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ABSTRACT

Raindrop size distribution (DSD) retrieval from remote radar measurements or from in situ disdrometer
measurements is an important area of research. If the shape (�) and slope (�) of a three-parameter gamma
distribution n(D) � N0D� exp(��D ) are related to one another, as recent disdrometer measurements suggest,
the gamma DSD model is simplified to a two-parameter DSD, that is, a constrained gamma DSD. An empirical
relation between the � and � was derived using moments estimated from video-disdrometer measurements.
Here, the effects of DSD truncation on a � and � relation were analyzed. It was shown that characteristic size
and variance of size of a constrained gamma DSD depend only on the shape parameter �. Assuming that a
constrained gamma DSD is valid, S-band polarimetric radar–based estimators for rain rate, median volume
diameter, specific propagation phase, attenuation, and differential attenuation were derived. The radar-based
estimators were used to obtain the spatial distribution of DSD parameters corresponding to a range–height
indicator of radar measurements. Self-consistency among polarization radar measurements is used to indirectly
verify constrained gamma DSD-based polarization radar estimators.

1. Introduction

One of the factors that limits accuracy of rain-rate
estimation by a well-calibrated radar is a lack of detailed
knowledge of drop size distribution (DSD). Rain rate R
is usually estimated from radar reflectivity Z using a
Z(R) relation based on convective or stratiform rain.
The Z(R) relation was obtained by regression analysis
of gauge measurements and radar reflectivity. It is
known that the Z(R) relation changes from each location
and time, depending on changes in the DSD. Therefore,
a fixed empirical Z(R) relation cannot provide accurate
rain estimation for various types of rain because it can-
not represent variations in rain DSD. The relation be-
tween radar reflectivity and rain rate is almost com-
pletely quantified only if the drop size distribution is
specified because they are proportional to moments of
DSD; namely, S-band reflectivity is approximately the
sixth moment and rain rate is proportional to the 3.67th
moment of the drop spectrum. Accurate rain-rate esti-
mation requires detailed knowledge of the rain DSD
and, hence, various rain-rate estimators are derived us-
ing polarimetric radar observations that include reflec-
tivity, differential reflectivity, and propagation phase
(Doviak and Zrnic 1993).
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The polarimetric radar technique has attracted great
attention because most of the hydrometeors are non-
spherical. Particularly in the case of raindrops there is
a well-defined relation between characteristic size D and
shape (Seliga and Bringi 1976; Oguchi 1983). The po-
larization radar measurements provide additional infor-
mation about precipitation and allow better microphys-
ical characterization of hydrometeors (Vivekanandan et
al. 1999a). In general, Z, differential reflectivity (ZDR),
and specific propagation phase (KDP) are used for es-
timating rain rate and drop spectrum, because they de-
pend mainly on drop size and shape (Jameson 1983).
A linear depolarization ratio (LDR) and the cross cor-
relation between co- and cross-polarized radar signals
are used for retrieving canting angles because they are
sensitive to particle orientation (Ryzhkov et al. 1999;
Vivekanandan et al. 1999b).

In some of the earlier studies, rain DSD was assumed
to be an exponential distribution with two parameters
(N0, �) (Sachidananda and Zrnić 1987). Early rain
DSDs (Marshall and Palmer 1948; Laws and Parson
1943) indicate a special case of exponential distribution.
The reasons for using exponential distribution are as
follows:

1) Two parameters (N0, �) of exponential distribution
may be inferred from Z and ZDR or attenuation A
(Seliga and Bringi 1976; Ulbrich 1983).

2) This method might be good enough for rain esti-
mation as long as the ‘‘central moments’’ are used
for estimating exponential distribution (Smith 1998).



218 VOLUME 43J O U R N A L O F A P P L I E D M E T E O R O L O G Y

3) Rain DSD, averaged over a long time period, tends
to be exponentially distributed (Yuter and Houze
1997).

However, for a standard sampling time, such as 1 min,
some observations indicate that natural rain DSD con-
tains fewer of both very large and very small drops than
an exponential distribution (Ulbrich 1983; Tokay and
Short 1996). Estimated rain rate may be comparable to
the actual rain rate of the measured spectrum, using
either exponential distribution or a gamma distribution
with a fixed � when the third or fourth moment is in-
cluded, because rain rate proportional to the 3.67th mo-
ment is the closest to moments used for estimating DSD
parameters. However, the problem of the assumed ex-
ponential or a gamma distribution with a fixed � dis-
tribution would not be able to provide other moments
that are much different from the ones used for estimating
DSD parameters, such as reflectivity or attenuation, at
a radar wavelength comparable to raindrop size.

Ulbrich (1983) suggested the use of the gamma dis-
tribution for representing a raindrop spectrum as

�n(D) � N D exp(��D).0 (1)

Because the three DSD parameters do not correspond
to physical parameters, such as liquid water content or
median volume diameter, various normalization tech-
niques were used (Willis 1984; Dou et al. 1999). A
normalized gamma distribution was first proposed by
Willis (1984), and was recently adopted by Illingworth
and Blackman (2002) to eliminate the dependence be-
tween N0 and � (Willis 1984; Chandrasekar and Bringi
1987; Illingworth and Blackman 2002; Testud et al.
2001). They recommend using physically meaningful
parameters to characterize a gamma DSD. Nevertheless,
the number of DSD parameters remains the same, and
the DSD expression becomes more complicated. In
practice, there is no simplification of the DSD function
except that DSD parameters are expressed using total
number concentration, liquid water content, and D0.

