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Abstract 

In the last several years, large multi-dimensional databases have 

become common in a variety of applications such as data ware-

housing and scientific computing. Analysis and exploration tasks 

place significant demands on the interfaces to these databases. 

Because of the size of the data sets, dense graphical representa-

tions are more effective for exploration than spreadsheets and 

charts. Furthermore, because of the exploratory nature of the 

analysis, it must be possible for the analysts to change visualiza-

tions rapidly as they pursue a cycle involving first hypothesis and 

then experimentation. 

In this paper we present Polaris, an interface for exploring 

large multi-dimensional databases that extends the well-known 

Pivot Table interface. The novel features of Polaris include an 

interface for constructing visual specifications of table-based 

graphical displays and the ability to generate a precise set of 

relational queries from the visual specifications. The visual speci-

fications can be rapidly and incrementally developed, giving the 

analyst visual feedback as they construct complex queries and 

visualizations. 

1. Introduction 

In the last several years, large databases have become common 

in a variety of applications. Corporations are creating large data 

warehouses of historical data on key aspects of their operations. 

International research projects, such as the Human Genome Pro-

ject [15] and Digital Sky Survey [23], are generating massive 

databases of scientific data. 

A major challenge with these databases is to extract meaning 

from the data they contain: to discover structure, find patterns, and 

derive causal relationships. The analysis and exploration neces-

sary to uncover this hidden information places significant de-

mands on the human-computer interfaces to these databases. The 

exploratory analysis process is one of hypothesis, experiment and 

discovery. The path of exploration is unpredictable, and the ana-

lysts or scientists need to be able to rapidly change both what data 

they are viewing and how they are viewing that data.  

The current trend is to treat multi-dimensional databases as n-

dimensional data cubes [13]. Each dimension in these data cubes 

corresponds to one dimension in the relational schema. Perhaps 

the most popular interface to multi-dimensional databases is the 

Pivot Table [11]. Pivot Tables allow the data cube to be rotated, or 

pivoted, so that different dimensions of the dataset may be en-

coded as rows or columns of the table. The remaining dimensions 

are aggregated and displayed as numbers in the cells of the table. 

Cross-tabulations and summaries are then added to the resulting 

table of numbers. Finally, graphs may be generated from the re-

sulting tables. Visual Insights recently released a new interface for 

visually exploring projections of data cubes using linked views of 

bar charts, scatterplots, and parallel coordinate displays [10].  

In this paper we present Polaris, an interface for the explora-

tion of multi-dimensional databases that extends the Pivot Table 

interface to directly generate a rich, expressive set of graphical 

displays. Polaris builds tables using an algebraic formalism in-

volving the fields of the database. Each table consists of layers 

and panes, and each pane may be a different graphic. The use of 

tables to organize multiple graphs on a display is a technique of-

ten used by statisticians in their analysis of data [3][7][28]. 

The Polaris interface is simple and expressive because it is 

built upon a formalism for constructing graphs and building data 

transformations. We interpret the state of the interface as a visual 

specification of the analysis task and automatically compile it into 

data and graphical transformations. This allows us to combine 

statistical analysis and visualization. Furthermore, all intermediate 

specifications that can be created in the visual language are valid 

and can be interpreted to create visualizations. Therefore, analysts 

can incrementally construct complex queries, receiving visual 

feedback as they assemble and alter the specifications. 

2. Related Work 

The related work to Polaris can be divided into three categories: 

formal graphical specifications, table-based data displays and 

database exploration tools. 

2.1. Formal Graphical Specifications 

Bertin’s Semiology of Graphics [4] is one of the earliest at-

tempts at formalizing graphing techniques. Bertin developed a 

vocabulary for describing data and the techniques for encoding 

data in a graphic. One of his important contributions is the identi-

fication of the retinal variables (position, color, size, etc.) in which 

data can be encoded. Cleveland [7][8] used theoretical and ex-

perimental results to determine how well people can use these 

different retinal properties to compare quantitative variations. 

Mackinlay’s APT system [18] is one of the first applications of 

formal graphical specifications to computer-generated displays. 

APT uses a set of graphical languages and composition rules to 

automatically generate 2D displays of relational data. The Sage 

system [21] extends the concepts of APT, providing a richer set of 

data characterizations and generating a wider range of displays.  

