
 Open access Journal Article DOI:10.1109/2945.981851

Polaris: a system for query, analysis, and visualization of multidimensional relational
databases — Source link

Chris Stolte, Diane L. Tang, Pat Hanrahan

Institutions: Stanford University

Published on: 01 Jan 2002 - IEEE Transactions on Visualization and Computer Graphics (IEEE Computer Society)

Topics: Table (database), Data visualization, Relational database, Pivot table and Visualization

Related papers:

 Automating the design of graphical presentations of relational information

 D³ Data-Driven Documents

 The eyes have it: a task by data type taxonomy for information visualizations

 Show Me: Automatic Presentation for Visual Analysis

 Readings in Information Visualization: Using Vision to Think

Share this paper:

View more about this paper here: https://typeset.io/papers/polaris-a-system-for-query-analysis-and-visualization-of-
49gilmjv9a

https://typeset.io/
https://www.doi.org/10.1109/2945.981851
https://typeset.io/papers/polaris-a-system-for-query-analysis-and-visualization-of-49gilmjv9a
https://typeset.io/authors/chris-stolte-2e8r5f6lnt
https://typeset.io/authors/diane-l-tang-3m2m2jhys6
https://typeset.io/authors/pat-hanrahan-49rxbp7szc
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/journals/ieee-transactions-on-visualization-and-computer-graphics-1yt9mtt7
https://typeset.io/topics/table-database-ytr6ban4
https://typeset.io/topics/data-visualization-j3pstpet
https://typeset.io/topics/relational-database-19y2gfcl
https://typeset.io/topics/pivot-table-2tnkx1pz
https://typeset.io/topics/visualization-3sftdwii
https://typeset.io/papers/automating-the-design-of-graphical-presentations-of-442bz2u6mh
https://typeset.io/papers/d-data-driven-documents-p13stci51s
https://typeset.io/papers/the-eyes-have-it-a-task-by-data-type-taxonomy-for-1u82t2ua1m
https://typeset.io/papers/show-me-automatic-presentation-for-visual-analysis-5cot642rd2
https://typeset.io/papers/readings-in-information-visualization-using-vision-to-think-1wsb2vkeik
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/polaris-a-system-for-query-analysis-and-visualization-of-49gilmjv9a
https://twitter.com/intent/tweet?text=Polaris:%20a%20system%20for%20query,%20analysis,%20and%20visualization%20of%20multidimensional%20relational%20databases&url=https://typeset.io/papers/polaris-a-system-for-query-analysis-and-visualization-of-49gilmjv9a
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/polaris-a-system-for-query-analysis-and-visualization-of-49gilmjv9a
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/polaris-a-system-for-query-analysis-and-visualization-of-49gilmjv9a
https://typeset.io/papers/polaris-a-system-for-query-analysis-and-visualization-of-49gilmjv9a

Polaris: A System for Query, Analysis and

Visualization of Multi-dimensional Relational Databases

Chris Stolte and Pat Hanrahan

Computer Science Department

Stanford University

Abstract

In the last several years, large multi-dimensional databases have

become common in a variety of applications such as data ware-

housing and scientific computing. Analysis and exploration tasks

place significant demands on the interfaces to these databases.

Because of the size of the data sets, dense graphical representa-

tions are more effective for exploration than spreadsheets and

charts. Furthermore, because of the exploratory nature of the

analysis, it must be possible for the analysts to change visualiza-

tions rapidly as they pursue a cycle involving first hypothesis and

then experimentation.

In this paper we present Polaris, an interface for exploring

large multi-dimensional databases that extends the well-known

Pivot Table interface. The novel features of Polaris include an

interface for constructing visual specifications of table-based

graphical displays and the ability to generate a precise set of

relational queries from the visual specifications. The visual speci-

fications can be rapidly and incrementally developed, giving the

analyst visual feedback as they construct complex queries and

visualizations.

1. Introduction

In the last several years, large databases have become common

in a variety of applications. Corporations are creating large data

warehouses of historical data on key aspects of their operations.

International research projects, such as the Human Genome Pro-

ject [15] and Digital Sky Survey [23], are generating massive

databases of scientific data.

A major challenge with these databases is to extract meaning

from the data they contain: to discover structure, find patterns, and

derive causal relationships. The analysis and exploration neces-

sary to uncover this hidden information places significant de-

mands on the human-computer interfaces to these databases. The

exploratory analysis process is one of hypothesis, experiment and

discovery. The path of exploration is unpredictable, and the ana-

lysts or scientists need to be able to rapidly change both what data

they are viewing and how they are viewing that data.

The current trend is to treat multi-dimensional databases as n-

dimensional data cubes [13]. Each dimension in these data cubes

corresponds to one dimension in the relational schema. Perhaps

the most popular interface to multi-dimensional databases is the

Pivot Table [11]. Pivot Tables allow the data cube to be rotated, or

pivoted, so that different dimensions of the dataset may be en-

coded as rows or columns of the table. The remaining dimensions

are aggregated and displayed as numbers in the cells of the table.