Most of the studies that deal with in situ DSD ob-
servation describe methods for obtaining parameters of
various mathematical functions to fit the observed dis-
crete DSD. The technique for retrieving DSD parame-
ters from a limited number of radar measurements is an
important area of research. More importantly, tech-
niques for retrieving a general DSD function, using the
commonly observed radar measurements, are intriguing.
Reflectivity and differential reflectivity ZDR are directly
measured at every gate, whereas KDP is the range de-
rivative of �DP, the differential propagation phase, av-
eraged over a number of gates. Combining gate-by-gate
measurements of ZHH and ZDR with the range-smoothed
KDP for DSD retrieval causes degradation in spatial res-
olution. In general, only ZHH and ZDR are used for DSD
parameter retrieval in the case of exponential distribu-
tion or gamma distribution with fixed � (Bringi et al.
1998). An additional relation is needed for retrieving the

three parameters of the gamma distribution. An N0–�
relation was used with radar reflectivity and attenuation
for retrieving all three parameters of a gamma DSD
(Ulbrich 1983).

In this paper, we study constrained gamma rain DSD
and its application to rain estimation from polarimetric
radar measurements. In section 2 the three parameters
of gamma DSD are obtained from three moments of the
measured DSD. Measured size distributions are trun-
cated at small- and large-particle limits, depending on
the instrumentation limitation. Effects of truncation on
size distribution are investigated. In section 3, a con-
strained relation between � and � is derived from dis-
drometer observations and is analyzed using truncated
and untruncated moments of the drop size spectra. Also,
possible physical explanations for �–� are presented.
In section 4, various characteristic raindrop sizes are
derived as a function of DSD shape. Using constrained
gamma DSD, polarization radar–based estimators for
rain rate, median drop size, specific propagation phase,
attenuation, and differential attenuation are obtained in
section 5. Spatial distribution of the raindrop spectrum
is shown for a vertical cross section of a rainstorm. A
specific propagation phase is obtained from Z and ZDR

observations. The estimated propagation phase using Z
and ZDR measurements is compared with the actual mea-
sured propagation phase for verifying the applicability
of constrained gamma DSD polarimetric radar–based
relations in section 6. A summary of the results is given
in section 7.

2. DSD parameters using untruncated- and
truncated-moment methods

Raindrop size distribution can be measured using var-
ious instruments, such as a momentum impact disdro-
meter, a Particle Measuring System (PMS) probe, and
video disdrometer (Yuter and Houze 1997; Williams et
al. 2000). Both the disdrometer and PMS probe obser-
vations are affected by the sampling limitation in mea-
suring small and large drops. Thus, estimations of DSD
parameters from these instruments should take into ac-
count effects due to truncation on measured discrete
drop size spectra. For long sample periods, DSD was
commonly assumed to be an exponential, but in situ
observation indicates that instantaneous rain DSD is bet-
ter characterized by a three-parameter gamma distri-
bution n(D) � N0D� exp(��D). In this study, the vid-
eo-disdrometer measurements collected in the PRE-
CIP98 field experiment (Brandes et al. 2002) are ana-
lyzed. The video disdrometer was operated by the
University of Iowa in east-central Florida during the
summer of 1998 when the National Center for Atmo-
spheric Research (NCAR)’s S-band dual-polarization
Doppler radar (S-Pol) was also deployed to evaluate the
potential of polarimetric radar for estimating rain in a
tropical environment. Following below is a brief review
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of the method of fitting the measured DSDs to a gamma
distribution and finding the relations among the DSD
parameters.

The moment method is widely accepted in the me-
teorology community because of its robustness in ob-
taining parameters of DSD from disdrometer measure-
ments of a spectrum that may not be as well-defined a
function as a gamma distribution (Kozu and Nakamura
1991; Tokay and Short 1996; Ulbrich and Atlas 1998).
Assuming untruncated DSD, the integration of most mo-
ment calculations are usually performed from zero to
infinite size range as

�

n n�D � � D n(D) dD�
0

�(�	n	1)� N � 
(� 	 n 	 1). (2)0

In general, the three parameters (N0, �, and �) can be
solved from any three moments, such as the second,
fourth, and sixth. To eliminate � and find �, a ratio is
defined as

4 2�D � (� 	 3)(� 	 4)
� � � . (3)

2 6�D ��D � (� 	 5)(� 	 6)

Then, � can be easily solved from (3) as

2 1/2(7 � 11�) � [(7 � 11�) � 4(� � 1)(30� � 12)]
� � , and (4)

2(� � 1)

FIG. 1. Gamma distributions for fixed liquid water content of 1 g
m�3 and median volume diameter of 1.5 mm. Parameter � (or �)
can be freely chosen based on the �D0 � 3.67 	 � relation.

� can be calculated from

1/2 1/2
2 2�D �
(� 	 5) �D �(� 	 4)(� 	 3)

� � � .
4 4[ ] [ ]�D �
(� 	 3) �D �

(5)

As shown in (2), N0 can be calculated from any of the
three moments for specified � and �.

It should be noted that the integration in (2) is per-
formed from 0 to infinity, that is, an untruncated size
distribution. In practice, raindrop distribution is mea-
sured over a finite sample volume and time; hence, only
a finite number of raindrops were observed within a
finite size range (Dmin, Dmax) because of practical and
sampling limitation in measuring small and large drops.
The typical range of raindrop size estimated by the Joss
disdrometer is between 0.3 and 5 mm, while a video
disdrometer can measure raindrop size between 0.1 and
8 mm. However, the above-described method for esti-
mating DSD parameters is applicable only for untrun-
cated DSD. For a gamma distribution with a truncated
size range, the statistical moments are calculated as

Dmax

n n�D � � D n(D) dD�
Dmin

�(�	n	1)� N � [�(� 	 n 	 1, �D )0 max

� �(� 	 n 	 1, �D )], (6)min

where �(. . .) is an incomplete gamma function. As ex-
pected, the truncated moments depend on the upper and
lower limits of droplet size in the measured spectrum.
If the moments obtained from (6) are used to fit a trun-
cated gamma distribution, using the above untruncated-
moment method described in Eqs. (2)–(5), the resultant
DSD parameters may be in error.

