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Abstract— Technology trends are driving parallel on-chip ar-
chitectures in the form of multi-processor systems-on-a-chip
(MPSoCs) and chip multi-processors (CMPs). In these sys-
tems the increasing on-chip communication demand among the
computation elements necessitates the use of scalable, high-
bandwidth network-on-chip (NoC) fabrics. As transistor feature
sizes are further miniaturized leading to rapidly increasing
amounts of on-chip resources, more complicated and power-
ful NoC architectures become feasible that can support more
sophisticated and demanding applications. Given the myriad
emerging software-hardware combinations, for cost-effectiveness,
a system designer critically needs to prune this widening NoC
design space to identify the architecture(s) that best balance(s)
cost/performance, before the actual design process begins. This
prompted us to develop Polaris1, a system-level roadmap for on-
chip interconnection networks that guides designers towards the
most suitable network design(s) tailored to their performance
needs and power/silicon area constraints with respect to a
range of applications that will run over this network(s). Polaris
explores the plethora of NoC designs based on projections of
network traffic, architectures, and process characteristics. While
the Polaris roadmapping toolchain is extensible so new traffic,
network designs, and processes can be added, the current version
of the roadmap already incorporates 7,872 NoC design points.
Polaris is rapid and iterates over all these NoC architectures
within a tractable run time of 125 hours on a typical desktop
machine, while maintaining high relative and absolute accuracies
when validated against detailed NoC synthesis results.

I. INTRODUCTION

The International Technology Roadmap for Semiconductors
(ITRS) [25] projects that it will soon be feasible to design
multi-billion transistor chips. Increasing design complexity
and diminishing returns from uniprocessor optimizations have
led to the emergence of multi-core architectures in the form of
multi-processor systems-on-a-chip (MPSoCs) and chip multi-
processors (CMPs). The growing number of on-chip resources
in combination with the diverse range of current and future
applications that these parallel systems are to run are sparking
a widening design space of multi-core architecture implemen-
tations. Architects and designers are therefore faced with the
tough challenge of selecting the most suitable parallel system
design that will best balance their application requirements in
terms of the anticipated cost-benefits.

While ITRS has served as an indispensable guide for
circuit designers and researchers, providing well-calibrated
projections into future device, interconnect, and technology
parameters such as wire spacing, capacitance, and voltages, no
system-level living roadmap (SLLR) [8] exists to guide system
designers in their navigation of the vast multi-core design
space. Similar to the goals of ITRS in projecting potential
low-level device and component parameters, a SLLR projects
potential high-level architecture parameters. As Figure 1-A
shows, a 3-phase SLLR projects system-level parameters: (1)
the application workload that a wide range of multi-core
on-chip systems are targeted for; (2) the multi-core system
architecture components such as processor types, cache sizes

1Polaris is a star in our galaxy that has been used as a guiding light by
sailors for centuries.
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system.

and organizations, network topologies, number of processing
cores, etc.; and (3) the associated cost/performance character-
istics such as latency, power consumption and silicon area of
each system design. These metrics projected by a SLLR can
guide a designer in the selection of a subset of parallel systems
that best meet cost-benefit expectations before the detailed
system design process begins.

In this paper, we take the first step towards such a SLLR, fo-
cusing on a key subcomponent of a multi-core on-chip system:
its communication subsystem, the on-chip interconnection
network or network-on-chip2 (NoC). With chips increasingly
composed of multiple processing elements, the impact of
the design of the communication subsystem on overall chip
performance, silicon area, and power, is becoming increasingly
crucial [6], [4]. As the demand for bandwidth increases, on-
chip networks are becoming the de facto interconnect fabric
in multi-core systems-on-a-chip (SoCs), MPSoCs and CMPs,
leading to a corresponding explosion in the multi-core on-chip
design space.

This motivates us to propose Polaris, a system-level
roadmap for on-chip networks that guides designers towards a
subset of most suitable candidates for on-chip network designs
while considering the complex tradeoffs between applications,
architectures, and technologies. As shown in Figure 1-B, simi-
lar to a SLLR for the entire multi-core on-chip system, a NoC
roadmapping toolchain consists of three equivalent phases: (1)
the projection of workloads, in this case the network traffic
among the cores of the various multi-core architectures; (2)
the projection of several NoC components and subsequently
the exploration of the vast design space of NoCs; and (3)
the projection of circuit and technology parameters. This 3-
phase system-level NoC projection toolchain derives high-
level estimates of cost/performance tradeoffs of each NoC
design.

Each of the three phases of the NoC SLLR encounters sig-

2NoCs and on-chip interconnection networks are used interchangeably in
this paper. Tiles, nodes and routers are also used equivalently.
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nificant challenges. First, network traffic projections are faced
with the plethora of traffic patterns arising from the myriad
current and potential architectures as well as the diverse range
of applications and their network mappings [21], [24], [29]. It
is therefore important to categorize traffic using a small range
of spatio-temporal parameters that comprehensively capture
the behavior of traffic. This enables a designer to realistically
capture various traffic behaviors by using a representative set
of projected applications that may not yet be exercised with
real benchmark applications, an especially important issue
in a relatively immature field such as NoCs. Additionally, a
relatively small number of spatio-temporal variables enables
designers to intuitively understand a wide spectrum of current
and emerging traffic patterns. Polaris tackles this with a traffic
model based on three statistical variables that can capture di-
verse traffic patterns, allowing designers to pick representative
traffic categories in driving NoC roadmapping. Second, the
design space exploration toolchain has to be rapid. With a huge
design space to be explored, cycle-level simulations or circuit-
level investigations will not be tractable. A rapid, yet relatively
accurate toolchain is necessary. Currently, Polaris encompasses
a design space of 21 different network architectures, each
with 24 different network micro-architecture configurations
(the binary fat trees examined in this paper possess 12 dif-
ferent network micro-architecture configurations) at 2 process
technologies (90nm and 50nm), giving rise to a total of
984 distinct network designs. Coupled to 8 distinct traffic
categories, Polaris currently explores 7,872 design points, each
representing a unique traffic-architecture combination. Polaris
iterates through these in a manageable 125 hours on a typical
desktop machine3. Finally, technology scaling alters the com-
plex tradeoffs between alternative designs at each technology
node, so the high-level area/power/delay projections have to
judiciously project suitable circuit and technology parameters
while maintaining relative accuracy. Our validation results in
Section IV show Polaris’s high relative and absolute accuracies
versus detailed NoC synthesis using Verilog.

