
                          Bi, H., Xu, L., Cao, X., Xue, Y., & Xu, Z. (2020). Polarimetric SAR
Image Semantic Segmentation with 3D Discrete Wavelet Transform
and Markov Random Field. IEEE Transactions on Image Processing,
29, 6601-6614. https://doi.org/10.1109/TIP.2020.2992177

Peer reviewed version

Link to published version (if available):
10.1109/TIP.2020.2992177

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Institute of Electrical and Electronics Engineers at https://ieeexplore.ieee.org/document/9106810 . Please
refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/TIP.2020.2992177
https://doi.org/10.1109/TIP.2020.2992177
https://research-information.bris.ac.uk/en/publications/58841408-a31e-429f-b50f-da1fc03d6fa0
https://research-information.bris.ac.uk/en/publications/58841408-a31e-429f-b50f-da1fc03d6fa0


FINAL SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Polarimetric SAR Image Semantic Segmentation

with 3D Discrete Wavelet Transform and Markov

Random Field
Haixia Bi, Lin Xu, Xiangyong Cao, Yong Xue, and Zongben Xu

Abstract—Polarimetric synthetic aperture radar (PolSAR) im-
age segmentation is currently of great importance in image pro-
cessing for remote sensing applications. However, it is a challeng-
ing task due to two main reasons. Firstly, the label information
is difficult to acquire due to high annotation costs. Secondly,
the speckle effect embedded in the PolSAR imaging process
remarkably degrades the segmentation performance. To address
these two issues, we present a contextual PolSAR image semantic
segmentation method in this paper. With a newly defined channel-
wise consistent feature set as input, the three-dimensional discrete
wavelet transform (3D-DWT) technique is employed to extract
discriminative multi-scale features that are robust to speckle
noise. Then Markov random field (MRF) is further applied
to enforce label smoothness spatially during segmentation. By
simultaneously utilizing 3D-DWT features and MRF priors for
the first time, contextual information is fully integrated during
the segmentation to ensure accurate and smooth segmentation.
To demonstrate the effectiveness of the proposed method, we
conduct extensive experiments on three real benchmark PolSAR
image data sets. Experimental results indicate that the proposed
method achieves promising segmentation accuracy and preferable
spatial consistency using a minimal number of labeled pixels.

Index Terms—PolSAR image segmentation, three-dimensional
discrete wavelet transform (3D-DWT), support vector machine
(SVM), Markov random field (MRF).

I. INTRODUCTION

THE past few decades witnessed significant progress in

polarimetric synthetic aperture radar (PolSAR) theories

and applications. With the flourish of airborne and spaceborne

PolSAR systems, massive high-resolution PolSAR images are

collected nowadays. PolSAR image semantic segmentation,

the process of dividing PolSAR images into different terrain

categories, has received increasing attentions in modern civil

and military applications. A great variety of state-of-the-art
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PolSAR image segmentation approaches have been proposed

in recent years [1]–[36].

However, despite the rapid progress, there are still some

challenges in PolSAR image semantic segmentation. Firstly,

it is well acknowledged that high-quality annotated data is

difficult to acquire, which is extremely severe in PolSAR

data processing task. Annotation of the PolSAR image is not

only labor-intensive and time-consuming, but also demand-

ing specialty-oriented knowledge and skills, which leads to

the scarcity of ground truth semantic information. Secondly,

PolSAR images are susceptible to speckle noise caused by

the coherent imaging mechanism of PolSAR systems, which

dramatically degrades the quality of PolSAR images and the

following segmentation performance.

A great number of methods have been proposed to ad-

dress the above two issues [1]–[10]. One primary strategy is

using more representative features, such as wavelet analysis

[1], Gabor filtering [2] and convolutional neural network

(CNN) [3]–[6] etc. Compared with the original polarimetric

indicators, these extracted features incorporate local semantic

information by convolutional operations over a specified re-

gion, yielding higher spatial consistency, which can effectively

depress speckle noise. In addition, a group of discriminative

and representative features are beneficial for the classifier to

approach the decision boundary, and therefore relieves the re-

liance of classifiers on annotations. Another strategy dedicates

to enforcing the local consistency on pixel labels. Typical

approaches include the over-segmentation technique utilized

in preprocessing step and graph-based optimization executed

as a post-processing process. Over-segmentation technique

divides the whole PolSAR image into small homogeneous

patches or superpixels which are considered as an integral

part in the following classifier learning and labeling process

[7], [8]. Pixels in each patch share the same label during

the segmentation. Graph-based optimization incorporates label

smoothness priors into the segmentation task by solving a

maximum a posterior (MAP) problem [2], [4], [9], [10]. With

the integrated contextual consistency priors, the speckle noise

in PolSAR images can be effectively depressed, producing

segmentation results with higher classification accuracy and

better spatial connectivity.

Both the above two strategies can effectively promote

the performance of PolSAR image semantic segmentation.

However, most of the existing PolSAR image segmentation

methods usually consider only one of them. It is worth

noting that although the prevailing deep neural networks are
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capable of learning discriminative and data-driven features,

their performance is subject to the availability of large amounts

of annotated data which require great efforts of experienced

human annotators. In addition, the time consumption of deep

neural networks is usually high. Therefore, to make the most

advantage of contextual semantic information, and reduce

the time consumption and the reliability on annotations, we

propose a new PolSAR image semantic segmentation pipeline

in this work. The main inspiration is to integrate multi-scale

texture features and semantic smoothness priors into a prin-

cipled framework. Specifically, we use the three-dimensional

discrete wavelet transform (3D-DWT) to extract multi-scale

PolSAR features. By incorporating the connections between

features in the third dimension, the 3D-DWT features are

more representative than traditional 2-dimensional (2D) tex-

ture features, yet could be extracted without complex learning

process. Then, we utilize Markov Random Field (MRF) to

refine the segmentation results by enforcing label smoothness

and the alignment of label boundaries with image edges.

It can effectively counteract speckle noise while achieving

better spatial connectivity and classification accuracy. The

main contributions of this work are summarized as follows:

(1) We formulate the spatial semantic features using 3D-

DWT and label smoothness priors using MRF into a principled

framework. To the best of our knowledge, this is the first

work that simultaneously incorporates 3D-DWT and MRF into

PolSAR image semantic segmentation.

(2) Different from traditional MRF models which only

incorporate label smoothness priors, our defined MRF not

only encourages the spatial consistency but also enforces

the alignment of label boundaries with image edges. Belief

propagation (BP) algorithm is employed to optimize the MRF

model due to its fast convergence.