Figure 1 shows three gamma distributions with a fixed
liquid water content (LWC) of 1 g m�3 and a median

volume diameter D0 of 1.5 mm. For a specific set of
LWC and D0, the parameter � (or �) can be freely
chosen based on a �D0 � 3.67 	 � relation. When �
is 0.0, 2.0, or 4.0, then � and N0 can be calculated
accordingly. Using the above-described truncated-mo-
ment method, DSD parameters can be estimated as a
function of lower and upper bounds of the drop size
spectrum. Figures 2 and 3 show retrieved DSD param-
eters as a function of the lower limit Dmin and upper
limit Dmax of the spectrum. All three DSD parameters
N0, �, and � increase as the spectrum is truncated (in-
crease in Dmin or decrease in Dmax), that is, as the spec-
trum becomes narrower. Thus, use of truncated moments
instead of untruncated moments in Eqs. (3), (4), and (5)
introduces significant error in the estimated DSD pa-
rameters. The potential for error is larger for a spectrum
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with small values of � and �. It can be inferred from
Figs. 2 and 3, that as long as Dmin  0.5 D0 and Dmax

� 4 D0 are satisfied, the effect of truncation on retrieved
parameters is less than 5%.

Overestimating DSD parameters can be minimized

when appropriate truncated moments are used. Using
the truncated moments shown in Eq. (6), moments con-
sistent with truncation can be calculated, and then the
corresponding expressions for DSD parameters can be
derived as follows:

2[�(� 	 5, �D ) � �(� 	 5, �D )]max min
� � , and (7)

�(� 	 3, �D )�(� 	 7, �D ) � �(� 	 3, �D )�(� 	 7, �D )max max min min

1/2
2�D �[�(� 	 5, �D ) � �(� 	 5, �D )]max min

� � . (8)
4� ��D �[�(� 	 3, �D ) � �(� 	 3, �D )]max min

Equations (7) and (8) constitute joint equations for �
and � for the truncated moments that are difficult to
separate from each other. Because the above equations
are nonlinear, an iterative approach is necessary for
solving � and � as follows: (i) estimate initial value of
� and � from Eqs. (3)–(5), (ii) calculate � from (7) and
compare it with the actual measured-moment ratio, and
(iii) if the moment-two ratios are different, � and � are
adjusted using (8) until � from (7) converges to the
actual measured-moment ratio.

3. Analysis of the �–� relation

Video-disdrometer measurements collected in PRE-
CIP98 are used in this study. The dataset is the same
as that reported in Zhang et al. (2001), except minor
revisions were made for splashing and wind effects dur-
ing DSD measurements. We use the untruncated- and
truncated-moment methods to fit the measured DSDs
with a gamma distribution.

Figure 4 shows an example of measured rain DSD
and gamma distribution fit. The solid line uses the mo-
ment method, and the dashed line the truncated-moment
method. Visually, both truncated- and untruncated-mo-
ment-based DSD parameters fit the measurement well,
and they give a consistent rain-rate and drop size esti-
mation. The rain rate from the measured DSD is 74.9
mm h�1 and the calculated rain rate from the untrun-
cated-moment method is 79.6 mm h�1, which from trun-
cated moments is 79.2 mm h�1. The median volume
diameter D0 is 2.35 and 2.43 mm, respectively, when
untruncated and truncated moments are used. The gam-
ma DSD parameters, however, are different for untrun-
cated and truncated methods, and corresponding values
of N0, �, and � are (7332, 0.67, 1.85) and (5441, 0.031,
1.53), respectively. Even though truncated- and untrun-
cated-moment methods produce similar rain rate and D0,
the corresponding DSD parameters are different.

Figure 5 shows the scatterplots of the fitted DSD
parameters (� versus �). Figure 5a is obtained from the
untruncated-moment method and Fig. 5b is from the
truncated-moment method. There are a total of 1341 1-

min DSD spectra, covering over 22 h in 17 days during
PRECIP98 (Brandes et al. 2001). Both Figs. 5a and 5b
show correlation between � and �. However, retrievals
of � and � obtained using the truncated-moment method
show better correlation than the corresponding set re-
trieved using the untruncated-moment method. Further
analysis of raindrop spectra revealed that the correlation
between � and � is also reduced due to incomplete
sampling of DSD as a result of the finite sampling vol-
ume of the video disdrometer within a 1-min sample
time. To minimize the error due to sampling effects,
data were filtered by allowing only those with rain rate
�5 mm h�1 and the number of raindrops NT � 1000
m�3. The revised plot with the above-mentioned thresh-
old is shown in Figs. 5c and 5d. The figures contain
only 248 data points but captured 75% of the rainfall
amount in Figs. 5a and 5b. The scatterplots shown in
Figs. 5c and 5d show less scatter, and the correlation
between � and � is higher. A relation between � and
� is estimated using a polynomial least squares fit, and
it is given as

2 �1� � 0.037� 	 0.691� 	 1.926 mm , (9)

when untruncated moments are used. In the case of the
truncated-moment method, the corresponding equation is

2 �1� � 0.0365� 	 0.735� 	 1.935 mm . (10)

It is interesting to note that the � and � relations do
not change much while the mean values of � and �
change from 4.09 and 5.58 in Fig. 5c to 3.25 and 4.92
in Fig. 5d for the truncated-moment method.