Next, Section II compares NoC roadmapping with prior
related work in SoC synthesis in order to show the differing
design goals of the two toolchains. Following, Section III
presents Polaris’s roadmapping toolchain, composed of sev-
eral tools heavily modified and integrated for system-level
roadmapping. Section IV validates the toolchain against low-
level synthesis tools while Section V presents Polaris’s projec-
tions and insights on current state-of-the-art and future NoC
designs. Finally, Section VI concludes the paper.

II. COMPARING NOC ROADMAPPING AND NOC
SYNTHESIS

We compare NoC roadmapping with prior related research
in NoC synthesis. Figure 2-A sketches a typical NoC synthesis
toolchain (NoCSyn), where the first two phases are based on
the SUNMAP [15] tool and the third phase is based on the
×pipesCompiler [12] tool, while Figure 2-B sketches a NoC
roadmapping toolchain (NoCRoad) based on Polaris. Similar
NoCSyn flows have also been exhibited in a number of other
synthesis toolchains, such as in the work by Pestana et al. [20]
that uses XML-based simulation to find NoC cost/peformance
instances, in the work by Horn et al. [10] that provides a
mechanism for cost optimal construction of irregular networks
based on three design criteria, Metropolis [9], an environment
that uses compositional modeling to assemble SoC compo-
nents so that their composition satisfies a given set of design
constraints and properties, and in the work by Ögras and
Marculescu [16] that presents a methodology for synthesizing
customized communication architectures that are tailored to
the communication requirements of a target application.

NoCRoad provides power/area/delay estimates for each
tested NoC design to form a large set of projections. A

3Each design point runs for half a million cycles of simulation on a
2.4GHz Pentium 4-based single processor machine with 1.25GB of RAM.

designer can then prune this entire set of projections and pick a
subset of designs that best suits the designer’s projected design
constraints from the tables of results, before the designer
invests in detailed evaluation of these designs. NoCRoad can
also be used as a complementary pre-processing tool for
NoCSyn. In other words, if NoCRoad is used in conjunction
with current process technology libraries, NoCRoad can point
to a subset of NoC designs that can then be implemented
in detail using a NoCSyn engine, thus leading to efficient
exploration and implementation of NoCs. NoC roadmapping
does not replace NoC synthesis. As it will be explained in
more detail, NoCRoad’s scope is about NoC projection and
exploration while the scope of NoCSyn engine is about NoC
selection and generation [15]. Since NoCRoad and NoCSyn
have different goals the two toolchains cannot be contrasted
to highlight each one’s performance, rather, they can be
compared to expose their individual goals in the design of
NoCs. In detail, we refer to Figure 2 to show the differences of
NoC synthesis (Figure 2-A) and roadmapping with NoCRoad
(Figure 2-B) phase-by-phase.

Phase 1 of NoCSyn performs application traffic analy-
sis and mapping. A specific application that the SoC is
to run (e.g. MPEG video) is evaluated using simulations
or abstracted using static analysis to capture the amount
of inter-core communication. Design constraints such as
area/power/latency/throughput are fed into the toolchain to-
gether with a user-chosen routing function, a limited set of
topologies and NoC architecture parameters known a pri-
ori, along with power/area/delay libraries at current process
technologies. Early power/area/delay and traffic bandwidth
estimates are then calculated for each application-mapped
NoC topology. In comparison, Phase 1 of NoCRoad performs
application traffic projections. Based on statistical analysis,
NoCRoad enables the representation of a wide range of
applications using a small number of parameters that accu-
rately capture the spatio-temporal characteristics of traffic.
Armed with these spatio-temporal parameters, NoCRoad then
synthesizes and thereafter categorizes traffic into a set of
representative traffic groups. This enables a designer to capture
various traffic behaviors by choosing a representative set
of projected traffic that may not yet correspond to actual
executing application traffic traces.

Phase 2 of NoCSyn is about topology selection. In de-
tail, NoCSyn draws several known process technology and
specific architecture parameters to evaluate the various topol-
ogy choices in terms of the user-defined area/power/delay
expectations. To achieve this, NoCSyn uses lower-level tools
to accurately determine whether the constraints from Phase
1 have been met. Based on these evaluations and analysis,
NoCSyn then selects a single NoC design out of the set of
application-mapped topologies from Phase 1. In comparison,
NoCRoad’s Phase 2 performs high-level NoC design-space
exploration. NoCRoad uses a high-level framework to rapidly
explore a huge NoC design space that can consist of 10s of
thousands of NoC design points. Using the various traffic
categories from Phase 1, along with a wide range of future
projected micro-architecture configurations, routing functions,
flow control protocols, and wire and pipeline delay models, it
rapidly analyzes each NoC’s level of utilization. This high-
level analysis enables NoCRoad to uncover the points of
contention and their effects in a wide NoC design space
through analysis rather than by running simulations. Here,
absolute accuracy as in the case of NoCSyn is not necessary,
but relative accuracy is important. No design constraints are
input and examined in this phase as the toolchain explores
rather than selects NoC design alternatives.

The third and final Phase of NoCSyn carries out synthesis,
simulation, and verification. Here NoCSyn uses several back-
end tools to instantiate (by drawing in several macro or mid-
level NoC components) and then simulate the chosen NoC
description, simultaneously verifying that the user-defined
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design constraints and goals have been met. Finally, the
NoC is synthesized into gate, transistor or macro levels by
employing lower-level circuit libraries. The detailed NoC low-
level silicon layout is then drawn, verified, and sent for tape-
out. In comparison, NoCRoad’s third phase is concerned with
NoC projections and validation. Here, NoCRoad draws in low-
level technology, interconnect, and device projections from
ITRS [25] and BPTM [2]. Using these low-level parameters
within a high-level framework, NoCRoad then projects the
NoC topology floorplan, router pipeline structures and the
circuitry of all explored NoC designs, and then provides
estimations of various metrics of interest: area/power/delay
and various other combinations of results.