Livny et al. [17] describe a visualization model that provides a 

foundation for database-style processing of visual queries. Within 

this model, the relational queries and graphical mappings neces-

sary to generate visualizations are defined by a set of relational 

operators. The Rivet visualization environment [6] applies similar 

concepts to provide a flexible database visualization tool. 



  

Wilkinson [29] recently developed a comprehensive language 

for describing traditional statistical graphs and proposed a simple 

interface for generating a subset of the specifications expressible 

within his language. We have extended Wilkinson’s ideas to de-

velop a specification that can be directly mapped to an interactive 

interface and that is tightly integrated with the relational data 

model. The differences between our work and Wilkinson’s will be 

further discussed in Section 7. 

2.2. Table-based Displays 

Another area of related work is visualization systems that use 

table-based displays. Static table displays, such as scatterplot ma-

trices [14] and Trellis [2] displays, have been used extensively in 

statistical data analysis. Recently, several interactive table dis-

plays have been developed. Pivot Tables [11] allow analysts to 

explore different projections of large multi-dimensional datasets 

by interactively specifying assignments of fields to the table axes, 

but are limited to text-based displays. Systems such as the Table 

Lens [19] and FOCUS [24] visualization system provide table 

displays that present data in a relational table view, using simple 

graphics in the cells to communicate quantitative values.  

2.3. Database Exploration Tools 

The final area of related work is visual query and database ex-

ploration tools. Projects such as VQE [9], Visage [22], DE-

Vise [17], and Tioga-2 [1] have focused on developing visualiza-

tion environments that directly support interactive database explo-

ration through visual queries. Users can construct queries and 

visualizations directly through their interactions with the visuali-

zation system interface. These systems have flexible mechanisms 

for mapping query results to graphs, and all of the systems support 

mapping database records to retinal properties of the marks in the 

graphs. However, none of these systems leverages table-based 

organizations of their visualizations. 

3. Overview 

Polaris has been designed to support the interactive exploration of 

large multi-dimensional relational databases. Relational databases 

organize data into tables where each row in a table corresponds to 

a basic entity or fact and each column represents a property of that 

entity [26]. We refer to a row in a relational table as a tuple or 

record, and a column in the table as a field. A single relational 

database will contain many heterogeneous but interrelated tables.  

We can characterize fields in a database as nominal, ordinal or 

quantitative [4][25]. Polaris reduces this categorization to ordinal 

and quantitative by assigning an ordering to the nominal fields 

and subsequently treating them as ordinal.   

The fields within a relational table can also be partitioned into 

two types: dimensions and measures. Dimensions and measures 

are similar to independent and dependent variables in traditional 

analysis. For example, a product name or type would be a dimen-

sion of product, and the product price or size would be a measure. 

The current implementation of Polaris treats all nominal fields as 

dimensions and all quantitative fields as measures. 

In many important business and scientific databases there are 

often many dimensions identifying a single entity. For example, a 

transaction within a store may be identified by the time of the 

sale, the location of the store, the type of product, and the cus-

tomer. In most data warehouses, these multidimensional databases 

are structured as n-dimensional data cubes [26]. Each dimension 

in the data cube corresponds to one dimension in the relational 

schema.  

To effectively support the analysis process in large multidi-

mensional databases, an analysis tool must meet several demands: 

• Data-dense displays: The databases typically contain a large 

number of records and dimensions. Analysts need to be able 

to create visualizations that will simultaneously display many 

dimensions of large subsets of the data. 

• Multiple display types: Analysis consists of many different 

tasks such as discovering correlations between variables, 

finding patterns in the data, locating outliers and uncovering 

structure. An analysis tool must be able to generate displays 

suited to each of these tasks. 

• Exploratory interface: The analysis process is often an 

unpredictable exploration of the data. Analysts must be able 

to rapidly change what data they are viewing and how they 

are viewing that data.  

Polaris addresses these demands by providing an interface for 

rapidly and incrementally generating table-based displays. In Po-

laris, a table consists of a number of rows, columns, and layers. 

Each table axis may contain multiple nested dimensions. Each 

table entry, or pane, contains a set of records that are visually 

encoded as a set of marks to create a graphic. 

Several characteristics of tables make them particularly effec-

tive for displaying multi-dimensional data: 

• Multivariate: Multiple dimensions of the data can be explic-

itly encoded in the structure of the table, enabling the display 

of high-dimensional data. 