(3) To evaluate the performance of the proposed method,

we conduct extensive experiments on three real benchmark

PolSAR images. Experimental results show the advantages of

our proposed method compared with the other eight competing

PolSAR image semantic segmentation methods.

The remainder of this paper is organized as follows. We

introduce the preliminaries, including the related works of

PolSAR image semantic segmentation, 3D-DWT and graph

model in Section II. Then, we describe the proposed method,

including the raw polarimetric indicators, 3D-DWT feature

extraction, SVM-MRF based supervised classification model

and the model optimization in Section III. Section IV reports

experimental results on three real benchmark PolSAR images.

Conclusions and future works are discussed in Section V.

II. PRELIMINARIES

A. Related works

Considering the foundations of current PolSAR image

semantic segmentation methods, we broadly divide them

into three categories: scattering mechanism-based methods,

statistics-based methods and machine learning-based methods,

which will be detailed below.

1) Scattering mechanism-based methods: This category of

methods conduct segmentation based on diverse polarimetric

target decomposition methods, from which various terrain

classes can be derived with explicit physical meanings. The

most classical scattering mechanism-based method is the H/ᾱ
segmentation approach proposed by Cloude and Pottier [14].

In this method, eigenanalysis is firstly performed on polari-

metric coherency matrix, constructing a 2-D feature plane

using the extracted scattering entropy H and average scattering

angle ᾱ. The H/ᾱ plane is then divided into eight subspaces

which represent diverse scattering mechanisms. Based on

this subspace division, each pixel can be projected to one

of the eight primary zones, determining its terrain category

finally. Other commonly employed target decomposition meth-

ods include Freeman decomposition [15] and four-component

decomposition [16] etc.

2) Statistics-based methods: With the development of po-

larimetric theories, researchers discovered that polarimetric

data comply with certain statistical laws. Lee et al. proposed

the complex Wishart distribution for both coherency matrix

and covariance matrix. Based on this hypothesis, a Wishart

distance was defined to reveal the similarity of a pixel to

a certain terrain clustering center [17], [18]. Lee et al. in-

novatively combined polarimetric distribution with target de-

composition theories [19]. Specifically, an initial segmentation

is firstly conducted using H/ᾱ decomposition, and then the

segmentation map is iteratively updated based on Wishart

distance. In addition to the complex Wishart distribution, other

polarimetric statistical hypotheses as K-distribution [20] and

U -distribution [9] were also brought forward and employed in

PolSAR image semantic segmentation task [4], [10], [21].

3) Machine learning-based methods: Machine learning ap-

proach has dominated the PolSAR image semantic segmenta-

tion task in recent years. Bayesian classification method was

firstly introduced to PolSAR image segmentation by Kong et

al [22]. Pottier et al. [23] and Antropov et al. [24] applied

neural network in PolSAR image semantic segmentation.

Support vector machine (SVM) was extensively employed in

this task [1], [2], [25], [26], producing desirable segmenta-

tion results due to its elaborate optimization architecture and

good generalization ability. Most recently, the advent of deep

learning techniques provided a new way for PolSAR image

segmentation. Zhou et al. [3] and Bi et al. [4], [5] exploited

convolutional neural network (CNN) to extract hierarchical

polarimetric features. Deep belief network was applied to

PolSAR image segmentation by Liu et al [27]. Zhang et al.

[28] utilized stacked sparse autoencoder to learn deep spatial

sparse features of PolSAR. Jiao et al. [29] designed a PolSAR

image segmentation method based on deep stacking network.

Chen et al. [30] proposed a novel semicoupled projective

dictionary pair learning method (DPL) with stacked auto-

encoder (SAE) for PolSAR image classification. The SAE

is utilized to obtain hierarchical features, while SDPL is

employed to reveal the intrinsic relationship between different

features and perform classification. MRF technique has also

been employed in PolSAR image segmentation task. Wu et

al. [8] proposed a region-based PolSAR image segmentation

method which combines MRF and Wishart distribution. Liu
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Fig. 1. Illustration of our proposed method. The whole pipeline includes three steps. In step 1, based on the raw features extracted from PolSAR data,
3D-DWT is employed to generate spatial texture features. In step 2, SVM is used to generate class probabilities and a preliminary classification map. In step
3, MRF optimization is conducted to refine the classification map.

et al. [31] designed a PolSAR image segmentation method

based on Wishart triplet Markov field (TMF). Masjedi et al.

[2] incorporated texture features and contextual information

realized by MRF technique in PolSAR image segmentation.

Doulgeris et al. [9] put forward an automatic MRF segmenta-

tion algorithm based on U -distribution for PolSAR images. In

addition, these are new trends of multi-dimentional PolSAR

image analyses. Xu et al. [32], [33] recently proposed novel

POLSAR image analysis methods which exploit spatial and

aspect dimensions jointly with polarimetric features.

Investigating the theories and performances of these Pol-

SAR image semantic segmentation methods, we can discover

that: 1) Methods falling into the first two categories are simple,

fast, and physically interpretable, however, the segmentation

results are coarse and imprecise, making them only suit-

able for preliminary analysis of PolSAR data. 2) Machine

learning-based methods, especially the supervised methods,

achieve better segmentation performance than the former two

categories of methods. However, they rely heavily on large

amounts of annotated data, even for the most popular deep

learning-based methods. In addition, the deep learning-based

methods usually consume a long running time. 3) By in-

corporating contextual information, MRF effectively improves

segmentation performance and enforces label smoothness.

Inspired by the above analysis, we aim to explore more

discriminative polarimetric features and fully utilize the con-

textual information of PolSAR data in this work. Specifically,

3D-DWT is firstly employed to extract multi-scale contextual

polarimetric features. Moreover, a newly defined MRF model

is further applied to refine the segmentation map, which

not only enforces label smoothness, but also encourages the

alignment of label boundaries with image edges.

B. Wavelet analysis

The wavelet transform (WT) [38] is a popular mathematical

tool for time-frequency analysis. Through dilating and shifting

operation, sets of wavelets are generated from the original

mother wavelet, which can be used to analyze different

proportions of signals. Specific for image processing, the

high-frequency proportion represents small-scale details, such

as the edges of images, while the low-frequency proportion

corresponds to the smoothing part of images.

The advent of multi-resolution analysis (MRA) [39] dramat-

ically promoted the practical application of wavelet analysis.