Research in system-level roadmapping is in its infancy.
There have been several works [13], [1] that proposed high-
level models of key system metrics such as reliability and
variability. An interesting future direction is to explore fac-
toring these models into the third phase of NoCRoad so that
variability-aware metrics can also be projected. The closest
work to NoCRoad is that by Wang et al. [34] which proposed
an analytical design-space exploration tool for projecting NoC
topologies at future technologies. However, it only explores
topologies and a single metric: network power.

III. POLARIS TOOLCHAIN

Polaris builds upon the interfacing of three tools where
each tool corresponds to each of the three phases depicted
in Figure 2-B. These three tools are (1) Trident [28], a syn-
thetic traffic constructor/analyzer, (2) LUNA [7], an analytical
framework that estimates network resource utilization for a
wide spectrum of architectures to calculate network delay
and power, and (3) Orion [32] a library of power, area and
router pipeline delay models that is used to estimate power
and CMOS area for each network configuration at every
process technology node. Each such phase corresponds to
the equivalent phase of the detailed roadmapping toolchain
presented in Section II.

In the first phase an architect chooses an NoC traffic
category based upon a set of spatio-temporal parameters that
describe the form of that class of traffic. These three statistical
components model the hop count, burstiness, and packet
injection distribution of on-chip traffic. Given these statistical
parameters Trident then automatically generates synthetic NoC
traces that are fed into Phase 2 of Polaris. In Phase 2 LUNA
consumes these traces and analyzes the utilizations at each
router node and link of all NoC architectures under consider-
ation. This vast NoC design space is built from permutations

of various topologies, architecture parameters such as buffer
sizes in terms of flits4, flit width, flow control protocols, and
routing functions. In Phase 3, these NoC utilization profiles
are then fed into Orion to estimate power consumption and
network delay at each process technology. Power/delay/area
metrics are then output for each NoC architecture-traffic design
point combination to form a huge table of results.

These three tools were interfaced to each other and sig-
nificantly modified from their original implementations so as
to allow Polaris to model various NoC architectures. Our
contributions to the extensions of these tools are as follows:

(1) Trident was modified to accommodate traffic cate-
gorization or grouping. This allows traffic to be classified
into various representative groups depending upon the spatio-
temporal characteristics of traffic. This enables a designer to
capture various traffic behaviors by using a representative set
of projected applications that may not yet be exercised with
real benchmark applications. This is especially important in
a relatively immature field like NoCs, and for projecting into
future technologies.

(2) LUNA, a tool originally proposed for NoC power analy-
sis, was extended to include delay analysis and interfaced with
Orion so that Orion’s projected router pipeline delay models
are factored in at each node and consequently in LUNA’s
delay analysis. LUNA originally modeled 2-dimensional mesh
networks with static routing. LUNA was heavily modified to
model 12 types of topologies such as binary fat trees, rings and
hierarchical and express cube variants (see Figure 3). LUNA
was also extended to incorporate adaptive routing as well,
virtual cut-through and wormhole flow controls. LUNA now
resolves and estimates delay using additional parameters that
were added to Orion (see below).

(3) Orion was modified to operate in a statistical mode
where all activity in a router is abstracted as one single router
load. This enables Orion to operate much faster than in its
original cycle-by-cycle mode. Area models were also added
to Orion enabling it to estimate the silicon area required
by the various components of a NoC topology. Orion now
incorporates a delay model which depends on the pipeline
lengths of routers used in the various NoC topologies and
wire lengths (see Table I), and delay caused due to congestion,
where the latter is estimated by LUNA via traffic analysis.
Power models at current state-of-the-art 90nm and future
50nm process technologies were also incorporated.

4Flit stands for “flow control unit,” a fixed-size segment of a packet.
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We next elaborate on the details of each component in
Polaris.

A. 3-Tuple Statistical Traffic Model

Trident [28] is a tool developed to both (1) model statisti-
cally and (2) construct traffic based on three parameters, re-
ferred to as a 3-tuple. The extraction of these three parameters
is based on empirical analysis carried out on a representative
set of real traces from three existing NoC architectures: the
Raw CMP [29], TRIPS CMP [24], and a 16-tile conventional
directory-based cache-coherent shared-memory CMP5. These
three parameters allow Trident to capture the spatio-temporal
characteristics of NoC traffic comprehensively and accurately
and with less than 5% error when validated against the above
actual NoC application traces. The 3-tuple comprises:

(1) Traffic burstiness. It models how often packet bursts
are injected into network routers and how large these bursts
are. It was found in the work by Soteriou et al. [28] that on-
chip traffic exhibits self-similarity or “scale-invariant bursti-
ness” [18], where traffic burst patterns repeat themselves over
time. Trident models burstiness using the Hurst parameter,
0.5 < H ≤ 1, which defines the level of self-similarity. The
closer H is to 1 the higher the level of burstiness.

(2) Traffic injection distribution. It models how packet
injection streams are distributed among the various nodes in an
NoC. Packet injections were found in the work of Soteriou et
al. [28] to possess a Gaussian injection distribution when the
aggregated injection peaks are graphed. Using a normalized
standard deviation, σGauss, to decouple the size of the network
to the actual packet injection distributions, hot-spot or evened-
out traffic can be modeled where a relatively larger σGauss
models a more evened-out injected traffic pattern.

(3) Traffic hop distance. With a single statistical parameter
it models how long packets travel from source to destination,
capturing long and short-distance traffic with respect to the
topology’s size and type, and consequently in relation to the
maximum hop distance of a NoC.