Cross-tabulations and summaries are then added to the resulting

table of numbers. Finally, graphs may be generated from the re-

sulting tables. Visual Insights recently released a new interface for

visually exploring projections of data cubes using linked views of

bar charts, scatterplots, and parallel coordinate displays [10].

In this paper we present Polaris, an interface for the explora-

tion of multi-dimensional databases that extends the Pivot Table

interface to directly generate a rich, expressive set of graphical

displays. Polaris builds tables using an algebraic formalism in-

volving the fields of the database. Each table consists of layers

and panes, and each pane may be a different graphic. The use of

tables to organize multiple graphs on a display is a technique of-

ten used by statisticians in their analysis of data [3][7][28].

The Polaris interface is simple and expressive because it is

built upon a formalism for constructing graphs and building data

transformations. We interpret the state of the interface as a visual

specification of the analysis task and automatically compile it into

data and graphical transformations. This allows us to combine

statistical analysis and visualization. Furthermore, all intermediate

specifications that can be created in the visual language are valid

and can be interpreted to create visualizations. Therefore, analysts

can incrementally construct complex queries, receiving visual

feedback as they assemble and alter the specifications.

2. Related Work

The related work to Polaris can be divided into three categories:

formal graphical specifications, table-based data displays and

database exploration tools.

2.1. Formal Graphical Specifications

Bertin’s Semiology of Graphics [4] is one of the earliest at-

tempts at formalizing graphing techniques. Bertin developed a

vocabulary for describing data and the techniques for encoding

data in a graphic. One of his important contributions is the identi-

fication of the retinal variables (position, color, size, etc.) in which

data can be encoded. Cleveland [7][8] used theoretical and ex-

perimental results to determine how well people can use these

different retinal properties to compare quantitative variations.

Mackinlay’s APT system [18] is one of the first applications of

formal graphical specifications to computer-generated displays.

APT uses a set of graphical languages and composition rules to

automatically generate 2D displays of relational data. The Sage

system [21] extends the concepts of APT, providing a richer set of

data characterizations and generating a wider range of displays.

Livny et al. [17] describe a visualization model that provides a

foundation for database-style processing of visual queries. Within

this model, the relational queries and graphical mappings neces-

sary to generate visualizations are defined by a set of relational

operators. The Rivet visualization environment [6] applies similar

concepts to provide a flexible database visualization tool.

Wilkinson [29] recently developed a comprehensive language

for describing traditional statistical graphs and proposed a simple

interface for generating a subset of the specifications expressible

within his language. We have extended Wilkinson’s ideas to de-

velop a specification that can be directly mapped to an interactive

interface and that is tightly integrated with the relational data

model. The differences between our work and Wilkinson’s will be

further discussed in Section 7.

2.2. Table-based Displays

Another area of related work is visualization systems that use

table-based displays. Static table displays, such as scatterplot ma-

trices [14] and Trellis [2] displays, have been used extensively in

statistical data analysis. Recently, several interactive table dis-

plays have been developed. Pivot Tables [11] allow analysts to

explore different projections of large multi-dimensional datasets

by interactively specifying assignments of fields to the table axes,

but are limited to text-based displays. Systems such as the Table

Lens [19] and FOCUS [24] visualization system provide table

displays that present data in a relational table view, using simple

graphics in the cells to communicate quantitative values.

2.3. Database Exploration Tools

The final area of related work is visual query and database ex-

ploration tools. Projects such as VQE [9], Visage [22], DE-

Vise [17], and Tioga-2 [1] have focused on developing visualiza-

tion environments that directly support interactive database explo-

ration through visual queries. Users can construct queries and

visualizations directly through their interactions with the visuali-

zation system interface. These systems have flexible mechanisms

for mapping query results to graphs, and all of the systems support

mapping database records to retinal properties of the marks in the

graphs. However, none of these systems leverages table-based

organizations of their visualizations.

3. Overview

Polaris has been designed to support the interactive exploration of

large multi-dimensional relational databases. Relational databases

organize data into tables where each row in a table corresponds to

a basic entity or fact and each column represents a property of that

entity [26]. We refer to a row in a relational table as a tuple or

record, and a column in the table as a field. A single relational

database will contain many heterogeneous but interrelated tables.

We can characterize fields in a database as nominal, ordinal or

quantitative [4][25]. Polaris reduces this categorization to ordinal

and quantitative by assigning an ordering to the nominal fields

and subsequently treating them as ordinal.

The fields within a relational table can also be partitioned into

two types: dimensions and measures. Dimensions and measures

are similar to independent and dependent variables in traditional

analysis. For example, a product name or type would be a dimen-

sion of product, and the product price or size would be a measure.

The current implementation of Polaris treats all nominal fields as

dimensions and all quantitative fields as measures.

In many important business and scientific databases there are

often many dimensions identifying a single entity. For example, a

transaction within a store may be identified by the time of the

sale, the location of the store, the type of product, and the cus-

tomer. In most data warehouses, these multidimensional databases

are structured as n-dimensional data cubes [26]. Each dimension

in the data cube corresponds to one dimension in the relational

schema.