To include more DSD samples with valid fitted DSD
parameters, we increased the sampling time for each
DSD from 1 to 3 min and found a very similar �–�
relation to (10) as long as the threshold of R � 1 mm
h�1 and NT � 1000 m�3 is imposed. In this case, 91%
of rain accumulation and 44% of DSD samples are in-
cluded. The rest of the measured DSD correspond to
either very light rain that has little contribution to total
rain accumulation or a small number of drop counts that
could lead to large errors in estimated DSD parameters.

A fixed-power law equation, such as Z � ARb, rep-
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FIG. 2. Effect of truncated moments in estimating the gamma DSD
parameters. The retrieved DSD parameters shown as a function of
the lower limit Dmin and upper limit Dmax of the spectrum. All three
DSD parameters (top) N0, (middle) �, and (bottom) � increase as
the spectrum is truncated (increase in Dmin or decrease in Dmax), that
is, as the spectrum becomes narrower. Thus, usage of truncated mo-
ments instead of untruncated moments in Eqs. (3), (4), and (5) in-
troduces significant error in the estimated DSD parameters.

FIG. 3. Same as Fig. 2, except truncation effects on (top) rain rate
and (bottom) median volume diameter calculated from fitted gamma
DSD parameters are shown.

resents very limited variability in DSD. For a gamma
DSD, the parameters N0, �, and D0 can be derived using
A and b power-law coefficients as (Rosenfeld and Ul-
brich 2003)

1/(1�b)b 
2.33

A 33.31
� �[ ] b � 1
 N � , (11a)0

2.33b
610 
 � �b � 1 

7 � 4.67b
� � , and (11b)

b � 1

3.67 	 �
1/(4.67	�)D � R mm. (11c)0 1/(4.67	�)[33.31N 
(4.67 	 �)]0

The above relations show that for a specified power-law
equation, N0 and � are fixed, and that the range of D0
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FIG. 4. An example of measured rain DSD and its fitted gamma
distribution using the moment and the truncated-moment method. The
gamma DSD parameters are different for untruncated and truncated
methods, and corresponding values of N0, �, and � are (7332, 0.67,
1.85) and (5441, 0.031, 1.53), respectively. Even though truncated-
and untruncated-moment methods produce similar rain rate and D0,
the corresponding DSD parameters are different.

is also limited. Assuming each Z–R power-law equation
represents average DSD parameters of a particular rain
event, it might be interesting to compare the inferred
DSD parameters with a �–� relation. Twenty-three dif-
ferent Z–R power-law relations listed in Table 5 of Ro-
senfeld and Ulbrich (2003) represent a wide range of
precipitation events: continental, tropical continental,
tropical maritime, hurricane, and orographic. Using the
above equations and the � � (3.67 	 �)/D0 relation,
where D0 was obtained as a function of rain rate, � and
� were calculated for each Z–R power law. Figure 6
shows a scatterplot of � and � for 23 Z–R relations,
and they are scattered along the �–� line. Given the
likely differences in 23 field experiments, the general
agreement of the scatterplot with the �–� relation is
gratifying. This result shows that each Z–R power re-
lation can only represent a subset of rain DSDs with a
very limited coverage of rain process. The result sug-
gests that independent of rain type, a large mean drop
size corresponds to broad DSD, except that the � and
� points, corresponding to an orographic Z–R rain
event, exhibit maximum deviation from the mean �–�
line, suggesting that the rain DSD is dominated by a
condensation process that is different from all other
types of rain. The �–� relation of an orographic pre-
cipitation event may be much different from the one
discussed in this paper.

It is also important to discuss whether the �–� re-
lation arises from errors in an estimated DSD moment
or from natural rain processes. This situation is dis-
cussed in a detailed error analysis in a recent paper
(Zhang et al. 2003). The research shows that the statis-
tical errors do induce correlations in estimated DSD

parameters and cause a linear relation between � and
� estimates. However, the slope and intercept of the
error-induced relation depend on the expected values of
� and � of individual DSDs, and as a result no relation
between � and � is inferred for a random set of DSDs.
It was shown that the moment-fitting procedure does
not cause a bias in the DSD parameters and does not
amplify the errors in rain physical parameters (R and
D0). It may be argued that the �–� relation is due to
the fact that � and � are related by �D0 � � 	 3.67,
while D0 is usually within a small range (1–2.5 mm).
The finite range of D0 can cause a correlation between
� and � but does not necessarily lead to the �–� re-
lation, as shown in Fig. 6b of Zhang et al. (2003). A
physical explanation is that the width of a raindrop spec-
trum and the characteristic drop size, such as D0, are
correlated. It can be shown that the width and D0 of a
gamma DSD are nonlinearly related for natural rain
DSDs and are equivalent to the nonlinear �–� relation
described in Eq. (10). However, in the case of a gamma
DSD with fixed �, the width and D0 are linearly related.
The constrained gamma distribution with the �–� re-
lation is more flexible in representing a wide range of
instantaneous DSD shapes. Analysis of equilibrium and/
or steady-state DSDs reported in a number of earlier
studies are in agreement with the �–� relation (Zhang
et al. 2001). Therefore, this information is useful in rain
DSD retrieval from limited remote measurements. The
�–� relation reduces a gamma DSD to only two pa-
rameters and simplifies DSD retrieval using Z and ZDR.
The polarization radar–based estimators, using con-
strained gamma DSD for retrieving rain rate, median
drop size, specific propagation phase, attenuation, and
differential attenuation, are discussed in the following
two sections.