The three statistical parameters are unitless and orthogonal
to each other allowing Trident to generate a spectrum of
synthetic traffic with various statistical characteristics. For
instance, hot-spot traffic which is highly bursty and travels
long distances (high hop count) can be generated given the
three parameters as inputs by a designer. These synthetic traces
contain timestamps and source-destination router coordinates
that are fed into LUNA in Polaris as Section III-B describes.
The reason for using synthetic traffic traces generated with
Trident instead of using traffic traces obtained from paral-
lelized benchmarks is that the use of our statistical traffic
model allows us to extensively cover all traffic spatio-temporal
forms, including those that are not precisely captured by real

5The cache-coherent CMP comprises 16 tiles each with an in-order proces-
sor core, 32KB write-through L1 data and instruction 4-way set-associative
cache, and 4MB shared L2 16-way set-associative data cache with write-back.
All caches consist of 32-byte blocks. Cache coherence is maintained through
a directory-based MSI protocol. The cache-coherent CMP is simulated on the
Liberty Simulation Environment [30] with traces obtained from the 16-node
memory network interconnected in a 4 × 4 mesh array.

traces. This allows NoC designers to conjecture and predict the
traffic for future NoC applications and designs before detailed
traces are available.

Though Trident in its stand-alone mode can generate traf-
fic of theoretically infinite spatio-temporal permutations, for
the purposes of roadmapping traffic has to be categorized.
This categorization enables a designer to more readily pick
representative traffic sets, while covering a wide spectrum
of traffic spatio-temporal characteristics without explicitly
having to run parallelized benchmarks. Trident in Polaris
was thus modified to accommodate this requirement. Traffic
categorization in Polaris is derived empirically. First, Polaris
calculates the statistical 3-tuples of 30 representative traffic
traces obtained from simulations of benchmarks running on
the 3 diverse architectures, from two message-passing CMP
architectures [24], [29] and the cache-coherent CMP described
earlier. As already described, these 3-tuples capture the bursti-
ness, hop distance and injection distributions of the above
traces. Second, these 3-tuples are plotted on a 3-dimensional
space, with each axis representing a unique component of the
3-tuple. Polaris then observes for possible clusterings of real
traffic 3-tuples in the three-dimensional space and based on
these groupings of statistical parameters various categories
of 3-tuples are formed. In this paper we consider 8 such
categories; a user can change this number, although here we
choose 8 so that the presentation of results in Section V
becomes doable. These spatio-temporal traffic groupings are
based on permutations of moderate and highly bursty traffic,
global (long hop distance) and local traffic, and hot-spot and
evened-out injected traffic. Details of the resulting categories
from the spatio-temporal traffic clusterings follow.

Based on the empirical measurements of the 3-tuples of the
30 real application traces, short distance traffic is classified as
the traffic where only 20% of the total injected traffic traverses
distances greater than four hops; for long distance traffic this
value rises to 40%. Polaris classifies highly bursty traffic with
an H = 0.9 and moderately bursty with H = 0.65. Traffic
injections are categorized as hot-spot and evened-out traffic.
Hot spots are modeled such that 10% of the nodes (∼ 6 for
64-node NoCs considered in the experiments of Section V)
receive 64% of the total injected traffic (±σGauss, or standard
deviations around the Gaussian mean µGauss), and evened-out
traffic such that 20% of the nodes receive the same portion
of 64% of the traffic. Since traffic is classified into two bins
per statistical parameter of the 3-tuple, here we define 8 such
traffic categories. Note that Trident in Polaris provides the
flexibility to change how traffic is categorized/classified based
on empirical measurements carried out on other sets of traffic
and on a designer’s intuition.

B. Network Utilization Analysis and Network Delay Estima-
tion

LUNA’s analytical framework captures both (1) temporally
the amount of traffic across the entire duration of traffic flow
and (2) the traffic spatially distributed across all nodes in the
network, to estimate the levels of network resource utilization
and consequently the level of network activity. Details of
LUNA’s framework can be found at its release web site [7] and
are omitted here for brevity. LUNA was chosen in constructing
Polaris for two reasons: to meet the challenge of implementing
a fast roadmapping toolchain, with LUNA shown to be up
to 360X faster and second to sustain high relative accuracy
within 5.9% of error when compared against cycle-accurate
simulators.

LUNA was heavily modified to accommodate the various
network topologies, routing functions and flow-control proto-
cols, and to model network delay and estimate power. Figure 3
shows the network configurations built into LUNA.

Network topologies and flow control. LUNA abstracts
a network topology as a graph where network routers are
mapped to the set of nodes and links to the set of edges. LUNA



TABLE I

WIRE DELAYS IN TERMS OF CYCLES GIVEN THE WIRE LENGTH IN

TERMS OF HOPS AND PIPELINE DELAYS BASED ON VARIOUS

PHYSICAL CHANNEL (LINK) PER ROUTER (p) AND VIRTUAL

CHANNEL (v) PER LINK (p,v) COMBINATIONS FOR PACKETS

CONSISTING OF 64-BIT FLITS.

1 2 3 4 5 6 7

1 1 1 1 1 1 2

1 2 2 3 3 4 4

90nm 50nm 90nm 50nm 90nm 50nm

(1+2, 1) 4 5 (1+4, 4) 5 7 (1+8, 1) 5 6

(1+2, 2) 5 6 (1+4, 8) 6 7 (1+8, 2) 5 7

(1+2, 4) 5 6 (1+6, 1) 5 5 (1+8, 4) 6 8

(1+2, 8) 6 7 (1+6, 2) 5 6 (1+8, 8) 6 8

(1+4, 1) 4 5 (1+6, 4) 5 7

(1+4, 2) 5 6 (1+6, 8) 6 7

(p ,v ) (p ,v )(p ,v )
Pipe length Pipe length

Hop length

90nm  delay (cycles)

50nm  delay (cycles)

Pipe length

is also extended to store information of each link’s length and
bandwidth, as well as the number of router pipeline stages
and links at a router so as to accurately measure delay and
power consumption when Orion’s power-delay-area models
are coupled with LUNA (see Section III-C).