MRA aims at constructing a set of orthogonal wavelet bases

which can infinitely approximate L2(R) space in the frequency

domain. This provides an efficient way to analyze various

proportions of signals. Owing to its outstanding localization

characteristics and multi-resolution analysis ability, wavelet

analysis has been extensively applied in multiple fields, includ-

ing image processing, audio analysis, and theoretical physics

etc [1], [2]. The commonly utilized wavelets include Haar

wavelet, Daubechies wavelet, and Morlet wavelet etc.

C. Graph Model in Image Segmentation

Graph model is one of the most important models in image

processing owing to its solid mathematical foundation [40]. It

provides a convenient approach to depict the local consistency

between pixels in an image. For image segmentation task, an

undirected graph G =< V, E > can be established over the

image, where image node set V corresponds to pixels, and

undirected edge set E represents the neighborhood relation-

ship, i.e., similarities, between pixels [41]. Then the labels

of V spread through edges E using an optimization function,

realizing segmentation of graph G.

If positivity and Markovianity of variables on the graph

are satisfied, the graph can be regarded as an MRF. Image

segmentation problem, with class labels as variables, is a

typical MRF solving problem. Based on the Hammersley-

Clifford theorem and Bayesian theory [42], the labeling task

in MRF can be transformed to solving a MAP problem.

III. THE PROPOSED METHOD

A. Overview of the Proposed Method

In this section, we will first define some notations, and then

introduce the pipeline of the proposed method. For a given

PolSAR image, the raw PolSAR feature data is defined as

X ∈ RH×W×D, where H and W are the height and width of

the PolSAR image, and D is the dimension of the selected raw

polarimetric indicator as described in Section II. The labeled
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training samples are denoted as (xi,yi)
n
i=1, where n≪ H ×

W , yi ∈ {1, · · ·K}. Here, K is the total number of classes.

The proposed method is designed to assign label yi to each

pixel i(i ∈ 1, · · · , N), where N = H×W . We further denote

Y = {yi} in the following sections.

Taking the Flevoland area data set 1 as example, Fig. 1

illustrates the framework of the proposed method, which

formulates 3D-DWT contextual feature extraction and SVM-

MRF classification into a unified model. Raw polarimetric

indicators are firstly extracted from the original polarimetric

matrices (Section III.B). We then implement 3D-DWT feature

extraction on the raw features to obtain multi-scale contextual

features (Section III.C). The consequently executed SVM-

MRF classification method consists of two subproblems, i.e.,

SVM learning-subproblem and label propagation-subproblem

(Section III.D-E). We will detail all the above components in

the following paragraphs.

B. Polarimetric Raw Indicators

We first define a raw polarimetric feature set as input of our

proposed method. All the features are directly drawn from the

second-order 3× 3 complex coherency polarimetric matrix T ,

which are shown as:

{SPAN, T11, T22, T33, |T12|, |T13|, |T23|}
In the employed 7-dimensional (7D) feature set, SPAN

(SPAN=T11+T22+T33) denotes the total polarimetric power.

The remaining six features indicate the intensities of the

diagonal and upper triangle elements of complex coherency

polarimetric matrix T . Since the 7D features are all trans-

formed from the original scattering matrix, they represent

different spectrums of polarimetric signals, yet interrelated

to each other. Therefore, they can be considered as diverse

information channels of the terrain targets, which makes it a

natural and straightforward choice to perform 3D-DWT on the

polarimetric feature cube.

C. 3D-DWT Feature Extraction

Define f(x) as a quadratic integrable function, and φ(x) as

the mother wavelet function which satisfies the admissibility

condition. The wavelet analysis is defined as:

Wφf (a, b) =< f(x), φa,b(x) >=

∫
f(x)

1√
a
φ(
x− b
a

)dx, (1)

where φa,b(x) is wavelet basis function which is obtained from

mother wavelet φ(x) through dilating and shifting operation. a
is called scaling parameter and b is called shifting parameter.

Continuous wavelet transform (CWT) is greatly suitable for

data analysis due to the detailed description of signals. How-

ever, CWT is computation resource costly and information

redundant due to the similarity between wavelet components,

which makes it inapplicable in practical applications. To

address this problem, CWT is transformed to discrete wavelet

transform (DWT) through discretization on both time domain

and frequency domain.

Generally, dyadic discretization is carried out on scaling

parameter a as 1, a0, a20, a30, ..., aj0. Under scale level aj0,

taking b0 as the shifting step, b is discretized as 0, aj0b0, 2aj0b0,

..., kaj0b0. Then the DWT is written as:

Wφ
m,n(f) =< f(x), φm,n(x) >=

∫
f(x)φm,n(x)dx, (2)

where φm,n(x) = a
−m/2
0 φ((x − nb0am0 )/am0 ), a0 and b0 are

dyadic scale parameter and shifting parameter, respectively.

According to multi-resolution analysis (MRA), function

f(x) can be approximated using a linear combination of

scaling function ψ(x) and wavelet function φ(x) which rep-

resent low-frequency approximation and high-frequency detail

respectively. A discrete signal f [n] can be approximated by

f(n) =
1√
M

∑
k

Cψ[j0, k]ψj0,k[n]

+
1√
M

∞∑
j=j0

∑
k

Dφ[j, k]φj,k[n], (3)

where j0 is any starting scale, Cψ[j0, k] is called scaling

coefficient, and Dφ[j, k] is called wavelet coefficient. In DWT,

their values are:

Cψ[j0, k] =
1√
M

∑
n

f(n)ψj0,k(n),

Dφ[j, k] =
1√
M

∑
n

f(n)φj,k(n), (4)

where f [n], ψj0,k[n] and φj,k[n] are discrete functions defined

on [0,M − 1], containing totally M points.

Input: x
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Fig. 2. 3D-DWT feature extraction. The PolSAR data cube is decomposed
in two scale levels. At each scale level, convolutions with all combinations
of high-pass and low-pass filters in three dimensions yield eight different
PolSAR data cubes. Then, the PolSAR data cube filtered by the low-pass
filters in three dimensions is further decomposed in the next scale level.

In this work, we apply the 3D-DWT technique to polari-

metric data cube, which encodes the contextual information to

different scales. It is noteworthy that 3D-DWT can be achieved

by applying 1D-DWTs to each of the three dimension. For this

application, MRA decomposes the original signal into low-

frequency part and high-frequency part, and then continual-

ly decomposes low-frequency part while keeping the high-

frequency part unchangeable. In practice, scaling and wavelet

functions are achieved using a filter bank [L,H], where L
are low-pass filters with coefficients Cψ[j, k] and H are high-

pass filters with coefficients Dφ[j, k]. The Haar wavelet is

employed in this work, where Cψ[j, k] = (1/
√
2, 1/
√
2), and

Dφ[j, k] = (−1/
√
2, 1/
√
2). The decomposition structure as

shown in Fig.2 is employed in this work. After the 3D-DWT
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decomposition, 15 sub-cubes Z1, Z2, ..., Z15 are generated.