4. Constrained gamma DSD

a. Shape of constrained gamma DSD

It is interesting to compare a DSD and mass spectrum
for fixed liquid water content (LWC) of 1 g m�3 for �
of 0, 2, 4, and 8. Using the �–� relation in Eq. (10),
the corresponding D0 are 1.90, 1.73, 1.60, and 1.15 mm,
respectively. The results are plotted and shown in Fig.
7. Figure 7a is the distribution of DSDs and Fig. 7b is
that of the mass spectrum. The rain DSD with large
(small) � corresponds to small (large) D0 and a narrow
(broad) mass distribution. Parameter � (or �) deter-
mines both the shape and the slope, while parameter �
in an exponential distribution only adjusts the slope.

b. Raindrop size

The characteristic size of the DSD is an important
parameter and can be defined in various ways. In gen-
eral, any pair of moments can be used to define the
characteristic size for a specific rain DSD as
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FIG. 5. Scatterplots of �–� values obtained from video-disdrometer observations using the moment
method and the truncated-moment method. (a) Untruncated-moment method Eqs. (3)–(5); (b) truncated-
moment method Eqs. (7)–(8); (c) same as (a), except including measured DSDs only for R � 5 mm h�1

and total raindrop counts�1000; and (d) same as (c), except including measured DSDs only for R � 5
mm h�1 and total raindrop counts �1000.

FIG. 6. Scatterplot of �–� values corresponding to 23 different Z–
R relations described in Rosenfeld and Ulbrich (2003). The Z–R re-
lations represent a wide range of precipitation events: continental,
tropical continental, tropical maritime, hurricane, and orographic. The
solid line is the �–� relation.

1/mn	m�D �
D � . (12a)g n� ��D �

In the case of constrained gamma DSD, it is written as

1/m


(� 	 n 	 m 	 1)
�1D � [�(�)] , (12b)g [ ]
(� 	 n 	 1)

which depends only on the shape parameter � of the
DSD.

In practice, however, only those characteristic sizes
that are physically meaningful and particularly esti-
mated using remote measurements should receive the
most attention and be studied thoroughly. Median vol-
ume diameter (D0) is commonly used to characterize
raindrop size because the total mass of raindrop sizes
smaller than D0 and greater than D0 are equal. Mean
mass diameter Dm is also used because it is mass weight-
ed and can be easily calculated from the third and fourth
moments. Mass mode diameter Dc indicates the location
of the peak of the mass distribution of DSD. Recently,
radar-estimated size (RES) for a dual-wavelength radar
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FIG. 7. Constrained gamma raindrop size distribution for a fixed
mass content of 1 g m�3: (top) number concentration and (bottom)
mass concentration. Large � (and �) produce large curvature in both
DSDs and mass spectra with narrow distribution. Parameter � (or �)
determines both the shape and the slope, while parameter � in an
exponential distribution only adjusts the slope. The constrained gam-
ma DSD might be flexible enough to characterize rain DSD.

technique and a size parameter for polarimetric radar
technique were proposed (Vivekanandan et al. 2001;
Zhang et al. 2001). RES is defined as the ratio of the
7.2th and sixth moments. Because the 7.2th moment is
proportional to the linear reflectivity difference ZDP,
while the sixth moment is the reflectivity factor, RES
can be directly determined from polarimetric radar mea-
surements. Thus, in the case of a constrained gamma
DSD, various characteristic sizes can be expressed as
follows:

1/1.21/1.27.2�D � 1 
(� 	 8.2)
RES � � , (13)

6� � [ ]�D � �(�) 
(� 	 7)

4�D � 
(� 	 4)
D � � , (14)m 3�D � �(�)
(� 	 3)

� 	 3.67
D � , and (15)0

�(�)

� 	 3
D � D| � . (16)c [dm(D)]/dD�0

�(�)

The width of the DSD is also important in characterizing
the shape of the spectrum. As shown in Ulbrich (1983),
the variance of the mass distribution with respect to Dm

is given as

2 3(D � D ) D N(D) dD� m

� 	 4
2� � � . (17)D 2[�(�)]

3D N(D) dD�
Figure 8 shows the dependence of characteristic size

and variance on the shape parameter �. Radar-estimated
size RES, mean mass diameter Dm, median volume di-
ameter D0, and mass mode diameter Dc are shown, as
well as the variances. They all decrease as � increases.
These results are consistent with the radar and disdro-
meter observation that generally large ZDR corresponds
to large drop size and broad distribution (small �) in
actual radar measurement. The limited video-disdro-
meter observations show that ZDR varies between 0 and
2.5 dB for rain rates between 5 and 80 mm h�1 (Brandes
et al. 2002; Zhang et al. 2001). Video-disdrometer mea-
surements show that broad DSD spectrum tends to have
large D0 (Zhang et al. 2001). However, in the leading
edge of a convective storm ZDR can be much larger than
2.5 dB (i.e., 3–4 dB) and they are associated with a low
concentration of very large drops (Illingworth et al.
1987). A constrained gamma DSD model may not be
appropriate to characterize DSDs corresponding to 3–4
dB ZDR at the leading edge of convective storms.