Delay modeling. LUNA is extended to calculate the
latency-throughput of traffic (in the form of a trace generated
by Trident) given a network topology by summing (1) the zero-
load delay and (2) the delay due to contention. The former is
calculated by considering the number of pipeline stages in a
router and the packet size in terms of flits, given by the ex-
pression Networklatency = (#pipeline stages×average traffic
hop count)+(flits per packet − 1). This delay expression
is applicable to both flow controls incorporated into LUNA:
(1) wormhole and (2) virtual-cut through. LUNA also resolves
contention-related delays based on the link bandwidth, number
of buffers and number of virtual channels per link. It adds these
additional delays to the above base delay to determine the final
average network delay of a traffic-network combination. The
router pipeline delay in terms of pipeline stages is derived
from the delay model of Peh and Dally [19] and from ITRS
frequency and pipeline stage delays in terms of fan-out-of-4
(FO4) inverter delay projections. Pipeline delays in terms of
clock cycles are shown in Table I. These projections are fed
into both LUNA and Orion to measure the effects on network
latency and power consumption respectively, with more details
about the delay model described in Section III-C.

Routing. LUNA supports both deterministic and adaptive
routing functions, with both functions routing minimally (i.e.
these routing functions route within a minimum rectangle).
Deterministic dimension-ordered routing is modeled, with
priority given to express channels if they lie along a packet’s
routing path. LUNA is extended to incorporate adaptive rout-
ing, by evenly distributing the packet injection rates among
minimal paths between the source and destination nodes.

C. Power, Area and Delay Modeling

Orion [32] comprises architecture-level power models, tar-
geted to various process technologies, of major building blocks
in an interconnection network: buffers, crossbars, arbiters and
channels [12]. For each building block, Orion models the
static and dynamic power of several typical circuit implemen-
tations, and takes as input a range of parameters including
clock frequencies, voltages, circuit structures, link lengths,
etc. In this paper, we project these parameters based on
our projected topology floorplan and with underlying device
and interconnect projections from ITRS-2002 and 2004 [25],
unless otherwise stated. We also extended Orion to model area
in addition to power, and incorporated the pipeline delay model
of Peh and Dally [19] into Orion to capture the effects on area
and power estimates. We project the more preferable circuit
structures at current state-of-the-art 90nm and future 50nm
technologies before inputting them into Orion. For instance, a
matrix crossbar circuit was found to be more energy efficient
than a multiplexer-based crossbar at these technologies. Like-
wise, SRAM buffers instead of shift-registers are assumed as
the former is more energy-efficient [33].

Interfacing with LUNA. Orion is used in tandem with
LUNA to estimate CMOS area and power consumption for
each NoC configuration. Instead of using Orion’s original
activity-accurate mode [32], where Orion is integrated into a
cycle-accurate simulator to measure cycle-accurate switching
activity in a router to calculate power consumption, here Orion
was modified to work in a statistical mode.

In the statistical mode, all activity in a router is abstracted
as one single router load: the average number of flits arriving
at/leaving from every input/output port per cycle. From this
number, Orion automatically derives the switching activity
at every FIFO buffer, crossbar and arbiter within the router,
assuming a 50% bit-level switching probability. This mode
is much faster than the activity-accurate mode, and it is
also fairly accurate if no switching activity oriented power
optimization is in use. It must be noted that this mode does
not distinguish between the various components present in a
router as the various ports trigger the same block-level activity,
and this mode already assumes equal bit-level probability for
all blocks.

LUNA outputs link utilization information for all the chan-
nels of the network which translates to the traffic load of
the upstream output port and downstream input port in terms
of number of flits per cycle. By examining the traffic load
of all input and output ports in a router, the average router
load is calculated and fed into Orion to calculate the power
consumption of the router.

Background on Orion’s power models. To model dynamic
power, Orion needs to estimate both switching capacitance and
switching activity. Orion derives geometry estimation, e.g.,
input line length of the crossbar, memory cell width of the
FIFO buffer, etc., from both the circuit implementation type
and the technology, and relies on a library of base technology
parameters, e.g., capacitance per unit length, minimal wire
spacing, etc., and technology scaling factors to calculate the
switching capacitance. Most technology parameters and scal-
ing factors are taken from CACTI [27], ITRS [25] and from the
work of Ho et al. [11]. The interested reader is urged to consult
the Orion release site [17] for actual technology parameter
values used in this paper. Orion models subthreshold leakage
as the only type of static power. Leakage current values are
estimated through SPICE simulations for various gate types at
every technology, and scaled by the actual gate transistor size,
either by a technology parameter or derived during geometry
estimation [5].

Router pipeline delay. We incorporated the router pipeline
delay model of Peh and Dally [19] into LUNA (see Section III-
B) and Orion to derive the effects of router pipeline delay on
overall network latency and power respectively. This model
considers the number of physical ports p (links) and virtual
channels v per link in a router to determine the number of
router pipeline stages. To model router clock frequency trends,
we adopt the concept that clock speeds cannot exceed a value
which corresponds to a fixed number of gate delays, typically
defined as the delay of an inverter loaded by 4 identical
inverters, or fan-out-of-4 (FO4) inverter delay. Current state-
of-the-art circuits at 90nm run at an aggressive 3GHz with
a typical 14 FO4s between pipeline stages at 1.2V . ITRS
projects that it will be possible to clock future 50nm circuits
at 10GHz with 10 FO4s between pipeline stages, again at
1.2V ; ITRS projects that it will not be possible to reduce
this number as power issues will become extremely critical
due to the frequency increase. Using these projections and the
F04-based router pipeline model of Peh and Dally [19], we
calculate the number of pipe stages for each router shown in
Table I.

Topology floorplan, wire lengths and delays. As Figure 4
shows6, we project the floorplan of the various topologies,
based on prior literature, in order to account for wire delays as

6The indirect binary fat tree topology floorplan is based on Leiserson’s
model [14].