To effectively support the analysis process in large multidi-

mensional databases, an analysis tool must meet several demands:

• Data-dense displays: The databases typically contain a large

number of records and dimensions. Analysts need to be able

to create visualizations that will simultaneously display many

dimensions of large subsets of the data.

• Multiple display types: Analysis consists of many different

tasks such as discovering correlations between variables,

finding patterns in the data, locating outliers and uncovering

structure. An analysis tool must be able to generate displays

suited to each of these tasks.

• Exploratory interface: The analysis process is often an

unpredictable exploration of the data. Analysts must be able

to rapidly change what data they are viewing and how they

are viewing that data.

Polaris addresses these demands by providing an interface for

rapidly and incrementally generating table-based displays. In Po-

laris, a table consists of a number of rows, columns, and layers.

Each table axis may contain multiple nested dimensions. Each

table entry, or pane, contains a set of records that are visually

encoded as a set of marks to create a graphic.

Several characteristics of tables make them particularly effec-

tive for displaying multi-dimensional data:

• Multivariate: Multiple dimensions of the data can be explic-

itly encoded in the structure of the table, enabling the display

of high-dimensional data.

• Comparative: Tables generate small-multiple displays of

information, which, as Tufte [28] explains, are easily com-

pared, exposing patterns and trends across dimensions of the

data.

• Familiar: Table-based displays have an extensive history.

Statisticians are accustomed to using tabular displays of

graphs, such as scatterplot matrices and Trellis displays, for

analysis. Pivot Tables are a common interface to large data

warehouses.

Figure 1 shows the user interface presented by Polaris. In this

example, the analyst has constructed a matrix of scatterplots

showing sales versus profit for different product types in different

quarters. The primary interaction technique is to drag-and-drop

fields from the database schema onto shelves throughout the dis-

play. We call a given configuration of fields on shelves a visual

specification. The specification determines the analysis and visu-

alization operations to be performed by the system, defining:

• The mapping of data sources to layers. Multiple data sources

may be combined in a single Polaris visualization. Each data

source maps to a separate layer or set of layers.

• The number of rows, columns, and layers in the table and

their relative orders (left to right as well as back to front).

The database dimensions assigned to rows are specified by

the fields on the x shelf, columns by fields on the y shelf, and

layers by fields on the layer (z) shelf. Multiple fields may be

dragged onto each shelf to show categorical relationships.

• The selection of records from the database and the partition-

ing of records into different layers and panes.

• The grouping of data within a pane and the computation of

statistical properties and aggregates. Records may also be

sorted into a given drawing order.

• The type of graphic displayed in each pane of the table. Each

graphic consists of a set of marks, one mark per record in

that pane.

• The mapping of data fields to retinal properties of the marks

in the graphics. The mappings used for any given visualiza-

tion are shown in a set of automatically generated legends.

Analysts can interact with the resulting visualizations in sev-

eral ways. Selecting a single mark in a graphic by clicking on it

pops up a window displaying user-specified field values for the

tuple corresponding to that mark. Analysts can draw rubberbands

around a set of marks to brush records. Brushing can be per-

formed within a single table or between multiple Polaris displays.

In the next section, we describe how the visual specification is

used to generate graphics. In the following section, we describe

how it is used to generate the database queries and to perform

statistical analysis.

4. Generating Graphics

The visual specification consists of three components: (a) the

specification of the different table configurations, (b) the type of

graphic inside each pane, and (c) the details of the visual encod-

ings. We discuss each of these in turn.

4.1. Table Algebra

We need a formal mechanism to specify table configurations, and

we have defined an algebra for this purpose. When the analysts

place fields on the axis shelves, as shown in Figure 1, they are

implicitly creating expressions in this algebra.

A complete table configuration consists of three separate

expressions in this table algebra. Two of the expressions define

the configuration of the x and y axes of the table, partitioning the

table into rows and columns. The third expression defines the z

axis of the table, which partitions the display into layers.

The operands in this table algebra are the names of the ordinal

and quantitative fields of the database. We will use A, B, and C to

represent ordinal fields and P, Q, and R to represent quantitative

fields. We assign ordered sets to each field symbol in the follow-

ing manner: to ordinal fields we assign the members of the or-

dered domain of the field, and to quantitative fields we assign the

single element set containing the field name.

A=domain(A)={a 1,…,a n}
P ={P}

This assignment of sets to symbols reflects the difference in

how the two types of fields will be encoded in the structure of the

tables. Ordinal fields will partition the table into rows and col-

umns, whereas quantitative fields will be spatially encoded as

axes within the panes.

A valid expression in our algebra is an ordered sequence of

one or more symbols with operators between each pair of adjacent

symbols, and with parentheses used to alter the precedence of the

operators. The operators in the algebra are cross (×), nest (/) and

concatenation (+), listed in order of precedence. The precise se-

Figure 1: The Polaris user interface. Analysts construct table-based displays of relational data by dragging fields from the database

schema onto shelves throughout the display. A given configuration of fields on shelves is called a visual specification. The specifica-

tion unambiguously defines the analysis and visualization operations to be performed by the system to generate the display.

mantics of each operator is defined in terms of its effects on the

operand sets.