It should be noted that the down-sampling step is left out

in the process, and thus each sub-cube has the same size

with the original polarimetric data cube. For pixel (i, j), the

3D-DWT wavelet coefficients can be concatenated to below

feature vector form.

z(i, j) = (Z1(i, j, ·), Z2(i, j, ·), · · · , Z15(i, j, ·)), (5)

To further enforce spatial consistency, a 3× 3 square mean

filter is applied to the absolute values of 3D-DWT wavelet

coefficients following:

Z̄k(i, j) =
1

9

i+1∑
m=i−1

j+1∑
n=j−1

|Zk(m,n, ·)|, k = 1, 2, · · · , 15, (6)

We denote Z ∈ RH×W×15D as the final concatenated

feature vector in the following sections. With the 7D raw

feature set (described in Section III.B) as input, the 3D-DWT

feature extractor outputs 105-dimensional texture features,

acting as input for the SVM classifier.

D. SVM-MRF Classification Model

Given the extracted 3D-DWT features as input, we next

introduce our proposed SVM-MRF PolSAR image semantic

segmentation model. It aims to estimate class label Y with

observation Z (we use the 3D-DWT features Z instead of the

original raw features X). To serve this propose, we define an

energy function given by:

E = Ed + Es, (7)

where Ed indicates the SVM data loss term, and Es denotes

the label smoothness term. The dense class labels Y can be

predicted by minimizing this energy function,

1) SVM data loss term: This term is designed to predict

class labels based on the contextual 3D-DWT features, which

follows the multi-class probabilistic SVM [46] as

Ed = −
N∑
i=1

logP (yi|zi), (8)

where P (yi|zi) denotes the probabilities of pixel i belonging

to class yi with feature zi. Minimizing this term encourages

that the class label with higher output probability will be

preferred. The larger the probability of a pixel belonging to a

certain class, the more probable that the pixel is assigned with

the corresponding label.

2) Label smoothness term: The label smoothness term is

defined to enforce the smoothness of estimated class label map

and alignment of class label boundaries with image edges,

which is defined as

Es = αs

N∑
i=1

∑
j∈N (i)

Sij , (9)

where αs is the label smoothness factor. N (i) is the neigh-

boring pixel set of pixel i. Sij is defined as

Sij = |yi − yj | exp(−
‖vi − vj‖22

2σ
), (10)

where vi is a feature vector located at pixel i, which should be

chosen as the features whose values significantly change across

edges in image. We take vi as the Pauli matrix components

in this work. σ indicates the mean squared distance between

features of two adjacent pixels i and j. The label smoothness

loss function encourages the label boundaries to align with

strong image edges. For pixels i and j within flat regions,

exp(−‖vi−vj‖
2

2

2σ ) in Eq. (10) is large, then minimizing Sij will

intensify the chance that labels yi and yj take same class

label. However, for neighboring pixels spanning strong edges,

exp(−‖vi−vj‖
2

2

2σ ) is smaller (or even near to zero), thus the

inconsistency between the class labels of neighboring pixels i
and j is allowable during optimization.

Summarized from the above formulations, the final integrat-

ed energy function can be written as

E = −
N∑
i=1

logP (yi|zi) + αs

N∑
i=1

∑
j∈N (i)

Sij , (11)

E. Optimization

Label Y can be solved by minimizing the energy function

defined in Eq. (11). We decompose this optimization problem

into two subproblems, i.e. SVM learning-subproblem and

Label propagation-subproblem.

1) SVM learning-subproblem: For this subproblem, a

multi-class probabilistic SVM classifier is firstly trained using

a preselected training set based on 3D-DWT features. Next,

the learned classifier is employed to predict pixel-wise class

probabilities of the whole data set, providing input for the

label propagation-subproblem.

2) Label propagation-subproblem: Based on the trained

classifier in SVM learning-subproblem, this subproblem focus-

es on updating label Y while incorporating label smoothness

priors. This label assignment problem is a combinatorial

optimization problem, which can be regarded as a standard

MRF model [10]. The labels Y over the graph constitute an

MRF, and Eq. (11) is the energy function on it. The two

terms of the energy function enforce label constraints from the

agreement between SVM predictions and target class labels,

and class label smoothness, respectively. Minimizing these two

terms enforces that the predicted class labels should be smooth

and consistent with the SVM predictions.

Labeling problem in an MRF is a NP-hard problem. How-

ever, optimal solution can be approximately achieved using

optimization algorithms [43], [44]. Belief propagation (BP)

algorithm [44] iteratively optimizes MRF using an “up-down-

left-right” message passing schedule in a linear time complex-

ity, which makes the model converge very quickly. Therefore,

BP algorithm is employed to optimize our defined MRF model

in this work.

Figure 3 illustrates the message passing policy of BP

optimization algorithm. Each node i in the MRF model

corresponds to one pixel in the given PolSAR image, which

can be considered as a random value. Label yi is linked to its

3D-DWT contextual feature data zi. Let φi(zi,yi) represent

the likelihood potential of label yi given feature data zi,

taking the form of the multi-class probabilistic SVM loss term



FINAL SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 6

z
i

zj

Fig. 3. Message passing scheme in MRF model using BP algorithm.

− logP (yi = j|zi) [See Eq. (8)], ψi,j(yi,yj) stand for the

label smoothness potential that encourages label contextual

consistency between neighboring pixels i and j with form

αsSij [See Eq. (9-10)]. Then at iteration t, the message sent

from node i to its neighboring node j ∈ N (i) is given by

mt
ij(yj)← max

yi

(
∑

k∈N (i)\j

mt−1
ki (yi)− φi(zi,yi)− ψi,j(yi,yj))

(12)

With all messages initialized as 0, messages of each node

are iteratively updated and propagated to its neighboring nodes

until convergence. Finally, label yi is obtained by estimating

the maximum belief for node i, which is given by

yi = argmax
yi∈{1,...,K}

(
∑

k∈N (i)

mt
ki(yi)− φi(zi,yi)) (13)

The open source code package MRF minimization1 is em-

ployed to implement the BP algorithm.

F. Summary of the Algorithm

Algorithm 1 illustrates the pipeline of the proposed method.

We first extract raw features from the PolSAR data (Section

III.B). Then, contextual features are extracted using the 3D-

DWT technique (Section III.C). Finally, we predict class labels

by optimizing our designed SVM-MRF based supervised

learning model (Section III.D-E).

