.org/10.1016/j.jag.2017.02.019
http://dx.doi.org/10.1016/j.knosys.2020.105542


Remote Sens. 2023, 15, 1540 33 of 42

50. Pourshamsi, M.; Xia, J.; Yokoya, N.; Garcia, M.; Lavalle, M.; Pottier, E.; Balzter, H. Tropical forest canopy height estimation from
combined polarimetric SAR and LiDAR using machine-learning. ISPRS J. Photogramm. Remote Sens. 2021, 172, 79–94. [CrossRef]

51. Yang, X.; Pan, T.; Yang, W.; Li, H.C. PolSAR image despeckling using trained models on single channel SAR images. In
Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November
2019; pp. 1–4.

52. Hu, J.; Mou, L.; Schmitt, A.; Zhu, X.X. FusioNet: A two-stream convolutional neural network for urban scene classification using
PolSAR and hyperspectral data. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab
Emirates, 6–8 March 2017; pp. 1–4.

53. Ferro-Famil, L.; Pottier, E.; Lee, J.S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on
the H/A/Alpha-Wishart classifier. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2332–2342. [CrossRef]

54. Singha, S.; Johansson, A.M.; Doulgeris, A.P. Robustness of SAR sea ice type classification across incidence angles and seasons at
L-band. IEEE Trans. Geosci. Remote Sens. 2020, 59, 9941–9952. [CrossRef]

55. Pallotta, L.; Orlando, D. Polarimetric covariance eigenvalues classification in SAR images. IEEE Geosci. Remote Sens. Lett. 2018,
16, 746–750. [CrossRef]

56. Tadono, T.; Ohki, M.; Abe, T. Summary of natural disaster responses by the Advanced Land Observing Satellite-2 (ALOS-2). Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 69–72. [CrossRef]

57. Natsuaki, R.; Hirose, A. L-Band SAR Interferometric Analysis for Flood Detection in Urban Area-a Case Study in 2015 Joso Flood,
Japan. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27
July 2018; pp. 6592–6595.

58. Hu, H.; Zhang, Y.; Li, X.; Lin, Y.; Cheng, Z.; Liu, T. Polarimetric underwater image recovery via deep learning. Opt. Lasers Eng.
2020, 133, 106152. [CrossRef]

59. Li, X.; Li, Z.; Feng, R.; Luo, S.; Zhang, C.; Jiang, M.; Shen, H. Generating high-quality and high-resolution seamless satellite
imagery for large-scale urban regions. Remote Sens. 2020, 12, 81. [CrossRef]

60. Pan, T.; Peng, D.; Yang, W.; Li, H.C. A filter for SAR image despeckling using pre-trained convolutional neural network model.
Remote Sens. 2019, 11, 2379. [CrossRef]

61. Zhang, Q.; Yuan, Q.; Li, J.; Yang, Z.; Ma, X. Learning a dilated residual network for SAR image despeckling. Remote Sens. 2018,
10, 196. [CrossRef]

62. Goudail, F. Noise minimization and equalization for Stokes polarimeters in the presence of signal-dependent Poisson shot noise.
Opt. Lett. 2009, 34, 647–649. [CrossRef]

63. Denis, L.; Dalsasso, E.; Tupin, F. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS,
Brussels, Belgium, 11–16 July 2021; pp. 411–414.

64. Qi, P.; Li, X.; Han, Y.; Zhang, L.; Xu, J.; Cheng, Z.; Liu, T.; Zhai, J.; Hu, H. U2R-pGAN: Unpaired underwater-image recovery with
polarimetric generative adversarial network. Opt. Lasers Eng. 2022, 157, 107112. [CrossRef]

65. Akiyama, K.; Ikeda, S.; Pleau, M.; Fish, V.L.; Tazaki, F.; Kuramochi, K.; Broderick, A.E.; Dexter, J.; Mościbrodzka, M.; Gowanlock,
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