Concatenation

The concatenation operator performs an ordered union of the sets

of the two symbols:

A+B ={a 1,…,a n}+{b 1,…,b m}
={a 1,…,a n,b 1,…,b m}

A+P ={a 1,…,a n}+{P}
={a 1,…,a n,P}

P+Q = {P}+{Q}
= {P,Q}

Cross

The cross operator performs a Cartesian product of the sets of the

two symbols:

A×B ={a 1,…,a n}×{b 1,…,b m}
={a 1b 1,…,a 1b m,
 a 2b 1,…,a 2b m,…,
 a nb 1,…,a nb m}

A×P ={a 1,…,a n}×P
={a 1P,…,a nP}

Nest

The nest operator is similar to the cross operator, but it only cre-

ates set entries for which there exist records with those domain

values. If we define R to be the dataset being analyzed, r to be a

record, and A(r) to be the value of the field A for the record r, then

we can define the nest operator as follows:

A/B={a ib j | ∃r ∈ R st
 A(r)=a i & B(r)=b j}

The intuitive interpretation of the nest operator is “B within

A”. For example, given the fields quarter and month, the expres-

sion quarter / month would be interpreted as those months within

each quarter, resulting in three entries for each quarter. In con-

trast, quarter × month would result in 12 entries for each quarter.

Using the above set semantics for each operator, every expres-

sion in the algebra can be reduced to a single set, with each entry

in the set being an ordered concatenation of zero or more ordinal

values with zero or more quantitative field names. We call this set

Figure 2: The graphical interpretation of several expressions in the table algebra. Each expression in the table algebra can be re-

duced to a single set of terms, and that set can then be directly mapped into a configuration for an axis of the table.

evaluation of an expression the normalized set form. The normal-

ized set form of an expression determines one axis of the table:

the table axis is partitioned into columns (or rows or layers) so

that there is a one-to-one correspondence between set entries in

the normalized set and columns. Figure 2 illustrates the configura-

tions resulting from a number of expressions.

Analysts can also combine multiple data sources in a single

Polaris visualization. When multiple data sources are imported,

each data source is mapped to a distinct layer (or set of layers).

While all data sources and all layers share the same configuration

for the x and y axes of the table, each data source can have a dif-

ferent expression for partitioning its data into layers.

4.2. Types of Graphics

After the table configuration is specified, the next step is to spec-

ify the type of graphic in each pane. One option, typical of most

charting and reporting tools, is to have the user select a chart type

from a predefined set of charts. Polaris allows analysts to flexibly

construct graphics by specifying the individual components of the

graphics. However, for this approach to be effective, the specifica-

tion must balance flexibility with succinctness. We have devel-

oped a taxonomy of graphics that results in an intuitive and con-

cise specification of graphic types.

When specifying the table configuration, the user also implic-

itly specifies the axes associated with each pane. We have struc-

tured the space of graphics into three families by the type of fields

assigned to their axes:

• Ordinal-Ordinal

• Ordinal-Quantitative

• Quantitative-Quantitative

Each family contains a number of variants depending on how

records are mapped to marks. For example, selecting a bar in an

ordinal-quantitative pane will result in a bar chart, whereas select-

ing a line mark results in a line chart. The mark set currently sup-

ported in Polaris includes the rectangle, circle, glyph, text, Gantt

bar, line, polygon and image.

Following Cleveland [8], we further structure the space of

graphics by the number of independent and dependent variables.

For example, a graphic where both axes encode independent vari-

ables is different than a graphic where one axis encodes an inde-

pendent variable and the other encodes a dependent variable

(y=f(x)). By default, dimensions of the database are interpreted as

independent variables and measures as dependent variables.

Finally, the precise form of the data transformations, in par-

ticular how records are grouped and whether aggregates are

formed, can affect the type of graphic. Some graphic types best

encode a single record, whereas others can encode an arbitrary

number of records.

We briefly discuss the defining characteristics of the three fa-

milies within our categorization.

Ordinal-Ordinal Graphics

The characteristic member of this family is the table, either of

numbers or of marks encoding attributes of the source records.

In ordinal-ordinal graphics, the axis variables are typically in-

dependent of each other, and the task is focused on understanding

patterns and trends in some function f(Ox,Oy) � R, where R repre-

sents the fields encoded in the retinal properties of the marks. This

can be seen in Figure 3(a) where the analyst is studying sales and

margin as a function of product type, month and state for the

items sold by a hypothetical coffee chain. Figure 3(b) presents

another example of an ordinal-ordinal graphic. In this figure, the

analyst is investigating the performance of a graphics rendering

library. The number of cache misses attributable to each line of

source code have been plotted as a function of the ordinal vari-

ables line number and file name.

The cardinality of the record set in each pane has little effect

on the overall structure of the table. When there is more than one

record per pane, multiple marks are shown in each display, with a

one-to-one correspondence of mark to record. The marks are

stacked in a specified drawing order, and the spatial placement of

the marks within the pane conveys no additional information

about the record’s data.

Ordinal-Quantitative Graphics

Well-known representatives of this family of graphics are the bar

chart, possibly clustered or stacked, the dot plot and the Gantt

chart.