(a) A 64-node binary fat tree (b) A 8×8 folded 2D torus (c) A 8×2×4 3D mesh (d) A 8×2×4  folded 3D torus

Fig. 4. Actual topology floorplans of 64-node (a) indirect binary fat tree (b) 2D folded torus (c) 3D mesh and (d) 3D folded torus.

technologies scale. Estimated wire delays are shown in Table I.
In more complicated network layouts such as 3-dimensional
and hierarchical topologies, we account for folding in tori, an
H-layout for fat trees as well as the availability of upper metal
layers for express links that can be utilized to enable feasibility
of such topologies. We assume a square geometry so a network
is always arranged as a N × N grid. Single hop distance is

calculated as
√

chip area

N
. Chip area of 310mm2 is assumed,

which is the ITRS predicted chip size at production for high
performance systems through 2018. Using ITRS interconnect
RC delay projections, we calculate the link delays in cycles
for 64-node networks as Table I shows.

Geometry and area estimation. Orion’s power modeling is
based on the determination of the geometry of building blocks
in a router. This can thus be readily extended for estimating
area. For instance, the area of a buffer is determined by the
product of its width and its height, approximated by the length
of the wordline and the bitline respectively (approximated, as
the input buffer needs no decoder, and the areas of the pre-
charging circuitry and an optional output driver are relatively
negligible). The bitline and wordline lengths are measured
based on the memory cell size and the number of memory cells
(rows, columns) which depends on technology parameters
inherited from Wattch [3], and the number of cells is derived
from the architecture parameters of the buffer, which are the
flit occupancy and flit size in bits. The interested reader is
urged to consult the Wattch release web site [35] for actual
technology parameter values used in this paper. Similarly, the
area of the crossbar is calculated based on the lengths of the
input and output lines.

Wire capacitance and scaling. Wire capacitance scaling
factors, which affect power consumption, are obtained from
the work of Ho et al. [11]; this work also provides scaling
factors for metal wires with different spacing, which takes into
account coupling capacitance. Orion follows the assumption
of 5λ as the minimal pitch size (λ = 1

2
gate length) as

described by Ho et al. [11] and in the CACTI model [27].
The actual wire spacing is decided by additional factors, e.g.
the wire spacing of channels is determined by the node size as

nodeedge size

2·flitsize in bits
(2 channels) then by comparing the actual wire

spacing with the pitch size; Orion calculates the actual wire
capacitance per unit length. For transistor capacitance scaling
factors we use the “Ideal NMOS device gate capacitance” from
the ITRS-2004 table of projections and the ITRS-2002 “high-
performance NMOS device τ” given as τ = Cgate×

V dd
IddNMOS

that can be used to derive Cgate. Wire spacing of channels is
dependent upon the technology parameters and affects link
capacitance due to the effect of coupling capacitance.

IV. POLARIS VALIDATION

To evaluate the correctness of Polaris’s high-level modeling
we validate it against a detailed NoC synthesis toolchain.
Analytically, we compare the entire 3-phase toolchains of
Polaris vs. NoC synthesis as shown in Figure 2 for a number

of CMP traffic traces and architectures. These architectures
espouse various NoC topologies with a wide range of buffer
sizes and virtual channels per link. For the NoC synthesis,
detailed Verilog models for NoC routers were built for 5
and 9-ported pipelined routers, where the number of pipeline
stages for each router was determined using the model of
Peh and Dally [19]. We used ModelSim SE 5.6 to verify the
correctness of the Verilog models and Synopsys Design Vision
to synthesize the two routers with TSMC 90nm standard cell
libraries. Using this synthesis tool we obtained detailed delay
and power numbers for routers. Power and router pipeline
delays along with TRIPS [24] traces are fed into PoPNet [23],
a cycle-accurate network simulator. Detailed flit activity is
tracked, and combined with Synopsys Design Vision’s power
estimates to derive the final NoC power consumption and
average network delay.

For Polaris’s roadmapping, we use Trident to extract the 3-
tuple spatio-temporal statistics of the same TRIPS CMP traces
and then regenerate artificial traces based on their statistical 3-
tuples (see Section III-A), while maintaining similar through-
put rates as those of the TRIPS traces. These traces are then
fed into Polaris’s toolchain, where power and delay estimates
are obtained as described in Sections III-B and III-C. This
procedure enables us to compare the two toolchains, synthesis
versus roadmapping (Polaris), across all three phases. We note
that due to the lack of standard cell libraries in both the NoC
synthesis toolchain and Polaris, we modeled buffers with basic
flip-flops and the crossbar structure as a mux-tree instead
of incorporating SRAM cells and the matrix crossbar that
Polaris originally uses. Also, as we lack back-end libraries,
the crossbar was modeled with zero wire load.

It was found that, while Polaris’s toolchain was two or-
ders of magnitude faster than the synthesis engine, the two
toolchains ranked the various 2D mesh and torus topolo-
gies and their hierarchical and express cube variants in the
same order in terms of power and delay. This validates the
correctness of the relative ranking of results in Polaris’s
roadmapping toolchain. In absolute terms, Polaris’s estimated
average network latency falls within 2.5 cycles as compared
to the cycle-accurate PoPNet. Polaris’s network power esti-
mates have a maximum error of 4.2% and 2.5% on average.
Polaris’s validation at 90nm leads to high confidence with
its toolchain flow. Polaris will be continuously validated once
new industry libraries at future process technologies become
available. Overall, since it is based on ITRS projections and
it is highly extensible, as these projections change, Polaris
will incorporate them. In short, we believe that as Polaris
demonstrates high level of correctness at current technologies,
future projections using the same toolchain will also yield
good accuracy.