Algorithm 1 PolSAR Image Semantic Segmentation Using

3D Discrete Wavelet Transform and Markov Random Field

Input: Pixel-wise coherence matrix T , ground truth class

labels, pairwise smoothness parameter αs
Output: Pixel-wise class labels Y

1: Extract raw features X ∈ RH×W×D

2: Convert X to Z ∈ RH×W×15D using 3D-DWT feature

extraction technique

3: Randomly select a proportion of pixels with ground truth

class labels as training samples and train a multi-class

SVM classifier

4: Estimate class probabilities of pixels using the trained

SVM classifier

5: Predict the class labels Y by solving an MRF model with

BP optimization algorithm

6: end

1[Online]. Available: http://vision.middlebury.edu/MRF/code/

(a1)

Built-up areas

Wood land
Open areas

(a2)

Water
Barley
Peas
Stembean
Beet
Forest
Bare soil
Grass
Rapeseed
Lucerne
Wheat 1
Wheat 2
Building
Potato
Wheat 3

Potato
Fruit
Oats
Beet
Barley
Onions
Wheat
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Maize
Flax
Rapeseed
Grass
Lucerne

(b1) (b2)

(c1) (c2)

Fig. 4. Experimental images. (a1) PauliRGB image of Flevoland area data set
1. (a2) Ground truth class labels and color codes of Flevoland area data set
1. (b1) PauliRGB image of Flevoland area data set 2. (b2) Ground truth class
labels and color codes of Flevoland area data set 2. (c1) PauliRGB image of
Oberpfaffenhofen area data set. (c2) Ground truth class labels and color codes
of Oberpfaffenhofen area data set.

IV. EXPERIMENTS

A. Experimental Data and Settings

In this section, experiments on three real PolSAR data sets

are conducted to validate the performance of the proposed

method. Figure 4 displays the experimental images employed

for evaluation. The first image was acquired by NASA/JPL

AIRSAR on August 16, 1989. It is an L-band PolSAR image

with size 750×1024. We denote this data set as Flevoland

area data set 1 in following sections. Figure 4(a1) presents the

PauliRGB image of Flevoland area data set 1, and Fig. 4(a2)

shows the ground truth class labels and color codes. There are

15 classes in total, including water, barley, peas, stembean,

beet, forest, bare soil, grass, rapeseed, lucerne, wheat 1,

wheat 2, building, potato, and wheat 3.

The second data set is another L-band image collected by

AIRSAR over Flevoland area in 1991. The size of this image

is 1020×1024. This data set is denoted as Flevoland area data

set 2 in Section IV. Figure 4(b1) displays the PauliRGB image

of Flevoland area data set 2. The ground truth class labels

and color codes are presented in Fig. 4(b2). Flevoland area

data set 2 includes 14 classes, which are potato, fruit, oats,

beet, barley, onions, wheat, beans, peas, maize, flax, rapeseed,

grass, and lucerne, respectively.

Figure 4(c1) shows the PauliRGB image of the third ex-

perimental data set. It is an L-band image obtained by E-

SAR, German Aerospace Center, over Oberpfaffenhofen area

in Germany. The size of this image is 1300×1200. The ground

truth class labels and color codes are given in Fig. 4(c2).

There are three labeled classes in the image: built-up areas,
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(a) (b) (c) (d)

Fig. 5. Ablation study of our proposed method. (a) SVMNoDWT. (b) SVM2D. (c) SVM3D. (d) SVM3D-BPMRF

TABLE I
ABLATION STUDY OF OUR PROPOSED METHOD

Method Water Barley Peas Stembean Beet Forest Bare soil Grass

SVMNoDWT 96.12 90.66 88.02 80.51 73.49 83.53 74.46 45.27
SVM2D 94.37 95.23 92.57 95.09 87.15 90.83 92.46 59.07
SVM3D 97.23 95.88 92.50 95.53 94.76 93.75 96.18 67.04

SVM3D-BPMRF 98.42 97.66 97.38 98.20 99.64 98.80 99.75 83.22

Method RapeSeed Lucerne Wheat 1 Wheat 2 Building Potato Wheat 3 Overall CA

SVMNoDWT 72.86 76.67 64.95 82.25 45.85 81.57 88.30 79.98
SVM2D 79.60 90.19 83.74 86.26 85.58 89.89 91.36 87.66
SVM3D 86.37 90.20 79.23 87.97 94.56 90.90 93.21 90.57

SVM3D-BPMRF 95.53 95.88 89.70 96.86 99.32 97.83 98.87 96.72

wood land, and open areas. The void areas are unlabeled class,

which are not taken into consideration during the experiments.

In the experiments, we first conduct ablation study in Sec-

tion III.B, justifying the effectiveness of the two key and novel

components of the proposed method: 3D-DWT contextual

features and MRF optimization. Then parameter analysis will

be presented in Section III.C. Finally, in Section III.D, we

demonstrate the effectiveness of the proposed method by

comparison with the other eight methods listed as below.

(1) KNN method [7] which employs a Euclidean distance

defined on the basis of three polarimetric PauliRGB channels.

(2) SupWishart method [19] which is supervised method

based on Wishart statistical hypothesis of PolSAR data.

(3) SupWishart-PMRF method which combines supervised

Wishart semantic segmentation with Potts MRF model.

(4) MLRsubMLL method [47] which combines subspace

multinomial logistic regression and MRF. Graph cut method

is employed to solve the MRF in this method.

(5) GGW-BPMRF method. The original paper [2] employs

GLCM, Gabor and wavelet transforms of PauliRGB data as

texture features, and SVM with Potts MRF model as classifier.

To fairly evaluate the performance of different features, we

change the Potts MRF model to BP MRF model instead.

(6) SVM3D-GCMRF method [48] which exploits 3D-DWT

texture features as input feature of SVM classifier and feature

similarity model for MRF optimization. Graph cut method is

utilized to solve the MRF model.

(7) CNN method [3] which applies deep neural network in

PolSAR image semantic segmentation.

(8) CNN-BPMRF method which integrates CNN with BP

MRF into a unified framework.

We conducted quantitative comparisons on the three experi-

mental data sets, wherein the classification accuracies and time

consumptions are reported and analyzed. For convenience, we

define the classification accuracy (CA) of a class as the ratio

of the number of pixels correctly classified for the class to the

total number of pixels in this class. The Overall CA is defined

as the ratio of the number of correctly classified pixels in

the whole image to the total number of pixels in the image.