In an ordinal-quantitative graphic, the quantitative variable is

often dependent on the ordinal variable, and the analyst is trying

to understand or compare the properties of some set of functions

f(O)� Q. Figure 6(c) illustrates a case where a matrix of bar

charts is used to study several functions of the independent vari-

ables product and month. The cardinality of the record set does

affect the structure of the graphics in this family. When the cardi-

nality of the record set is one, the graphics are simple bar charts or

dot plots. When the cardinality is greater than one, additional

structure may be introduced to accommodate the additional re-

cords (e.g., a stacked bar chart).

The ordinal and quantitative values may be independent vari-

ables, such as in a Gantt chart. Here, each pane represents all the

events in a category; each event has a type as well as a begin and

end time. In Figure 3(c), major wars over the last five hundred

years are displayed as Gantt charts, categorized by country. An

additional layer in that figure displays pictures of major scientists

plotted as a function of the independent variables country of birth

and date of birth. Figure 3(d) shows a table of Gantt charts, with

each Gantt chart displaying the thread scheduling and locking

activity on a CPU within a multiprocessor computer.

Quantitative-Quantitative Graphics

Graphics of this type are used to understand the distribution of

data as a function of one or both quantitative variables and to

discover causal relationships between the two quantitative vari-

ables. Figure 6(a) illustrates a matrix of scatterplot graphics used

to understand the relationships between a number of attributes of

different products sold by a coffee chain.

Figure 3(e) illustrates a another example of a quantitative-

quantitative graphic: the map. In this figure, the analyst is study-

ing how flight scheduling varies with the region of the country the

flight originated in. Data about a number of flights between major

airports has been plotted as a function of latitude and longitude,

and composed with two other layers which plot the location of

airports and display the geography of each state as a polygon.

It is extremely rare to use this type of graph with a cardinality

of one, not because it is not meaningful, but because the density of

information in such a graphic is very low.

4.3. Visual Mappings

Each record in a pane is mapped to a mark. There are two

components to the visual mapping. The first component, described

Figure 3: Examples of the different graph types that can be constructed in Polaris. The graphical table (a), showing sales and margin as

a function of product type and state for a hypothetical coffee chain, is an example of the ordinal-ordinal family of graphics. The source

code display (b), which is displaying the source code for a graphics rendering library with the code colored by the number of cache

misses attributable to each line of code, is another example of the ordinal-ordinal family. Gantt charts, used in (c) to display major wars

in several countries over the last five hundred years, and in (d) to display the thread scheduling for a graphics application, are an exam-

ple of the ordinal-quantitative family. Maps, as in (e) which shows flights between several major airports categorized by the region of

the country they departed from, are an example of the quantitative-quantitative family of graphics. Line charts, as in (f) which shows av-

erage sales and profit as a function of time for the coffee chain, are another example of the quantitative-quantitative family.

in the previous section, determines the type of mark. The second

component encodes fields of the records into visual or retinal

properties of the selected mark. The visual properties in Polaris

are based on Bertin’s retinal variables [4]: shape, size, orientation,

color (value and hue), and texture (not supported in the current

version of Polaris).

Allowing analysts to explicitly encode different fields of the

data to retinal properties of the display greatly enhances the data

density and the variety of displays that can be generated. How-

ever, in order to keep the specification succinct, analysts should

not be required to construct the mappings. Instead, they should be

able to simply specify that a field be encoded as a visual property.

The system should then generate an effective mapping from the

domain of the field to the range of the visual property. These

mappings are generated in a manner similar to other visualization

systems. We discuss how this is done for the purpose of com-

pleteness. The default mappings are illustrated in Figure 4.

Shape

Polaris uses the set of shapes recommended by Cleveland for

encoding ordinal data [7]. We have extended this set of shapes to

include several additional shapes to allow a larger domain of val-

ues to be encoded.

Size

Size can be used to encode either an ordinal or quantitative field.

When encoding a quantitative domain as size, a linear map from

the field domain to the area of the mark is created. The minimum

size is chosen so that all visual properties of a mark with the mini-

mum size can be perceived [16]. If an ordinal field is encoded as

size, the domain needs to be small, at most four or five values, so

that the analyst can discriminate between different categories [4].

Orientation

A key principle in generating mappings of ordinal fields to orien-

tation is that the orientation needs to vary by at least 30° between

categories [16], thus constraining the automatically-generated

mapping to a domain of at most six categories. For quantitative

fields, the orientation varies linearly with the domain of the field.

Color

When encoding an ordinal domain, we use a predefined palette to

select the color for each domain entry. The colors in the palette

are well separated in the color spectrum, predominantly on

hue [27]. We have ordered the colors to avoid adjacent colors with

different brightness or substantially different wavelengths in an

attempt to include harmonious sets of colors in each pal-

ette [4][16][27]. We additionally reserve a saturated red for high-

lighting items that have been selected or brushed.

When encoding a quantitative variable, it is important to vary only

one psychophysical variable, such as hue or value. The default

palette we use for encoding quantitative data is the isomorphic

colormap developed by Rogowitz [20].