• Comparative: Tables generate small-multiple displays of 

information, which, as Tufte [28] explains, are easily com-

pared, exposing patterns and trends across dimensions of the 

data. 

• Familiar: Table-based displays have an extensive history. 

Statisticians are accustomed to using tabular displays of 

graphs, such as scatterplot matrices and Trellis displays, for 

analysis. Pivot Tables are a common interface to large data 

warehouses. 

Figure 1 shows the user interface presented by Polaris. In this 

example, the analyst has constructed a matrix of scatterplots 

showing sales versus profit for different product types in different 

quarters. The primary interaction technique is to drag-and-drop 

fields from the database schema onto shelves throughout the dis-

play. We call a given configuration of fields on shelves a visual 

specification. The specification determines the analysis and visu-

alization operations to be performed by the system, defining: 

• The mapping of data sources to layers. Multiple data sources 

may be combined in a single Polaris visualization. Each data 

source maps to a separate layer or set of layers. 

• The number of rows, columns, and layers in the table and 

their relative orders (left to right as well as back to front). 

The database dimensions assigned to rows are specified by 

the fields on the x shelf, columns by fields on the y shelf, and 

layers by fields on the layer (z) shelf. Multiple fields may be 

dragged onto each shelf to show categorical relationships. 

• The selection of records from the database and the partition-

ing of records into different layers and panes. 

• The grouping of data within a pane and the computation of 

statistical properties and aggregates. Records may also be 

sorted into a given drawing order. 



  

• The type of graphic displayed in each pane of the table. Each 

graphic consists of a set of marks, one mark per record in 

that pane. 

• The mapping of data fields to retinal properties of the marks 

in the graphics. The mappings used for any given visualiza-

tion are shown in a set of automatically generated legends. 

Analysts can interact with the resulting visualizations in sev-

eral ways. Selecting a single mark in a graphic by clicking on it 

pops up a window displaying user-specified field values for the 

tuple corresponding to that mark. Analysts can draw rubberbands 

around a set of marks to brush records. Brushing can be per-

formed within a single table or between multiple Polaris displays. 

In the next section, we describe how the visual specification is 

used to generate graphics. In the following section, we describe 

how it is used to generate the database queries and to perform 

statistical analysis. 

4. Generating Graphics 

The visual specification consists of three components: (a) the 

specification of the different table configurations, (b) the type of 

graphic inside each pane, and (c) the details of the visual encod-

ings. We discuss each of these in turn. 

4.1. Table Algebra 

We need a formal mechanism to specify table configurations, and 

we have defined an algebra for this purpose. When the analysts 

place fields on the axis shelves, as shown in Figure 1, they are 

implicitly creating expressions in this algebra.  

A complete table configuration consists of three separate 

expressions in this table algebra. Two of the expressions define 

the configuration of the x and y axes of the table, partitioning the 

table into rows and columns. The third expression defines the z 

axis of the table, which partitions the display into layers.  

The operands in this table algebra are the names of the ordinal 

and quantitative fields of the database. We will use A, B, and C to 

represent ordinal fields and P, Q, and R to represent quantitative 

fields. We assign ordered sets to each field symbol in the follow-

ing manner: to ordinal fields we assign the members of the or-

dered domain of the field, and to quantitative fields we assign the 

single element set containing the field name. 

A=domain(A)={a 1,…,a n} 
P ={P} 

This assignment of sets to symbols reflects the difference in 

how the two types of fields will be encoded in the structure of the 

tables. Ordinal fields will partition the table into rows and col-

umns, whereas quantitative fields will be spatially encoded as 

axes within the panes. 

A valid expression in our algebra is an ordered sequence of 

one or more symbols with operators between each pair of adjacent 

symbols, and with parentheses used to alter the precedence of the 

operators. The operators in the algebra are cross (×), nest (/) and 

concatenation (+), listed in order of precedence. The precise se-

 

Figure 1: The Polaris user interface. Analysts construct table-based displays of relational data by dragging fields from the database 

schema onto shelves throughout the display. A given configuration of fields on shelves is called a visual specification. The specifica-

tion unambiguously defines the analysis and visualization operations to be performed by the system to generate the display. 



  

mantics of each operator is defined in terms of its effects on the 

operand sets. 