For all the experiments, we randomly select 1% pixels with

ground truth class labels as training samples. For all SVM-

based methods, in order to determine the SVM parameters,

we randomly select 200 training samples from the training

set to perform cross-validation. It should be noted that the

cross-validation time consumption is included in the time cost

analysis in Section IV. All experiments are implemented on a

laptop with 2.6GHz CPU and 16GB memory.

B. Ablation Study

To evaluate the effectiveness of the two key components of

the proposed method: 3D-DWT contextual features and MRF

optimization, we conduct four groups of experiments:

(1) Using raw polarimetric features and SVM classification,

without 3D-DWT contextual features and MRF optimization

(Denoted as SVMNoDWT).

(2) Using 2D-DWT texture features, i.e., conducting DWT

only on width and height dimensions but not on feature

dimension, and SVM classification, without MRF optimization

(Denoted as SVM2D).

(3) Using 3D-DWT features and SVM classification, with-

out MRF optimization (Denoted as SVM3D).

(4) Using 3D-DWT features and SVM classification with

MRF optimization (Denoted as SVM3D-BPMRF).

Taking Flevoland area data set 1 for example, Fig. 5

illustrates the semantic segmentation results under the above

four comparison scenarios. Figure 5(a) shows the semantic

segmentation result of SVMNoDWT, where a great deal of

misclassified pixels can be observed. In the region marked by

black rectangle, an appreciable part of bare soil pixels are

misclassified as water class. In addition, we can find distinct

class confusions between rapeseed and wheat 1 [highlighted

by blue rectangles], and wheat 2 and beet [highlighted by

green rectangle]. Except for the above class confusions, the
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whole class label map exhibits a speckle-like appearance. The

reason accounting for these phenomena is that the representa-

tive ability of the raw features is weak, and the speckle noise

is not effectively depressed without encoding the contextual

information. Figure 5(b) displays the semantic segmentation

result based on 2D-DWT features. We can discover from this

figure that the speckle noise is greatly mitigated compared with

Fig. 5(a). The semantic segmentation result using 3D-DWT

contextual features is presented in Fig. 5(c). Compared with

the class label map in Fig. 5(b), less isolated pixels and better

spatial consistency can be observed in this figure, which exact-

ly illustrates the stronger feature discrimination and contextual

representation of 3D-DWT than 2D-DWT. The segmentation

result of our proposed method is depicted in Fig. 5(d). It is

noteworthy that the segmentation result after performing MRF

optimization is in better conformity with the ground truth class

labels, and exhibits less intra-class variability [37] and clearer

label boundaries, which demonstrates that MRF optimization

can effectively counteract the speckle noise and promote the

contextual consistency.

Tables I lists the numerical results of the four comparison

scenarios. We can conclude from the table that our proposed

method outperforms SVMNoDWT, SVM2D, and SVM3D by

16.74%, 9.06% and 6.15% respectively, which justifies the

effectiveness of feature extraction using 3D-DWT and the label

smoothness enforcement of MRF. It is noticeable the Overall

CA value using 3D-DWT is 2.91% higher than 2D-DWT,

which validates the effectiveness of the wavelet transforms

on the third dimension.

Fig. 6. The influence of αs on classification accuracy.

C. Parameter Analysis

For the proposed method, parameter αs which determines

the tightness of label smoothness constraint significantly in-

fluences the final segmentation result. Larger αs indicates that

label smoothness term plays a more important role during the

optimization, therefore tends to generate smoother semantic

segmentation result. However, too large αs will lead to loss

of details. Therefore, we next analyze the impact of parameter

αs, to reach a compromise between the classification accuracy

and detail preservation.

Figure 6 shows the influence of parameter αs on the Overall

CA value, where αs takes value from 0 to 10 with step

size 0.5. αs=0 corresponds to the scenario without MRF

optimization. It can be observed obviously from Fig. 6 that

the classification accuracy increases significantly with the

increment of αs when αs is less than 3. When αs grows larger

than 3, the increase tendency of Overall CA value slows down

and roughly converges at αs=5. When αs>5, the αs increase

brings marginal improvement on classification accuracy.

To intuitively illustrate the influence of parameter αs, taking

Flevoland area data set 1 for example, we show the semantic

segmentation results with αs taking three typical values 1, 5

and 10 in Fig. 7. We can observe from Fig. 7(a) that when

αs takes the value 1, although the whole class label map is

smoother than the case without MRF optimization as shown

in Fig. 5(c), some speckle-like and isolated pixels still scatter

in the image. Moreover, the label boundaries are not clear

and straight. Figure 7(b) exhibits the semantic segmentation

result with αs = 5. We can discover from the figure that the

speckle noise is better depressed than the result shown in Fig.

7(a), and the label boundaries are well aligned with the image

edges. However, when αs increases to value 10, although

the whole image shows favorable spatial connectivity, many

terrain details fade out or even disappear in the segmentation

map, especially the thin and small regions. For example, the

bridge in the right middle part and the road in the middle

bottom part of the image [marked by black rectangles] get

broken after strong smoothing. Therefore, to make a balance

between the spatial connectivity and detail preservation, αs
takes the value 5 in the following experiments.

D. Results and Comparisons

1) Flevoland Area Data set 1: The class label maps of

Flevoland area data using the nine compared methods are

presented in Fig. 8, and the CA values and time consumptions

are reported in Table II.

Figure 8(a)-(b) illustrate the class label maps using KNN

and SupWishart methods respectively. We can find a great

number of miscellaneous labels in these two figures [marked

by the black and blue rectangles in Fig. 8(a)-(b)]. This is

because the KNN and Wishart distances are not discriminative

enough to distinguish the confused classes with similar scatter-

ing mechanisms. SupWishart-PMRF method integrates Potts

MRF priors with SupWishart method, achieving better spatial

connectivity. However, the confusion between water and bare

soil, rapeseed and wheat 1 classes can still be noticeably

observed [marked by the black and blue rectangles in Fig.

8(c)]. Figure 8(d) presents the class label map of MLRsubMLL

method. We can find obvious ambiguities between rapeseed

and wheat 3 classes, and rapeseed and wheat 1 classes [marked

by the blue rectangle in Fig. 7(d)]. In addition, MLRsubMLL

method fails to discriminate grass class [highlighted by black

rectangle in Fig. 7(d)]. The numerical results in Table II show

that the Overall CA values of KNN, SupWishart, SupWishart-

PMRF, and MLRsubMLL lag behind our proposed method by

45.88%, 26.72%, 23.23% and 22.81% respectively.