5. Generating Database Queries

Obviously, the visual specifications determine the final visualiza-

tion. However, just as importantly, the visual specification gener-

ates queries to the database that (a) select subsets of the data for

analysis, then (b) filter, sort and group the results into panes, and

then finally (c) group, sort and aggregate the data before passing it

to the graphics encoding process.

Figure 5 shows the overall data flow in Polaris. We can pre-

cisely describe the transformations in each of the three phases

using SQL queries.

Step 1: Selecting the Records

The first phase of the data flow retrieves records from the data-

base, applying user-defined filters to select subsets of the data-

base.

For an ordinal field A, the user may specify a subset of the

domain of the field as valid. If filter(A) is the user-selected subset,

then a relational predicate expressing the filter for A is:

A in filter(A)

For a quantitative field P, the user may define a subset of the

field’s domain as valid. If min(P) and max(P) are the user-defined

extents of this subset, then a relational predicate expressing the

filter for P is:

(P ≥ min(P) and P ≤ max(P))

We can define the relational predicate filters as the conjunction of

all of the individual field filters. Then, the first stage of the data

transformation network is equivalent to the SQL statement:

SELECT *
WHERE {filters}

Step 2: Partitioning the records into panes

The second phase of the data flow partitions the retrieved records

into groups corresponding to each pane in the table. As we dis-

cussed in Section 4.1, the normalized set form of the table axis

expressions determines the table configuration. The table is parti-

tioned into rows, columns, and layers corresponding to the entries

in these sets.

Figure 4: The different retinal properties that can be used to encode fields of the data and examples of the default mappings that

are generated when a given type of data field is encoded in each of the retinal properties.

The ordinal values in each set entry define the criteria by

which records will be sorted into each row, column and layer. Let

Row(i) be the predicate that represents the selection criteria for the

ith row, Column(j) be the predicate for the jth column, and Layer(k)

the predicate for the kth layer. For example, if the y-axis of the

table is defined by the normalized set:

{a 1b 1P , a 1b 2P, a 2b 1P , a 2b 2P}

then there are four rows in the table, each defined by an entry in

this set, and Row would be defined as:

Row(1) = (A = a 1 and B = b 1)

Row(2) = (A = a 1 and B = b 2)

Row(3) = (A = a 2 and B = b 1)

Row(4) = (A = a 2 and B = b 2)

Given these definitions, the records to be partitioned into the

pane at the intersection of the ith row, the jth column, and the kth

layer can be retrieved with the following query:

SELECT *
WHERE {Row(i) and Column(j) and
 Layer(k)}

To generate the groups of records corresponding to each of the

panes, we must iterate over the table executing this SELECT

statement for each pane. There is no standard SQL statement

which enables us to perform this partitioning in a single query.

We note that this is a same problem that motivated the CUBE [13]

operator; we will revisit this issue in the discussion section.

Step 3: Transforming Records within the Panes

The last phase of the data flow is the transformation of the records

in each pane. If the visual specification includes aggregation, then

each measure in the database schema must be assigned an aggre-

gation operator. If the user has not selected an aggregation opera-

tor for a measure, that measure is assigned the default aggregation

operator (SUM). We define the term aggregates as the list of the

aggregations that need to be computed. For example, if the data-

base contains the quantitative fields Profit, Sales and Payroll, and

the user has explicitly specified that the average of Sales should

be computed, then aggregates is defined as:

aggregates =
SUM(Profit),AVG(Sales),SUM(Payroll)

Aggregate field filters (for example, SUM(Profit) > 500) could

not be evaluated in Step 1 with all of the other filters because the

aggregates had not yet been computed. Thus, those filters must be

applied in this phase. We define the relational predicate filters as

in Step 1 for unaggregated fields.

Additionally, we define the following lists:

G : the field names in the grouping shelf,

S : the field names in the sorting shelf, and

dim : the dimensions in the database.

The necessary transformation can then be expressed by the SQL

statement:

SELECT {dim},{aggregates}
GROUP BY {G}
HAVING {filters}
ORDER BY {S}

If no aggregate fields are included in the visual specification, then

the remaining transformation simply sorts the records into draw-

ing order:

SELECT *
ORDER BY {S}

6. Results

Polaris is useful for performing the type of exploratory data

analysis advocated by statisticians such as Bertin [3] and Cleve-

land [8]. We demonstrate the capabilities of Polaris as an explora-

tory interface to multi-dimensional databases by considering the

following scenario.

The chief financial officer (CFO) of a national coffee store

chain has just been told to cut expenses. To get an initial under-

standing of the situation, the CFO creates a table of scatterplots

showing the relationship between marketing costs and profit

categorized by product type and market (Figure 6(a)). After study-

ing the graphics, the CFO notices an interesting trend: certain

products have high marketing costs with little or no return in the

form of profit.

To further investigate, the CFO creates two linked displays: a

table of scatterplots showing profit and marketing costs for each

state and a text table itemizing profit by product and state (Figure

6(b)). The two views are linked by the state field: if records are

selected in either display, then all records with the same state

Figure 5: The transformations and data flow within Polaris. The visual specification generates queries to the database to select

subsets of the data for analysis, then to filter, sort, and group the results into panes, and then finally to group, sort and aggregate

the data within panes.

remove this line

value as the selected records are highlighted. The CFO is able to

use these linked views to determine that in New York, several

products are offering very little return despite high expenditures.