Concatenation 

The concatenation operator performs an ordered union of the sets 

of the two symbols: 

A+B ={a 1,…,a n}+{b 1,…,b m} 
={a 1,…,a n,b 1,…,b m} 

A+P ={a 1,…,a n}+{P} 
={a 1,…,a n,P} 

P+Q = {P}+{Q} 
= {P,Q} 

Cross 

The cross operator performs a Cartesian product of the sets of the 

two symbols: 

A×B ={a 1,…,a n}×{b 1,…,b m} 
={a 1b 1,…,a 1b m, 
  a 2b 1,…,a 2b m,…, 
  a nb 1,…,a nb m} 

A×P ={a 1,…,a n}×P 
={a 1P,…,a nP} 

Nest 

The nest operator is similar to the cross operator, but it only cre-

ates set entries for which there exist records with those domain 

values. If we define R to be the dataset being analyzed, r to be a 

record, and A(r) to be the value of the field A for the record r, then 

we can define the nest operator as follows: 

A/B={a ib j  | ∃r ∈ R st 
            A(r)=a i  & B(r)=b j} 

The intuitive interpretation of the nest operator is “B within 

A”. For example, given the fields quarter and month, the expres-

sion quarter / month would be interpreted as those months within 

each quarter, resulting in three entries for each quarter. In con-

trast, quarter × month would result in 12 entries for each quarter.  

Using the above set semantics for each operator, every expres-

sion in the algebra can be reduced to a single set, with each entry 

in the set being an ordered concatenation of zero or more ordinal 

values with zero or more quantitative field names. We call this set 

 

Figure 2: The graphical interpretation of several expressions in the table algebra. Each expression in the table algebra can be re-

duced to a single set of terms, and that set can then be directly mapped into a configuration for an axis of the table.  



  

evaluation of an expression the normalized set form. The normal-

ized set form of an expression determines one axis of the table: 

the table axis is partitioned into columns (or rows or layers) so 

that there is a one-to-one correspondence between set entries in 

the normalized set and columns. Figure 2 illustrates the configura-

tions resulting from a number of expressions. 

Analysts can also combine multiple data sources in a single 

Polaris visualization. When multiple data sources are imported, 

each data source is mapped to a distinct layer (or set of layers). 

While all data sources and all layers share the same configuration 

for the x and y axes of the table, each data source can have a dif-

ferent expression for partitioning its data into layers.  

4.2. Types of Graphics 

After the table configuration is specified, the next step is to spec-

ify the type of graphic in each pane. One option, typical of most 

charting and reporting tools, is to have the user select a chart type 

from a predefined set of charts. Polaris allows analysts to flexibly 

construct graphics by specifying the individual components of the 

graphics. However, for this approach to be effective, the specifica-

tion must balance flexibility with succinctness. We have devel-

oped a taxonomy of graphics that results in an intuitive and con-

cise specification of graphic types.  

When specifying the table configuration, the user also implic-

itly specifies the axes associated with each pane. We have struc-

tured the space of graphics into three families by the type of fields 

assigned to their axes:  

• Ordinal-Ordinal 

• Ordinal-Quantitative 

• Quantitative-Quantitative 

Each family contains a number of variants depending on how 

records are mapped to marks. For example, selecting a bar in an 

ordinal-quantitative pane will result in a bar chart, whereas select-

ing a line mark results in a line chart. The mark set currently sup-

ported in Polaris includes the rectangle, circle, glyph, text, Gantt 

bar, line, polygon and image. 

Following Cleveland [8], we further structure the space of 

graphics by the number of independent and dependent variables. 

For example, a graphic where both axes encode independent vari-

ables is different than a graphic where one axis encodes an inde-

pendent variable and the other encodes a dependent variable 

(y=f(x)). By default, dimensions of the database are interpreted as 

independent variables and measures as dependent variables. 

Finally, the precise form of the data transformations, in par-

ticular how records are grouped and whether aggregates are 

formed, can affect the type of graphic.  Some graphic types best 

encode a single record, whereas others can encode an arbitrary 

number of records. 

We briefly discuss the defining characteristics of the three fa-

milies within our categorization. 

Ordinal-Ordinal Graphics 

The characteristic member of this family is the table, either of 

numbers or of marks encoding attributes of the source records. 