To better validate the effectiveness of our proposed method,

we compare it with four state-of-the-art methods, i.e., GGW-

BPMRF, SVM3D-GCMRF, CNN and CNN-BPMRF methods.

Investigating Fig. 8(e)-(i) and Table II, we can conclude:

(1) 3D-DWT features are more representative than com-

binations of 2D texture features. Using the same BP MRF
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(a) (b) (c)

Fig. 7. Semantic segmentation results for Flevoland area data with different αs. (a) αs=1 (b) αs=5 (b) αs=10.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Semantic segmentation results of different methods on Flevoland area data set 1. (a) KNN. (b) SupWishart. (c) SupWishart-PMRF. (d) MLRsubMLL.
(e) GGW-BPMRF. (f) CNN. (g) CNN-BPMRF. (h) SVM3D-GCMRF. (i) SVM3D-BPMRF.

model, the superiority of the Overall CA value of our proposed

method over GGW-BPMRF is owing to the stronger ability of

3D-DWT features in distinguishing diverse terrains.

(2) CNN fails to differentiate a number of classes with

similar scattering mechanisms [marked by black and blue

rectangles in Fig. 8(f)]. This is because only 1,677 train-

ing samples (1% pixels with ground truth class labels) are

available in this experimental set, which results in insufficient

tuning of the CNN filters due to the deep architecture of the

network. The Overall CA values of CNN and CNN-BPMRF

methods fall behind our proposed method by 6.54% and 2.89%

respectively. Besides, our proposed method consumes much

less time (5 minutes 6.0 seconds) than CNN (35 minutes 26.7

seconds) and CNN-BPMRF (37 minutes 15.1 seconds).

(3) With the same 3D-DWT features, our proposed method

marginally outperforms SVM3D-GCMRF method by 1.68%.

However, SVM3D-GCMRF method consumes 6 hours 30

minutes 52.3 seconds on the model convergence, while our

proposed method only costs 5 minutes 6.0 seconds. The

distinct lower time consumption makes our proposed method

more practical in real applications.

The above conclusions gracefully demonstrate the strong

discriminative ability of 3D-DWT features under low annota-

tion scenario, and the favorable label smoothness enforcement

of MRF optimization with low time consumption.

2) Flevoland Area Data set 2: Figure 9 illustrates the class

label maps of the nine compared methods on Flevoland area

data set 2. The numerical results of their CA values and time

consumptions are reported in Table III. Observing Fig. 9(a)-(i)

and Table III, we highlight below main observations:

(1) Without utilizing texture features or MRF optimization,

the speckle noise in Fig.8 (a)-(b) greatly degrades the seg-

mentation performance. The erroneous classifications of KNN

and SupWishart methods are severe, where oats and barley

classes are totally confused [marked by black rectangles]. In

addition, the two images present granular appearances, which

is attributed to the impact of speckle noise.

(2) The performance of CNN is undesirable when the

annotated data are scarce. We can discover from Table III

that the CA values of CNN on onions, beans, maize and grass

classes are 32.86%, 53.97%, 61.09%, and 66.06% respectively,

which far trails behind the performance of our proposed

method. This is because the training samples of these four

classes are too limited for CNN to adequately train the deep-
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TABLE II
CAS (%) OF FLEVOLAND AREA DATA SET 1 WITH DIFFERENT METHODS

Method Water Barley Peas Stembean Beet Forest Bare soil Grass

KNN [7] 18.84 88.73 62.00 25.24 70.40 41.25 81.31 38.00
SupWishart [19] 52.61 45.77 88.33 83.01 74.98 86.42 59.29 65.09
SupWishartMRF 54.84 50.70 95.69 92.41 76.95 92.39 56.43 71.55

MLRsubMLL [47] 91.94 81.54 0.02 84.79 80.50 96.25 98.10 0.00
GGW-BPMRF 92.89 92.35 88.71 78.49 90.22 96.80 62.93 56.15

CNN [3] 95.38 92.48 96.19 97.02 96.11 97.95 79.62 77.50
CNN-BPMRF 97.42 96.17 98.28 97.78 98.60 98.65 91.64 83.51

SVM3D-GCMRF [48] 96.37 97.35 95.88 96.88 95.76 97.66 100.00 82.01
Our Method 98.42 97.66 97.38 98.20 99.64 98.80 99.75 83.22

Time Cost RapeSeed Lucerne Wheat 1 Wheat 2 Building Potato Wheat 3 Overall CA

5.8 s 35.98 46.03 46.97 56.20 65.71 49.01 65.79 50.84
10.2 s 46.96 86.77 14.71 92.38 84.08 68.67 83.89 70.00
19.2 s 59.37 84.92 13.15 97.25 80.95 65.16 87.16 73.49

6 h 28 m 21.8 s 90.87 91.93 38.42 64.08 86.39 91.09 79.47 73.91
4 m 10.9 s 74.57 69.83 47.36 92.61 60.68 75.84 95.53 82.48

35 m 26.7 s 76.16 93.57 78.53 87.46 79.86 90.26 94.57 90.18
37 m 15.1 s 81.06 94.62 88.47 92.11 84.49 94.10 97.22 93.83

6 h 30 m 52.3 s 91.03 94.66 91.61 96.23 77.55 94.70 97.49 95.04
5 m 6.0 s 95.53 95.88 89.70 96.86 99.32 97.83 98.87 96.72

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Semantic segmentation results of different methods on Flevoland area data set 2. (a) KNN. (b) SupWishart. (c) SupWishart-PMRF. (d) MLRsubMLL.
(e) GGW-BPMRF. (f) CNN. (g) CNN-BPMRF. (h) SVM3D-GCMRF. (i) SVM3D-BPMRF.

structured network.

(3) MLRsubMLL and SVM3D-GCMRF methods which

employ graph cut algorithm to optimize the MRF model,

consume far more time (12 hours 2 minutes 52.2 seconds

for MLRsubMLL and 12 hours 9 minutes 38.2 seconds

for SVM3D-GCMRF, respectively) than methods using BP

algorithm (5 minutes 11.5 seconds for GGW-BPMRF, and 7

minutes 22.9 seconds for our proposed method).

(4) Our proposed method again yields the best Overall CA

value among the nine competitors. The combination of 3D-

DWT features and MRF optimization significantly alleviates

the negative impact of speckle noise, achieving preferable

segmentation performance and contextual consistency.

3) Oberpfaffenhofen Area Data set: The semantic segmen-

tation results of different methods on Oberpfaffenhofen area

data set are presented in Fig. 10, and the numerical results of

CA values and time consumptions are listed in Table IV.