The CFO creates a third display (Figure 6(c)): a set of bar

charts showing profit, sales, and marketing for each product sold

in New York, broken down by month. In this view, the CFO can

clearly see that Caffé Mocha’s profit margin does not justify its

marketing expenses. With this data, the CFO can change the com-

pany’s marketing and sales strategies in this state.

This example illustrates several important points about the ex-

ploratory process. Throughout the analysis, both the data users

want to see and how they want to see it change continually. Ana-

lysts first form hypotheses about the data and then create new

views to perform tests and experiments to validate or disprove

those hypotheses. Certain displays enable an understanding of

overall trends, whereas others show causal relationships. As the

analysts better understand the data, they may want to drill-down

in the visible dimensions or display entirely different dimensions.

Polaris supports this exploratory process through its visual in-

terface. By formally categorizing the types of graphics, Polaris is

able to provide a simple interface for rapidly generating a wide

range of displays. This allows analysts to focus on the analysis

task rather than the steps needed to retrieve and display the data.

7. Discussion

Several of the ideas in our specification are extensions of Wil-

kinson's [29] efforts to develop a grammar for statistical graphics.

His grammar encapsulates both the statistical transformation of

datasets and their mapping to graphic representations.

The primary distinctions between Wilkinson's system and ours

arise because of differences in the data models. We chose to focus

on developing a tool for multi-dimensional relational databases

and we decided to build as much of the system as possible using

relational algebra. All of the data transformations required by our

visual specifications can be precisely interpreted as standard SQL

queries to OLAP servers. Wilkinson instead intentionally uses a

data model that is not relational, citing shortcomings in the rela-

tional model's support for statistical analysis. Consequently, his

specification defines operations and function in terms of his own

data model consisting of variable sets and indexed variables.

The differences in design are most apparent in the table alge-

bra. As in our system, Wilkinson’s table algebra performs two

functions: it provides database services such as set operations and

it specifies the layout of the tables and graphs. Since we use rela-

tional algebra for all our database services, our algebra is differ-

ent. For example, his blend operator performs both set union and

may partition the axes of a table; our concatenation operation is

different since it just performs partitioning. Another difference is

in his cross and nest operators: cross generates a 2D graphic and

nest only a 1D graphic. We use a different mechanism (shelves) to

specify axes of the graphic. Overall, whether our system is better

than Wilkinson's is hard to judge completely, and will require

more experience using the system to solve practical problems.

One major advantage of our approach is that it leverages existing

database systems and as a result was very easy to implement.

Another interesting issue is the interpretation of our visual

specifications as database queries. When database queries are

generated from the visual specifications in Polaris, it is necessary

to generate a SQL query per table pane. This problem is similar to

the one that motivated Gray et al. to develop the CUBE opera-

tor [13]. The CUBE operator generalizes the queries necessary to

Figure 6: An example scenario demonstrating the capabili-

ties of Polaris for exploratory analysis of multi-dimensional

databases. The data displayed is for a hypothetical coffee

store chain, and the analyst is searching for ways to reduce

the company’s expenses.

develop cross-tab and Pivot Table displays of relational data into a

single, more efficient operator. However, the CUBE operator

cannot be applied in our situation because it assumes that the sets

of relations partitioned into each table pane do not overlap. In

several possible Polaris table configurations, such as scatterplot

matrices, there can be considerable overlap between the relations

partitioned into each pane. One can imagine generalizing the

CUBE operator to handle these overlapping partitions.

Another major limitation of the CUBE operator is its method

for computing aggregates. Usually only aggregates based on sums

are allowed. More complex aggregation operators requiring rank-

ing, such as computation of medians and modes, are not part of

the current specification, although they are available in some

commercial systems. These operators are very useful for data

mining applications.

8. Conclusions and Future Work

We have presented Polaris, an interface for the exploration and

analysis of large multi-dimensional databases. Polaris extends the

well-known Pivot Table interface to display relational query re-

sults using a rich, expressive set of graphical displays. A second

contribution of this system is a succinct visual specification for

describing table-based graphical displays of relational data and the

interpretation of these visual specifications as a precise sequence

of relational database operations.

We have many plans for extending this system. The current

version of Polaris does not leverage the hierarchical structure of

many multi-dimensional databases. We are currently exploring

interaction techniques for navigating these types of hierarchies

and developing specifications that describe graphics derived from

hierarchical data.

Furthermore, because graphical marks in Polaris directly cor-

respond to tuples in the relational databases, it is possible to gen-

erate database tables from a selected set of graphical marks. This

technique can be used to develop lenses, similar to the Magic

Lens [5], that can perform much more complex transformations

because they operate in data space rather than image space. This

technique can also be used to compose Polaris displays, using a

selected mark set in one display as the data input to another. We

are exploring these techniques and believe it is possible to develop

a relational spreadsheet by composing Polaris displays in this

manner.