In ordinal-ordinal graphics, the axis variables are typically in-

dependent of each other, and the task is focused on understanding 

patterns and trends in some function f(Ox,Oy) � R, where R repre-

sents the fields encoded in the retinal properties of the marks. This 

can be seen in Figure 3(a) where the analyst is studying sales and 

margin as a function of product type, month and state for the 

items sold by a hypothetical coffee chain.  Figure 3(b) presents 

another example of an ordinal-ordinal graphic. In this figure, the 

analyst is investigating the performance of a graphics rendering 

library. The number of cache misses attributable to each line of 

source code have been plotted as a function of the ordinal vari-

ables line number and file name. 

The cardinality of the record set in each pane has little effect 

on the overall structure of the table. When there is more than one 

record per pane, multiple marks are shown in each display, with a 

one-to-one correspondence of mark to record. The marks are 

stacked in a specified drawing order, and the spatial placement of 

the marks within the pane conveys no additional information 

about the record’s data. 

Ordinal-Quantitative Graphics 

Well-known representatives of this family of graphics are the bar 

chart, possibly clustered or stacked, the dot plot and the Gantt 

chart. 

In an ordinal-quantitative graphic, the quantitative variable is 

often dependent on the ordinal variable, and the analyst is trying 

to understand or compare the properties of some set of functions 

f(O)� Q. Figure 6(c) illustrates a case where a matrix of bar 

charts is used to study several functions of the independent vari-

ables product and month. The cardinality of the record set does 

affect the structure of the graphics in this family. When the cardi-

nality of the record set is one, the graphics are simple bar charts or 

dot plots. When the cardinality is greater than one, additional 

structure may be introduced to accommodate the additional re-

cords (e.g., a stacked bar chart). 

The ordinal and quantitative values may be independent vari-

ables, such as in a Gantt chart. Here, each pane represents all the 

events in a category; each event has a type as well as a begin and 

end time. In Figure 3(c), major wars over the last five hundred 

years are displayed as Gantt charts, categorized by country. An 

additional layer in that figure displays pictures of major scientists 

plotted as a function of the independent variables country of birth 

and date of birth.  Figure 3(d) shows a table of Gantt charts, with 

each Gantt chart displaying the thread scheduling and locking 

activity on a CPU within a multiprocessor computer. 

Quantitative-Quantitative Graphics 

Graphics of this type are used to understand the distribution of 

data as a function of one or both quantitative variables and to 

discover causal relationships between the two quantitative vari-

ables. Figure 6(a) illustrates a matrix of scatterplot graphics used 

to understand the relationships between a number of attributes of 

different products sold by a coffee chain. 

Figure 3(e) illustrates a another example of a quantitative-

quantitative graphic: the map. In this figure, the analyst is study-

ing how flight scheduling varies with the region of the country the 

flight originated in. Data about a number of flights between major 

airports has been plotted as a function of latitude and longitude, 

and composed with two other layers which plot the location of 

airports and display the geography of each state as a polygon.  

It is extremely rare to use this type of graph with a cardinality 

of one, not because it is not meaningful, but because the density of 

information in such a graphic is very low. 

4.3. Visual Mappings 

Each record in a pane is mapped to a mark. There are two 

components to the visual mapping. The first component, described 



  

   

 

 
Figure 3: Examples of the different graph types that can be constructed in Polaris. The graphical table (a), showing sales and margin as 

a function of product type and state for a hypothetical coffee chain, is an example of the ordinal-ordinal family of graphics. The source 

code display (b), which is displaying the source code for a graphics rendering library with the code colored by the number of cache 

misses attributable to each line of code, is another example of the ordinal-ordinal family. Gantt charts, used in (c) to display major wars 

in several countries over the last five hundred years, and in (d) to display the thread scheduling for a graphics application, are an exam-

ple of the ordinal-quantitative family. Maps, as in (e) which shows flights between several major airports categorized by the region of 

the country they departed from, are an example of the quantitative-quantitative family of graphics. Line charts, as in (f) which shows av-

erage sales and profit as a function of time for the coffee chain, are another example of the quantitative-quantitative family. 



  

in the previous section, determines the type of mark. The second 

component encodes fields of the records into visual or retinal 

properties of the selected mark. The visual properties in Polaris 

are based on Bertin’s retinal variables [4]: shape, size, orientation, 

color (value and hue), and texture (not supported in the current 

version of Polaris). 