The Oberpfaffenhofen area data set has two characteristics.

Firstly, its size (1300 × 1200) is the largest among the three

experimental data sets. Secondly, the training set size of this

data set is 13,721, which is much larger than Flevoland area

data set 1 (1,677 training samples) and Flevoland area data

set 2 (1,353 training samples). The above two characteristics

make Oberpfaffenhofen area data set a favorable experimental
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TABLE III
CAS (%) OF FLEVOLAND AREA DATA SET 2 WITH DIFFERENT METHODS

Method Potato Fruit Oats Beet Barley Onions Wheat Overall CA

KNN [7] 67.92 80.97 81.64 39.93 30.99 18.54 53.68 48.89
SupWishart [19] 87.24 26.33 88.52 67.93 32.39 17.18 77.85 65.78
SupWishartMRF 98.46 13.37 94.98 83.99 27.32 11.92 89.89 73.06

MLRsubMLL [47] 83.15 98.24 99.71 51.07 74.79 32.08 79.95 79.58
GGW-BPMRF 91.66 92.76 81.64 82.33 95.73 4.51 93.13 86.83

CNN [3] 90.18 93.82 68.36 72.37 83.09 32.86 88.49 86.16
CNN-BPMRF 92.81 96.37 83.00 76.10 87.50 33.05 93.44 89.75

SVM3D-GCMRF [48] 95.54 99.90 79.34 79.01 97.53 55.49 98.20 93.01
Our Method 95.01 99.91 79.25 78.48 98.44 57.79 98.77 93.43

Method Beans Peas Maize Flax Rapeseed Grass Lucerne Time Cost

KNN [7] 60.63 78.38 48.60 32.95 45.88 31.83 58.27 7.3 s
SupWishart [19] 38.17 89.54 60.85 85.98 74.59 38.18 74.09 13.1 s
SupWishartMRF 32.16 100.00 57.75 94.56 85.67 46.91 86.65 25.9 s

MLRsubMLL [47] 79.92 98.70 45.99 91.24 92.07 56.98 88.50 12 h 2 m 52.2 s
GGW-BPMRF 31.15 99.81 82.87 18.09 94.33 76.64 46.54 5 m 11.5 s

CNN [3] 53.97 98.47 61.09 90.17 96.55 66.06 84.69 41 m 8.4 s
CNN-BPMRF 54.90 99.21 82.17 94.19 97.92 71.00 88.96 43 m 17.6 s

SVM3D-GCMRF [48] 62.57 99.68 77.36 91.26 93.53 81.66 92.04 12 h 9 m 38.2 s
Our Method 62.88 100.00 72.84 92.92 94.09 82.24 95.67 7 m 22.9 s

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Semantic segmentation results for Oberpfaffenhofen area data set for different methods. (a) KNN. (b) SupWishart. (c) SupWishart-PMRF. (d)
MLRsubMLL. (e) GGW-BPMRF. (f) CNN. (g) CNN-BPMRF. (h) SVM3D-GCMRF. (i) SVM3D-BPMRF.

scenario for analyzing the time consumptions of different

methods. From Fig. 10 and Table IV, we can conclude:

(1) The segmentation performance and spatial connectivity

of the methods without texture features, i.e., KNN, SupWishart

and SupWishart-PMRF methods, are obviously inferior to the

remaining methods, which demonstrates the effectiveness of

texture features in PolSAR image segmentation.

(2) The performance of GGW-BPMRF, CNN-BPMRF and

our proposed method are very close to each other. Benefitting

from the contextual information incorporation using both

texture features and MRF optimization, the class label maps of

these methods present a desirable visual effect with preferable

contextual consistency and clear label boundaries while well

preserving the image details. It should be highlighted that,

due to the complex learning process, CNN-BPMRF method

consumes more time (56 minutes 18.0 seconds) than our

proposed method (15 minutes 31.9 seconds).

(3) Investigating Fig.10 (d) and (h), we can discover that the

graph cut method employed in MLRsubMLL and SVM3D-

GCMRF methods over-smooths the class label maps, where

a great number of terrain details, especially some thin and

small regions, fade out or even disappear in the segmentation

results. This may be due to the fact that compared with

Flevoland area data set 1 and Flevoland area data set 2, the
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TABLE IV
CAS (%) OF OBERPFAFFENHOFEN AREA DATA SET WITH DIFFERENT METHODS

Method Built-up areas Wood land Open areas Overall CA Time Cost

KNN [7] 57.83 23.55 99.75 72.95 1 m 25.0 s
SupWishart [19] 66.60 56.28 90.66 77.55 10.9 s

SupWishart-PMRF 70.27 55.72 90.04 77.79 33.4 s
MLRsubMLL [47] 74.52 72.28 99.68 88.07 27 h 5 m 51.2 s

GGW-BPMRF 89.25 87.38 97.26 93.28 12 m 25.3 s
CNN [3] 89.26 78.95 97.23 91.21 54 m 32.6 s

CNN-BPMRF 90.91 84.43 98.02 93.51 56 m 18.0 s
SVM3D-GCMRF [48] 80.11 92.09 93.89 90.73 27 h 18 m 45.7 s

Our method 90.40 86.68 97.77 93.62 15 m 31.9 s

image boundaries in the Oberpfaffenhofen area data set are

more complex and oblique. It is noteworthy that the time

consumptions of these two methods are much longer (27 hours

5 minutes 51.2 seconds for MLRsubMLL, and 27 hours 18

minutes 45.7 seconds for SVM3D-GCMRF) than the methods

using BP algorithm.

V. CONCLUSION

In this paper, we presented a PolSAR image semantic

segmentation method with 3D discrete wavelet transform (3D-

DWT) and Markov random field (MRF). The advantages of

our work lie in three points: (1) The proposed method incor-

porates contextual semantic information in both the feature

extraction and post-optimization process, which effectively

depresses speckle noise and enforces spatial consistency. (2)

3D-DWT is an effective polarimetric discriminator which can

differentiate diverse terrains under low annotation scenario. (3)

Our defined MRF effectively enforces class label smoothness

and the alignment of label boundaries with the image edges.

The employed belief propagation (BP) optimization algorithm

solves our defined MRF model with high efficiency.

To further ameliorate the issues caused by low annotations

and speckle noise, we plan to develop below approaches in

the future: (1) Feature extraction method based on subspace

image factorization, which enables effective feature extraction

while removing noise simultaneously. (2) Deep learning based

multi-level feature fusion which enforces two directional, i.e.,

top-bottom and bottom-top, feature fusions to suppress noise.
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