5. Polarimetric radar–based estimators

As discussed in the previous section, three parameters
of gamma DSD are difficult to retrieve from a set of

limited radar measurements. The relation �(�) or �(�)
derived in the previous section constitutes a constrained
condition for gamma distribution. The �–� relation ap-
plied to gamma DSD [Eq. (1)] reduces to a two-param-
eter DSD and is dubbed as a constrained gamma DSD.

a. Raindrop shape

Even though the �–� relation simplifies the DSD re-
trieval, any difference between assumed and actual mi-
crophysical parameters such as shape and canting angle
might introduce uncertainties in a polarization radar-
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FIG. 8. Dependence of characteristic size and variance on the shape
parameter �. Radar-estimated size RES, mean mass diameter Dm,
median volume diameter D0, and mass mode diameter Dc are shown,
as well as the standard deviation of DSD. They all decrease as �
increases. This is consistent with the radar and disdrometer obser-
vations: large ZDR corresponds to large drop size and broad distri-
bution (small �) in actual radar measurements. The phrase ‘‘large
ZDR’’ in this paper refers to relatively high ZDR values between 0.0
and 2.5 dB.

based retrieval. An equilibrium shape of raindrops is as-
sumed in some earlier studies, while the latest obser-
vations suggest that a more spherical shape should be
adapted. There has been considerable discussion about
the deviation of the drop axis ratio from its equilibrium
value (Chandrasekar et al. 1988; Beard and Kubesh 1991;
Bringi et al. 1998; Beard and Chuang 1987; Andsager et
al. 1999; Keenan et al. 2001). We used a smooth curve
that optimally describes the results in Pruppucher and
Pitter (1971), Chandrasekar et al. (1988), Beard and Ku-
besh (1991), and Andsager et al. (1999). We extended
the results to smaller diameters with a smooth polyno-
mial. The polynomial fit is made by assuming that the
drop axis ratio merges smoothly with the equilibrium axis
ratio in the larger diameter regime. The proposed poly-
nomial fit can be represented (Brandes et al. 2002) as

2r � 0.9951 	 0.025 10D � 0.036 44D

3 4	 0.005 030D � 0.000 249 2D , (18)

where r is the drop axis ratio and D is the equivolume
drop diameter (mm).

b. Relations among statistical moments

Statistical moments are integral parameters of a DSD.
They are directly related to polarization radar measure-
ments and rainfall rate. When radar wavelength is large
compared to raindrop size, as in the case of S-band radar
measurements of rain, the reflectivity factor is the sixth
moment (Z � �D6�). Rain rate is related to the 3.67th
moment (R � �D3.67�). It is important to know the re-

lation among the moments that can be used to relate
radar measurements and various rain parameters. In-
stead of eliminating the median volume diameter, as in
Ulbrich (1983) and Testud et al. (2001), the relation
between two moments can be obtained by eliminating
N0. Therefore, a relation between the kth and lth mo-
ments of a constrained gamma DSD can be found by
taking a ratio as

k�D � 
(� 	 k 	 1)
�(k�l)� �(�) , (19)

l�D � 
(� 	 l 	 1)

that is,


(� 	 k 	 1)
k �(k�l) l�D � � �(�) �D �. (20)


(� 	 l 	 1)

It should be pointed out that Eq. (20) does not specify
a linear relation between the moments. Actually it does
not even guarantee a functional relation because all of
the moments depend on �, which is a variable. A linear
relation exists only when the shape of DSD is fixed,
such as the equilibrium shape of DSD (List 1988) or
constrained gamma DSD with a constant � in Eq. (20).
The shape of DSD (or �), however, usually depends on
characteristic size and should not be treated as a con-
stant.

Generally, rain rate R (mm h�1) is proportional to the
3.67th moment as

�3 3.67R � 7.125 � 10 �D �. (21)

Letting k � 3.67 and l � 6 in Eq. (20) and substituting
into (21),

�3 �1R � 7.125 � 10 F(�)Z mm h , (22)

where


(� 	 4.67)
2.33F(�) � [�(�)] . (23)


(� 	 7)

This shows that the Z–R relation is governed by the
shape parameter �. For a constrained gamma DSD, �
uniquely determines ZDR (Zhang et al. 2001) for the
assumed axis ratio and mean canting angle of raindrops.
Considering that Z may not be exactly the 6th moment
of DSD, even when particle size is small in comparison
with wavelength, the rain estimator is derived as fol-
lows: rain DSDs are constructed with a fixed N0 and
varying � from 1.5 to 9.5 mm�1, and the corresponding
� is calculated from Eq. (10). Then, the rain parameters
(R and D0) are calculated from the rain DSDs and po-
larimetric radar measureables Z, ZDR, KDP, attenuation
A, and differential attenuation �A are obtained using a
rigorous T-matrix-based scattering calculation.

For rain-rate estimation, a least squares fit is obtained
between the logarithm of the ratio R/Z and the logarithm
of ZDR, where ZDR is in linear units. The first-order linear
relation between logarithm quantities is rewritten as

�3 �b �1RR � 4.75 � 10 ZZ mm h ,DR (24)
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FIG. 9. Relation between reflectivity and rain rate for various dif-
ferential reflectivity factors. Larger ZDR corresponds to small �. Spec-
ification of ZDR confines the Z (R) relation to smaller ranges of rain
rate than a typical larger scatter in Z (R) relations. The thickness of
each line represents the margin due to the effective canting angle of
raindrops.

where the exponent bR depends on the effective canting
angle of raindrops. In the case of a Gaussian canting angle
distribution, assuming the mean canting angle is zero, the
coefficient bR is expressed as a function of the standard
derivation of an effective canting angle (��) as

2b � 4.685 � 0.602� 	 12.032� ,R � � (25)

where �� is in radians, which can be estimated from
cross-polarization radar measurements (Ryzhkov et al.
1999). However, it should be noted that the technique
for estimating the standard deviation of the effective
canting angle from polarimetric radar measurements is
exploratory and has not been sufficiently demonstrated
for general applicability throughout a convective echo.
As compared with the widely used relation R � 6.86
� 10�3Z (Sachidananda and Zrnić 1987), Eq. (24)4.86ZDR

has a smaller coefficient and higher value of exponent
for ZDR. The use of a less oblate raindrop shape in the
radar-scattering calculation is a primary factor that made
significant improvement to the ZDR-based rain estimator.
However, both the less oblate shape and the �–� re-
lation (instead of fixed �) contribute to the improvement
of rain estimation. For example, even in the case of less
oblate shapes, the ratio between gauge- and radar-based
rain estimates changes from 0.83 to 1.03 as � changes
from 0 to 4 (Brandes et al. 2003). Figure 9 shows the
relation between Z and R for various ZDR. For a specified
Z, Eq. (24) gives a higher rain rate for a smaller ZDR

than with a larger ZDR, because small ZDR is related to
a larger amount of smaller raindrops. Specification of
ZDR confines the Z–R relation constrained to smaller
ranges of rain rate than a typical larger scatter in Z–R

relations (Doviak and Zrnic 1993; Ulbrich and Atlas
1998).