Allowing analysts to explicitly encode different fields of the 

data to retinal properties of the display greatly enhances the data 

density and the variety of displays that can be generated. How-

ever, in order to keep the specification succinct, analysts should 

not be required to construct the mappings. Instead, they should be 

able to simply specify that a field be encoded as a visual property. 

The system should then generate an effective mapping from the 

domain of the field to the range of the visual property. These 

mappings are generated in a manner similar to other visualization 

systems. We discuss how this is done for the purpose of com-

pleteness. The default mappings are illustrated in Figure 4. 

Shape 

Polaris uses the set of shapes recommended by Cleveland for 

encoding ordinal data [7]. We have extended this set of shapes to 

include several additional shapes to allow a larger domain of val-

ues to be encoded.  

Size 

Size can be used to encode either an ordinal or quantitative field. 

When encoding a quantitative domain as size, a linear map from 

the field domain to the area of the mark is created. The minimum 

size is chosen so that all visual properties of a mark with the mini-

mum size can be perceived [16]. If an ordinal field is encoded as 

size, the domain needs to be small, at most four or five values, so 

that the analyst can discriminate between different categories [4].  

Orientation 

A key principle in generating mappings of ordinal fields to orien-

tation is that the orientation needs to vary by at least 30° between 

categories [16], thus constraining the automatically-generated 

mapping to a domain of at most six categories. For quantitative 

fields, the orientation varies linearly with the domain of the field. 

Color 

When encoding an ordinal domain, we use a predefined palette to 

select the color for each domain entry. The colors in the palette 

are well separated in the color spectrum, predominantly on 

hue [27]. We have ordered the colors to avoid adjacent colors with 

different brightness or substantially different wavelengths in an 

attempt to include harmonious sets of colors in each pal-

ette [4][16][27]. We additionally reserve a saturated red for high-

lighting items that have been selected or brushed.  

When encoding a quantitative variable, it is important to vary only 

one psychophysical variable, such as hue or value. The default 

palette we use for encoding quantitative data is the isomorphic 

colormap developed by Rogowitz [20]. 

5. Generating Database Queries 

Obviously, the visual specifications determine the final visualiza-

tion. However, just as importantly, the visual specification gener-

ates queries to the database that (a) select subsets of the data for 

analysis, then (b) filter, sort and group the results into panes, and 

then finally (c) group, sort and aggregate the data before passing it 

to the graphics encoding process. 

Figure 5 shows the overall data flow in Polaris. We can pre-

cisely describe the transformations in each of the three phases 

using SQL queries.  

Step 1: Selecting the Records 

The first phase of the data flow retrieves records from the data-

base, applying user-defined filters to select subsets of the data-

base. 

For an ordinal field A, the user may specify a subset of the 

domain of the field as valid. If filter(A) is the user-selected subset, 

then a relational predicate expressing the filter for A is: 

A in filter(A) 

For a quantitative field P, the user may define a subset of the 

field’s domain as valid. If min(P) and max(P) are the user-defined 

extents of this subset, then a relational predicate expressing the 

filter for P is: 

(P ≥ min(P) and P ≤ max(P)) 

We can define the relational predicate filters as the conjunction of 

all of the individual field filters. Then, the first stage of the data 

transformation network is equivalent to the SQL statement: 

SELECT * 
WHERE {filters} 

Step 2: Partitioning the records into panes 

The second phase of the data flow partitions the retrieved records 

into groups corresponding to each pane in the table. As we dis-

cussed in Section 4.1, the normalized set form of the table axis 

expressions determines the table configuration. The table is parti-

tioned into rows, columns, and layers corresponding to the entries 

in these sets.  

 

Figure 4: The different retinal properties that can be used to encode fields of the data and examples of the default mappings that 

are generated when a given type of data field is encoded in each of the retinal properties. 