V. EXPERIMENTAL RESULTS

Our experimental results consider 64-node topologies to
fairly compare all the topologies currently implemented in
Polaris, i.e. a reasonable common factor in terms of node count
for all network types considered in this study is 64. Figure 3



TABLE II

ROADMAP SHOWING MINIMUM METRICS OR MOST SUITABLE TOPOLOGIES FOR 64-NODE NETWORKS AT 90nm AND 50nm

TECHNOLOGIES. THE 4-TUPLE UNDER EACH TOPOLOGY DENOTES THE ROUTING TYPE WHERE A = ADAPTIVE AND D =
DETERMINISTIC, THE FLOW CONTROL TYPE WHERE W = WORMHOLE AND V = VIRTUAL CUT-THOUGH , THE BUFFER SIZE PER VIRTUAL

CHANNEL (VC) IN TERMS OF 64-BIT FLITS AND THE VC COUNT PER PHYSICAL CHANNEL. EC DENOTES EXPRESS CUBE TOPOLOGIES,
WHERE “e” DENOTES THE LINK INTERVAL.

Burstiness Injection Hop distance 90nm 50nm 90nm 50nm 90nm 50nm 90nm 50nm 90nm 50nm

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

28.29 34.94 1.96 3.31 4.23 1.94 6.65 1.48 2.97 21.57

A,V,64,4 A,V,64,2 D,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 A,V,64,8

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

29.53 34.25 1.91 3.28 4.12 1.90 6.84 1.46 2.97 21.41

A,V,64,4 A,V,64,2 A,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 A,V,64,8

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

30.56 36.87 1.79 3.08 3.71 1.91 6.84 1.51 2.96 21.60

A,V,64,4 A,V,64,2 D,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 A,V,64,8

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

29.58 35.87 1.82 3.12 3.77 1.94 6.63 1.47 2.96 21.60

A,V,64,4 A,V,64,2 D,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 A,V,64,8

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

29.85 36.46 2.14 3.58 4.62 2.32 7.05 1.57 3.05 22.02

A,V,64,4 A,V,64,2 D,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 A,V,64,8

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

30.09 36.78 2.12 3.54 4.57 2.29 7.14 1.59 3.06 22.07

A,V,64,4 A,V,64,2 D,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 A,V,64,8

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

31.52 38.34 2.22 3.69 4.61 2.29 7.22 1.59 3.07 22.11

A,V,64,4 A,V,64,2 D,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 D,V,64,8

3D Torus 3D Torus Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 Ring EC, e =4 3D Torus 3D Torus 3D Torus 3D Torus

31.52 38.35 2.19 3.64 4.53 2.26 7.25 1.60 3.06 22.07

A,V,64,4 A,V,64,2 A,W,4,1 D,W,4,1 D,W,4,1 D,W,4,1 A,V,4,2 A,V,4,2 A,V,64,8 A,V,64,8
High Evened- out Long

Moderate Evened- out Long

High Hot spot Long

High Evened- out Short

Moderate Hot spot Long

Moderate Evened- out Short

High Hot spot Short

Energy-Delay/Flit (10
-19

Js) Power/Area (10
-8

Wµm
-2

)

Moderate Hot spot Short

Application Characteristics Latency (Cycles) Network Power (W) Energy/Flit (10
-11

J)

shows all topologies considered. We assume packets are each
composed of five 64-bit flits. It is noted that the number of
nodes and flit sizes are both configurable inputs in Polaris.

According to traffic classification model described in Sec-
tion III-A we categorize network traffic into 8 classes of
spatio-temporal parameters; these classes are shown in the 3
leftmost columns of Table II. The network traffic throughput
requirements of each trace is set at a point where a link’s
bandwidth is utilized at a maximum of 60% for all network
topologies tested here. The different networks exhibit different
geometries due to their topologies; for fairness, we mapped the
hot-spots in such as way so as the hop distance between them
was kept roughly equivalent in all tested topologies.

Table II shows the best outcomes for each traffic category
out of all the 7, 872 NoC configurations tested in Polaris
for this paper. Five categories of results are displayed for
both 90nm and 50nm technologies at the ITRS projected
frequencies of 3GHz and 10GHz respectively, both at 1.2V .
These results are an indicative fragment of Polaris’s complete
set of roadmap tables that encompass all 12 topologies cur-
rently considered; the interested reader is urged to consult the
Polaris release web site [22] where 7,872 designs metrics are
presented in a similar and much longer table of results.

A number of insights can be drawn from Table II:

Topologies and micro-architectures. The best latency and
energy-delay product per flit (EDPPF) performing topology
for both 90nm and 50nm technologies are 3D tori. This can
be explained from the fact that 3D tori topologies have a
higher link density and a smaller mean hop distance than
all other topologies considered here. Though 2D hierarchical
topologies contain 8 links per router versus 6 for 3D tori,
the greater number of links (ports) resulted in longer pipeline
stages (see Section III-C and Table I) which increase their
latency as packets have to traverse longer router pipelines. For
minimum latency, Polaris indicates that 3D tori will perform
best when 4 virtual channels (VCs) per link are used under
90nm. This number falls to 2 for future 50nm topologies.
This conclusion can be explained as follows. As the number of
virtual channels per physical link and the frequencies increase
as lithographic technologies enable further miniaturization at
50nm, so are the pipeline stages in a router; so at 50nm
the increase in traffic congestion caused by a fewer number
of VCs per link is counterbalanced from the use of smaller
pipelines, i.e. designers are better off in using a smaller number
of VCs to make shorter pipelines at 50nm. For EDPPF, Polaris
further points out that 3D tori with just 2 VCs per link for

both 90nm and 50nm technologies will outperform 3D tori
with a greater number of VCs per link. Again, additional VCs
in a router introduce extra pipeline stages with extra buffers
needed, giving rise to more energy consumption and zero-
load pipeline delays. For network power and energy per flit
(EPF) express cube rings with express interval e = 4 dominate
in both process technologies tested, due to simpler 2 or 4-
ported routers. Under the metric of power per area (PPA, the
NoC’s power consumption divided by the NoC’s CMOS area),
an indicator of power consumption density and an important
metric useful for thermal modeling [26], 3D tori outperform all
other topologies across all application categories. This is due
to the fact that with higher link densities in 3D tori coupled
with a greater number of buffers and VCs per link (64 and
8 respectively), power is amortized over a relatively greater
CMOS area to produce a smaller PPA.