Acknowledgments

The authors especially thank Robert Bosch and Diane Tang for

their contributions to the design and implementation of Polaris,

their reviews of manuscript drafts, and for many useful discus-

sions. The air traffic data is courtesy William F. Eddy and Shingo

Oue. The coffee chain data is courtesy Stephen Eick and Visual

Insights. This work was supported by the Department of Energy

through the ASCI Level 1 Alliance with Stanford University.

References

[1] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff. Tioga-2: A Direct

Manipulation Database Visualization Environment. In Proc. of the 12th In-

ternational Conference on Data Engineering, February 1996, pp. 208-217.

[2] R. Becker, W. S. Cleveland and R. Douglas Martin. Trellis Graphics Dis-

plays: A Multi-Dimensional Data Visualization Tool for Data Mining. 3rd

Annual Conference on Knowledge Discovery in Databases, August 1997.

[3] J. Bertin. Graphics and Graphic Information Processing. Walter de Gruyter,

Berlin, 1980.

[4] J. Bertin. Semiology of Graphics. The University of Wisconsin Press, Madi-

son, Wisconsin, 1983. Translated by W. J. Berg.

[5] E. A. Bier, M. Stone, K. Pier, W. Buxton and T. DeRose. Toolglass and

Magic Lenses: The See-Through Interface. In SIGGRAPH ’93 Proceedings,

August 1993, pp. 73-80.

[6] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and P. Hanrahan.

Rivet: A Flexible Environment for Computer Systems Visualization. In

Computer Graphics, February 2000, pp. 68-73.

[7] W. S. Cleveland. The Elements of Graphing Data. Wadsworth Advanced

Books and Software, Pacific Grove, California, 1985.

[8] W. S. Cleveland. Visualizing Data. Hobart Press, New Jersey, 1993.

[9] M. Derthick, J. Kolojejchick and S. F. Roth. An Interactive Visualization

Environment for Data Exploration. In Proc. of Knowledge Discovery in Da-

tabases, August, 1997, pp. 2-9.

[10] S. Eick. Visualizing Multi-Dimensional Data. In Computer Graphics, Febru-

ary 2000, pp. 61–67.

[11] Microsoft Excel – User’s Guide, Microsoft, Redmond, WA, 1995.

[12] J. Goldstein, S. F. Roth, J. Kolojejchick, and J. Mattis. A Framwork for

Knowledge-based Interactive Data Exploration. In Journal of Visual Lan-

guages and Computing, December 1994, pp. 339-363.

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,

H. Pirahesh, and F. Pellow. Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals. In Proc. of the 12th In-

ternational Conference on Data Engineering, February 1996, pp. 152-159.

[14] J.A. Hartigan. Printer graphics for clustering. Journal of Statistical Compu-

tation and Simulation, 4, pp. 187-213.

[15] Human Genome Project. [online] Available:

http://www.ornl.gov/hgmis/about.html, cited March 2000.

[16] S. M. Kosslyn. Elements of Graph Design. W.H. Freeman and Co., New

York, NY, 1994.

[17] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. La-

wande, J. Myllymaki and K. Wenger. DEVise: Integrated Querying and Vis-

ual Exploration of Large Datasets. In Proc. of ACM SIGMOD, May, 1997.

[18] J.D. Mackinlay. Automating the Design of Graphical Presentations of Rela-

tional Information. In ACM Trans. of Graphics, April 1986, pp. 110-141.

[19] R. Rao and S. Card. The Table Lens: Merging Graphical and Symbolic Rep-

resentations in an Interactive Focus+Context Visualization for Tabular In-

formation. In Proc. of SIGCHI '94, pp. 318-322.

[20] B. Rogowitz, and L. Treinish. How NOT to Lie with Visualization. Com-

puters in Physics, May/June 1996, pp. 268-274.

[21] S.F. Roth, J. Kolojejchick, J. Mattis and J. Goldstein. Interactive Graphic

Design Using Automatic Presentation Knowledge. In Proc. of SIGCHI ’94,

April 1994, pp. 112-117.

[22] S.F. Roth, P. Lucas, J.A. Senn, C.C. Gomberg, M.B. Burks, P.J. Stroffolino,

J. Kolojejchick and C. Dunmire. Visage: A User Interface Environment for

Exploring Information. In Proc. of Information Visualization, October 1996,

pp. 3-12.

[23] Sloan Digital Sky Survey. [online] Available: http://www.sdss.org/, cited

March 2000.

[24] M. Spenke, C. Beilken and T. Berlage. FOCUS: The Interactive Table for

Product Comparison and Selection. In Proc. of the ACM Symposium on User

Interface Software and Technology, November 1996.

[25] S.S. Stevens. On the theory of scales of measurement. Science, 103, pp. 677-

680.

[26] E. Thomsen. OLAP Solutions: Building Multidimensional Information Sys-

tems. Wiley Computer Publishing, New York, 1997.

[27] D. Travis. Effective Color Displays: Theory and Practice. Academic Press,

London, 1991.

[28] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press,

Box 430, Chesire, Connecticut, 1983.

[29] L. Wilkinson. The Grammar of Graphics. Springer, New York, New York,

1999.