  

The ordinal values in each set entry define the criteria by 

which records will be sorted into each row, column and layer. Let 

Row(i) be the predicate that represents the selection criteria for the 

ith row, Column(j) be the predicate for the jth column, and Layer(k) 

the predicate for the kth layer. For example, if the y-axis of the 

table is defined by the normalized set: 

{a 1b 1P ,  a 1b 2P, a 2b 1P ,  a 2b 2P} 

then there are four rows in the table, each defined by an entry in 

this set, and Row would be defined as: 

Row(1) = (A = a 1  and B = b 1)  

Row(2) = (A = a 1  and B = b 2)  

Row(3) = (A = a 2  and B = b 1)  

Row(4) = (A = a 2  and B = b 2) 

Given these definitions, the records to be partitioned into the 

pane at the intersection of the ith row, the jth column, and the kth 

layer can be retrieved with the following query: 

SELECT * 
WHERE {Row(i) and Column(j) and 
   Layer(k)} 

To generate the groups of records corresponding to each of the 

panes, we must iterate over the table executing this SELECT 

statement for each pane. There is no standard SQL statement 

which enables us to perform this partitioning in a single query. 

We note that this is a same problem that motivated the CUBE [13] 

operator; we will revisit this issue in the discussion section.  

Step 3: Transforming Records within the Panes 

The last phase of the data flow is the transformation of the records 

in each pane. If the visual specification includes aggregation, then 

each measure in the database schema must be assigned an aggre-

gation operator. If the user has not selected an aggregation opera-

tor for a measure, that measure is assigned the default aggregation 

operator (SUM). We define the term aggregates as the list of the 

aggregations that need to be computed. For example, if the data-

base contains the quantitative fields Profit, Sales and Payroll, and 

the user has explicitly specified that the average of Sales should 

be computed, then aggregates is defined as:  

aggregates = 
SUM(Profit),AVG(Sales),SUM(Payroll) 

Aggregate field filters (for example, SUM(Profit) > 500) could 

not be evaluated in Step 1 with all of the other filters because the 

aggregates had not yet been computed. Thus, those filters must be 

applied in this phase. We define the relational predicate filters as 

in Step 1 for unaggregated fields.  

Additionally, we define the following lists: 
 

G : the field names in the grouping shelf, 

S : the field names in the sorting shelf, and 

dim : the dimensions in the database. 
 

The necessary transformation can then be expressed by the SQL 

statement: 

SELECT {dim},{aggregates} 
GROUP BY {G} 
HAVING {filters} 
ORDER BY {S} 

If no aggregate fields are included in the visual specification, then 

the remaining transformation simply sorts the records into draw-

ing order: 

SELECT * 
ORDER BY {S} 

6. Results 

Polaris is useful for performing the type of exploratory data 

analysis advocated by statisticians such as Bertin [3] and Cleve-

land [8]. We demonstrate the capabilities of Polaris as an explora-

tory interface to multi-dimensional databases by considering the 

following scenario. 

The chief financial officer (CFO) of a national coffee store 

chain has just been told to cut expenses. To get an initial under-

standing of the situation, the CFO creates a table of scatterplots 

showing the relationship between marketing costs and profit  

categorized by product type and market (Figure 6(a)). After study-

ing the graphics, the CFO notices an interesting trend: certain 

products have high marketing costs with little or no return in the 

form of profit.  

To further investigate, the CFO creates two linked displays: a 

table of scatterplots showing profit and marketing costs for each 

state and a text table itemizing profit by product and state (Figure 

6(b)). The two views are linked by the state field: if records are 

selected in either display, then all records with the same state 

 
 

Figure 5: The transformations and data flow within Polaris. The visual specification generates queries to the database to select 

subsets of the data for analysis, then to filter, sort, and group the results into panes, and then finally to group, sort and aggregate 

the data within panes. 



  

remove this line 

value as the selected records are highlighted. The CFO is able to 

use these linked views to determine that in New York, several 

products are offering very little return despite high expenditures. 

The CFO creates a third display (Figure 6(c)): a set of bar 

charts showing profit, sales, and marketing for each product sold 

in New York, broken down by month. In this view, the CFO can 

clearly see that Caffé Mocha’s profit margin does not justify its 

marketing expenses. With this data, the CFO can change the com-

pany’s marketing and sales strategies in this state.  

This example illustrates several important points about the ex-

ploratory process. Throughout the analysis, both the data users 

want to see and how they want to see it change continually. Ana-

lysts first form hypotheses about the data and then create new 

views to perform tests and experiments to validate or disprove 

those hypotheses. Certain displays enable an understanding of 

overall trends, whereas others show causal relationships.  As the 

analysts better understand the data, they may want to drill-down 

in the visible dimensions or display entirely different dimensions. 