Even though no detailed comparison between radar
R and gauge G estimates was discussed in this paper,
we evaluated the performance of Eq. (24) when varying
the standard deviation of canting angle between 0� and
15�. The rain-rate estimators in Brandes et al. (2002,
2003) assumed �� � 0�, and the corresponding G/R
values are 0.97 and 0.93, respectively. The G/R for the
same set of observations increases from 0.87 to 1.02 as
�� is increased from 0� to 15� when Eq. (24) is used.
Realizing the difficulty in separating the effect of drop
shape from canting angle using liner polarization radar
measurements, �� can be considered as a tuning param-
eter.

For rain estimation from a specific propagation phase,
the relation of R � 40.56 (Sachidananda and Zrnić0.866KDP

1987) tends to underestimate rain, especially for low
rainfall (Brandes et al. 2001, 2003). Recently, ZDR was
combined with KDP to reduce the effects due to an ap-
parent change in drop shape as a result of canting and
oscillation (Ryzhkov and Zrnić 1995). Similar to the
procedure for deriving the R(Z, ZDR) relation, a physi-
cally based R(KDP, ZDR) relation can be obtained by
fitting the ratio R/KDP as a function ZDR as

143.18 2�(2.629�0.361� 	7.435� ) �1� �R � K Z mm h . (26)DP DR2(1 � 2� )�

For a comparable KDP and ZDR, rain-rate estimation using
the above equation is 10%–15% higher than the earlier
rain-rate estimator reported in Gorgucci and Scarchilli
(1997).

Again, we evaluated the performance of Eq. (26),
varying the standard deviation between 0� and 15�. The
G/R, that is, the mean bias factor, is 0.82, when �� �
0� and it gradually decreases to 0.79 when �� � 15�.
Thus, the effect of �� on R(KDP, ZDR) is minimal. Bran-
des et al. (2002) assumed �� � 0� with a corresponding
G/R of 0.92; the G/R for Eq. (26) is 0.82. This difference
is mainly due to the DSD because the same mean rain-
drop shape is assumed in all of the calculations. The
Brandes et al. (2002) R(KDP, ZDR) relation is based on
the in situ video-disdrometer DSD collected during the
PRECIP98 field program. However, the R(KDP, ZDR) re-
lation presented in this paper is based on a constrained
gamma DSD, and no in situ DSDs are included explic-
itly. Thus, the R(KDP, ZDR) presented in this paper might
be more appropriate when no information regarding
DSD is available to fine-tune the R(KDP, ZDR) estimator.

Similarly, closed-form analytical relations for a me-
dian volume diameter, specific propagation phase, spe-
cific attenuation AH, and a differential attenuation �A

are derived as follows:

2D � 1.017 	 (0.448 � 0.064� 	 1.278� )0 � �

� Z (dB) mm for Z � 0.2 dB, (27)DR DR



FEBRUARY 2004 227V I V E K A N A N D A N E T A L .

�5 2K � 3.32 � 10 (1 � 2� )DP �

2�(2.053�0.107� 	4.135� ) �1� �� ZZ � km , (28)DR

�25.29 � 10
A �H 2(1 � 2� )�

2�(2.483�0.384� 	7.663� ) �1� �� K Z dB km , and (29)DP DR

2�3 1.033�0.144� 	2.937� �1� ��A � 2.22 � 10 K Z dB km , (30)DP

where KDP is in degrees per kilometer and ZDR is in linear
units unless specified in decibels. Note that Eq. (27) for
estimating D0 is valid only when ZDR is greater than or
equal to 0.2 dB. Specific differential phase KDP is an
important parameter, which can be used for checking
self-consistency among Z, ZDR, and KDP. Equations (29)
and (30) can be used to compensate any bias in reflec-
tivity and ZDR due to rain attenuation. In the following
section, the above-derived expressions are used for es-
timating rain DSDs and also for verifying consistency
in polarization radar measurements when the �–� re-
lation is used.

6. Rain DSD retrievals and consistency of the �–�
relation

During PRECIP98, NCAR’s S-Pol radar was de-
ployed to evaluate the potential of a polarimetric radar
for estimating rain in a tropical environment. Rain gauge
measurements were also collected during the project. A
detailed description of the project and instrument de-
ployment is reported in Brandes et al. (2002). A pre-
liminary analysis of data collected during this experi-
ment is presented in the following sections to show the
utility of constrained gamma DSD–based estimators and
indirect verification of radar-based estimators presented
in this paper. A constrained gamma DSD is completely
specified by Z and ZDR, and it also facilitates formulation
of polarimetric-radar estimators for retrieving DSD pa-
rameters, rain rate, attenuation, and specific propagation
phase.