Effect of process technologies. Table II shows that though
latency will increase in terms of cycle counts when we move
to 50nm technologies as wires will take multiple cycles to
transfer data, latency in ns (absolute time) will improve at
50nm due to faster clocking from 3GHz to 10GHz. This
gives rise to an increase in the power consumption and a one
order of magnitude increase in PPA. On the contrary, with
faster clocking at 50nm, EDPPF will decrease as flits will
have shorter in-transit network durations.

Effect of application classes. Table II shows that the
various topologies tested in this study will not perform equally
well across all 8 application classes as they affect all measured
metrics presented at varying levels. The worst performing traf-
fic categories, with a marginal difference between them, under
all metrics except for the metric of EPF, are highly bursty,
long distance traffic. Longer distance traffic causes higher
power consumption and produces more delay and EDPPF than
the shorter distance traffic counterparts. For instance, long
distance, highly bursty traffic with hot spots produces a higher
latency, network power, EDPPF, and PPA, when compared to
the results of short distance, highly bursty, hot sport traffic. As
NoC architects need to design networks from the application’s
perspective, the results here indicate the importance of traffic
categorization and future NoC roadmapping, projection and
exploration.

Further insights. For further roadmapping details we refer
to Table III. It shows the best output metrics for each topology
tested in this study at 50nm for short hop distance, moderately
bursty, evened-out injected traffic class of applications. The
various NoC topologies are configured at 16-flit buffers with



TABLE III

ROADMAP DETAILING ESTIMATES OF THE BEST

MICROARCHITECTURE FOR VARIOUS TOPOLOGIES AT 50nm FOR

SHORT HOP DISTANCE, MODERATELY BURSTY EVENED-OUT

INJECTED TRAFFIC CLASS OF APPLICATIONS. THE IDEAL

ARCHITECTURE AT 16-FLIT BUFFERS PER VC AND 4 VCS PER

LINK FOR EACH METRIC IS HIGHLIGHTED.

Latency Network Area Energy/Flit Energy-Delay

(Cycles) Power (W)  (µm
2
) (10

-11
J) /Flit (10

-19
Js)

Binary Fat Tree (Indirect) 114.29 68.58 2.60E+07 44.39 50.74

Plain Ring 151.12 5.45 4.80E+05 3.53 5.32

Ring Hierarchical e =2 62.63 5.72 8.50E+05 3.70 2.32

Ring Express Cube e =4 95.92 4.98 6.60E+05 3.22 3.09

3D Torus 38.10 7.58 1.00E+07 4.90 1.87

3D Mesh 44.10 8.41 1.00E+07 5.45 2.40

2D Torus Plain 69.06 7.39 6.80E+06 4.78 3.30

2D Torus Hierarchical, e =2 53.04 12.90 1.40E+07 8.35 4.43

2D Torus Express Cube, e =4 72.42 7.73 7.30E+06 5.01 3.63

2D Mesh Plain 73.34 8.05 6.80E+06 5.21 3.82

2D Mesh Hierarchical, e =2 54.95 13.82 1.40E+07 8.95 4.92
2D Mesh Express Cube, e =3 69.52 8.63 7.80E+06 5.59 3.88

Topology

4 VCs per link. This class of applications models the behavior
of streaming applications such as MPEG video [31] which pos-
sess similar statistical spatio-temporal characteristics. Though
3D tori outperform all other topologies in terms of latency and
EDPPF, express cube rings with interval e = 4 consume 52%
less power and 52% less EPF than 3D tori. Hierarchical rings
with e = 2 also consume 32.5% less power than 3D tori. Using
Polaris, a designer may opt to use hierarchical or express cube
rings instead of 3D tori if the system the designer intends
to build is not highly latency-sensitive; these ring variants
offer better energy tradeoffs and 2 orders of magnitude smaller
CMOS area, important design consideration factors that can
be beneficial for portable devices.

Another interesting insight from Table III is that 64-node
indirect binary fat trees (IBFT) may be unsuitable for NoCs.
IBFT consume an order of magnitude more power, consume
the most area and perform second worst in terms of delay.
These are due to the many VCs and the high physical port
width which increases by a factor of 2 at every tree level. The
high latency can be explained from the fact that congestion is
created at the lower levels of the tree due to the presence of
links with smaller bandwidths and the longer pipeline delays in
routers at the higher levels of the tree (the number of router
pipeline stages are related to (p,v) though routers at higher
levels can be segmented into smaller parts to enable design
flexibility). In fact IBFT were found to perform similarly
worse as compared to all other tested topologies under all 8
traffic categories. As a result, Polaris projects that IBFT may
be unsuitable for current and future NoCs.

VI. CONCLUSIONS AND FUTURE WORK

With this paper we introduce Polaris, a system-level liv-
ing roadmap (SLLR) for NoCs that acts as a first step
towards a complete SLLR for multi-core on-chip systems.
Polaris’s 3-phase toolchain rapidly scans over thousands of
NoC configuration-application points at various process tech-
nologies helping designers explore the design space of NoCs
and identify the most suitable architecture(s) that best bal-
ance(s) NoC cost-benefits, before investing in actual detailed
NoC designs. This paper provides insights on current 90nm
and future 50nm technologies. As Polaris is flexible and
expandable, this first version can be readily extended to
accommodate more NoC designs and metrics. Possible future
directions include the extension of Polaris to roadmap hetero-
geneous systems, and the addition of system-level reliability
and variability predicting models. Future improvements in
accuracy can be accomplished with the inclusion of traffic
models that capture reactive or dynamic effects caused by
data dependencies among the various routing messages and
the addition of intuitive traffic categorization models that can
help designers choose traffic that better emulates the spatio-
temporal characteristics of future applications. In summary,
we see Polaris effectively filling the absence of a NoC SLLR,

serving as a guide for system-level predictions of future on-
chip networks.
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