Polaris supports this exploratory process through its visual in-

terface. By formally categorizing the types of graphics, Polaris is 

able to provide a simple interface for rapidly generating a wide 

range of displays. This allows analysts to focus on the analysis 

task rather than the steps needed to retrieve and display the data. 

7. Discussion 

Several of the ideas in our specification are extensions of Wil-

kinson's [29] efforts to develop a grammar for statistical graphics. 

His grammar encapsulates both the statistical transformation of 

datasets and their mapping to graphic representations. 

The primary distinctions between Wilkinson's system and ours 

arise because of differences in the data models. We chose to focus 

on developing a tool for multi-dimensional relational databases 

and we decided to build as much of the system as possible using 

relational algebra. All of the data transformations required by our 

visual specifications can be precisely interpreted as standard SQL 

queries to OLAP servers. Wilkinson instead intentionally uses a 

data model that is not relational, citing shortcomings in the rela-

tional model's support for statistical analysis. Consequently, his 

specification defines operations and function in terms of his own 

data model consisting of variable sets and indexed variables. 

The differences in design are most apparent in the table alge-

bra. As in our system, Wilkinson’s table algebra performs two 

functions: it provides database services such as set operations and 

it specifies the layout of the tables and graphs. Since we use rela-

tional algebra for all our database services, our algebra is differ-

ent. For example, his blend operator performs both set union and 

may partition the axes of a table; our concatenation operation is 

different since it just performs partitioning. Another difference is 

in his cross and nest operators: cross generates a 2D graphic and 

nest only a 1D graphic. We use a different mechanism (shelves) to 

specify axes of the graphic. Overall, whether our system is better 

than Wilkinson's is hard to judge completely, and will require 

more experience using the system to solve practical problems. 

One major advantage of our approach is that it leverages existing 

database systems and as a result was very easy to implement. 

Another interesting issue is the interpretation of our visual 

specifications as database queries. When database queries are 

generated from the visual specifications in Polaris, it is necessary 

to generate a SQL query per table pane. This problem is similar to 

the one that motivated Gray et al. to develop the CUBE opera-

tor [13]. The CUBE operator generalizes the queries necessary to 

 
Figure 6: An example scenario demonstrating the capabili-

ties of Polaris for exploratory analysis of multi-dimensional 

databases. The data displayed is for a hypothetical coffee 

store chain, and the analyst is searching for ways to reduce 

the company’s  expenses. 

 



  

develop cross-tab and Pivot Table displays of relational data into a 

single, more efficient operator. However, the CUBE operator 

cannot be applied in our situation because it assumes that the sets 

of relations partitioned into each table pane do not overlap. In 

several possible Polaris table configurations, such as scatterplot 

matrices, there can be considerable overlap between the relations 

partitioned into each pane. One can imagine generalizing the 

CUBE operator to handle these overlapping partitions. 

Another major limitation of the CUBE operator is its method 

for computing aggregates. Usually only aggregates based on sums 

are allowed. More complex aggregation operators requiring rank-

ing, such as computation of medians and modes, are not part of 

the current specification, although they are available in some 

commercial systems. These operators are very useful for data 

mining applications. 

8. Conclusions and Future Work 

We have presented Polaris, an interface for the exploration and 

analysis of large multi-dimensional databases. Polaris extends the 

well-known Pivot Table interface to display relational query re-

sults using a rich, expressive set of graphical displays. A second 

contribution of this system is a succinct visual specification for 

describing table-based graphical displays of relational data and the 

interpretation of these visual specifications as a precise sequence 

of relational database operations. 

We have many plans for extending this system. The current 

version of Polaris does not leverage the hierarchical structure of 

many multi-dimensional databases. We are currently exploring 

interaction techniques for navigating these types of hierarchies 

and developing specifications that describe graphics derived from 

hierarchical data. 

Furthermore, because graphical marks in Polaris directly cor-

respond to tuples in the relational databases, it is possible to gen-

erate database tables from a selected set of graphical marks. This 

technique can be used to develop lenses, similar to the Magic 

Lens [5], that can perform much more complex transformations 

because they operate in data space rather than image space. This 

technique can also be used to compose Polaris displays, using a 

selected mark set in one display as the data input to another. We 

are exploring these techniques and believe it is possible to develop 

a relational spreadsheet by composing Polaris displays in this 

manner. 
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