a. Spatial description of DSD

Figure 10 shows a vertical cross section collected at
1901 UTC on 17 September, 1998. Figures 10a and 10b
are radar reflectivity and ZDR, respectively. There are
two well-developed storms centered at 26 and 45 km,
respectively, as shown in the Z and ZDR images. Positive
ZDR suggests that most of the precipitation between the
ground and 5 km AGL is rain. Using the relations shown
in an earlier section, parameters of DSD were calculated.
For a specified ZDR, the median diameter is obtained
from Eq. (27) and then � and � can be obtained from
Fig. 8 and Eq. (10). The parameter N0 is retrieved from
Z, �, and �, using the relation N0 � Z ��	7/
(� 	 7)
and then NT is equal to N0 ��(�	1)
(� 	 1). Rain rate
is calculated from Eq. (24). Figures 10c and 10d are
retrieved rain DSD parameters, namely, the total number

concentration NT and shape parameter �. Maximum
raindrop concentration exceeds 1000 m�3 and � values
are less than 2 in the regions that have large drop con-
centrations. Rain cell boundaries are characterized by
large �, that is, a narrow DSD with smaller concentra-
tions of raindrops. Thus, high-reflectivity regions cor-
respond to large number concentrations and a broad
raindrop spectrum. Figures 10e and 10f are calculated
rain characteristics, that is, rain rate R and median vol-
ume diameter. The rain rate is derived from the esti-
mated DSD parameters instead of a fixed power-law-
type equation, and the peak rain rates are around 100
mm h�1. Median volume diameter values are larger in
regions of heavier precipitation and they are smaller
than 1.5 mm near the cell boundaries.

b. Self-consistency in polarization radar
measurements when using constrained gamma
DSD

To verify the validity of constrained gamma–based
polarization radar estimators, self-consistency in polar-
ization observation is used. We compare the estimated
differential phase and specific differential phase with
those measured (Vivekanandan et al. 2003). The esti-
mated specific propagation phase ( ) is obtained fromeKDP

power measurements; that is, Z and ZDR, using Eq. (28)
with a specified �� � 0� (Ryzhkov et al. 1999), and the
estimated propagation phase ( ) is calculated ase e� �DP DP

� 2 # ( l) dl, where l is the distance along the radialeKDP

for one of the radar rays. Figure 11 shows comparisons
of a differential propagation phase between measure-
ments and estimations. Figure 11a is an example of
differential phase plotted as a function of range. As
expected, estimated �DP monotonically increases with
range and agrees well with the mean of the measure-
ment. The statistical comparison is shown in the scat-
terplot in Fig. 11b. There are 60 rays and 6104 data
points. The mean of the measured �DP is 11.73� and the
mean of the estimated value is 11.45�. Good agreement
between measured and estimated �DP indirectly verifies
the constrained gamma DSD–based polarimetric radar
estimators.

7. Summary and discussion

The constrained condition (�–� relation) was derived
from video-disdrometer measurements. Effects of trun-
cated moments on estimating DSD parameters from vid-
eo-disdrometer measurements are discussed. It is shown
that as long as Dmin  0.5 D0 and Dmax � 4 D0 are
satisfied, the effect of truncation on retrieved parameters
is less than 5%. When truncated moments are used, an
iterative approach is required in estimating the DSD
parameters. Retrieved � and � DSD parameters from
a video-disdrometer observation using truncated mo-
ments show a strong correlation between � and �. The
two-parameter DSD allows the retrieval of DSD param-
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FIG. 10. Spatial distribution of polarization radar measurements, retrieved DSD parameters, and rain rate: (a) reflectivity, (b) differential
reflectivity, (c) number concentration (m�3), (d) �, (e) DSD-based log10 of rain rate (mm h�1), and (f ) median volume diameter (mm). Note
log10 of number concentration and rain rate are shown. Standard deviation of canting angle �� is assumed to be 10�.

eters from polarization radar measurements: reflectivity
and differential reflectivity.

In the case of constrained gamma DSD, characteristic
size and variance of size depend only on the shape pa-
rameter �. Radar-estimated size RES, mean mass di-
ameter Dm, median volume diameter D0, mass mode
diameter Dc, and standard deviation of the DSD �D are
derived as a function of �. All characteristic sizes de-
crease as � increases. This result is consistent with the
radar and disdrometer observations: large ZDR corre-
spond to large drop size and broad distribution (small
�) in actual radar measurement. It is shown that a

�–� relation is consistent with rain physics by repre-
senting large drops with broad distribution.

Polarimetric radar estimators for rain rate, median
volume diameter, specific propagation phase, specific
attenuation, and differential attenuation are derived for
S-band radar observations. The equations assume zero
mean and variable standard deviation of canting angle.
These expressions will be useful in analyzing radar data
and also calibrating radar reflectivity. A preliminary
analysis of range–height indicator radar measurement is
presented and spatial variation of DSD parameters is
discussed. Excellent agreement between a measured
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FIG. 11. Indirect verification of �–� relation and self-consistency
among polarization radar observations. (a) An example of measured
and estimated �DP along a radar beam, and (b) scatterplot of measured
and estimated �DP for a number of radar beam segments.

propagation phase and that derived based on constrained
DSD, indirectly verifies the polarimetric radar estima-
tors presented in this study.

Polarimetric measurements are sensitive to DSD,
shape, and canting angle. Even though the �–� relation
simplifies DSD retrieval, any difference between as-
sumed and actual microphysical parameters, such as
shape and canting angle, might introduce uncertainties
in the polarization radar–based retrieval. As compared
with a three-parameter gamma distribution with a fixed
�, the constrained gamma distribution with the �–�
relation is more flexible in representing a wide range of
instantaneous DSD shapes. The �–� relation reduces a
gamma DSD to a two-parameter function and simplifies

DSD retrieval using Z and ZDR. Even though all types
of rain DSD may exhibit correlation between � and �,
it is important to analyze DSDs collected at various
geographical locations and in various seasons to un-
derstand the variability in the �–� relation.
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