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Abstract: We study the effect of realistically rounding nanorod antennae

and gap antennae on their far field and near field properties. The simulations

show that both scattering behaviour and polarisation charge distribution

depend significantly on rounding. Rounding is also seen to have a major

effect on coupling between nanostructures. The results suggest that it

is important to incorporate the effect of rounding to be able to design

plasmonic nanostructures with desired properties.
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1. Introduction

Nanostructures with plasmonic resonances have found applications in chemical and biologi-

cal sensing and various other fields [1]. In order to design nanostructures with desired plas-

monic properties, it is necessary to be able to simulate their optical response with high ac-

curacy. Various numerical techniques have been used to this end. Finite difference time do-

main (FDTD) [2, 3] and finite element method (FEM) [4] solve Maxwell’s equations in the

differential form in the time domain and frequency domain, respectively. These methods have

the disadvantage that they require both the scatterer and the background volume to be discre-

tised. To overcome this, integral equation methods have been proposed, which solve Maxwell’s

equations in the integral form. Discrete dipole approximation (DDA) [5] and volume integral

equation (VIE) [6] require discretising the entire scatterer volume whereas boundary element

method (BEM) [7, 8] and surface integral equation (SIE) [9] require only the discretisation of

the scatterer boundary.

To achieve accurate agreement with the experimental behaviour of nanostructures, it is not

merely enough to have an accurate simulation routine; it is equally important that the object

being simulated represents the actual nanostructure accurately. Even though we would like to

design ideal nanostructures, fabrication processes introduce various non-idealities [10, 11]. In

particular, nanostructure surfaces become rough and geometric edges and corners end up being

rounded to various degrees. The simulation needs to incorporate such fabrication induced non-

idealities of the geometry. Comparing the behaviour of realistic nanostructures with their ideal

counterparts shows significant differences [12].

Nanocuboids are the building blocks of many complicated nanostructures used widely in

sensing applications, such as gap antennae [13] and Dolmen structures [14–16]. The existence

of a high number of discrete symmetries makes cubes particularly interesting [17,18], and hence
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nanocubes and nanocube assemblies have been subject to experimental study as well [19–22].

The different fabrication techniques [20–24] for such cuboidal and cubic nanostructures always

introduce rounding effects, as visible in Fig. 1. This rounding gives rise to the prospect of

changing the optical response of the structures significantly [20,25,26]. In this paper, we study

the effect of rounding the edges and corners of cuboidal antennae and cuboidal gap antennae

on their scattering behaviour as well as the induced polarisation charge distributions on their

surfaces.

2. Formulation of the problem

Fig. 1. (Left) The individual pieces which can be used to assemble the rounded cuboid. The

cuboids, quarter-cylinders and sphere-octants have been coloured blue, green and red, re-

spectively. (Centre) The rounded cuboid formed from the constituents. (Right) SEM image

of silver nanocubes.

In this paper, the following procedure was used for rounding the corners and edges of cuboids

uniformly. Consider a cuboid with dimensions l,b,h. Suppose we need to round the edges and

corners with a rounding radius of r such that 2r ≤ min(l,b,h). This can be done ensuring

continuity and differentiability of the surfaces by making a composite structure consisting of

seven cuboids, twelve quarter-cylinders and eight sphere-octants. The assembly of a rounded

cuboid from these pieces is shown in Fig. 1. It is easy to verify that all boundaries between

meeting surfaces are smooth.

In all the structures considered here, the Y Z plane cross section of the cuboids was kept

constant as b = h = 40 nm while the length l along the X dimension of the structures and the

radius of rounding r were varied. In the case of the gap antenna, two such identical cuboids were

placed symmetrically such that their Y Z-plane surfaces faced each other. In all the simulations

presented here, a plane wave propagating in the Z direction and polarised along X was used for

illuminating the structures. The nanostructures being simulated are made out of silver, unless

explicitly mentioned otherwise. The dielectric function for silver was taken from Johnson and

Christy [27].

The optical response of the nanostructures are simulated using the Surface Integral Equa-

tion (SIE) formulation [9]. The surface of each structure is discretised into a sufficient number

of triangles to ensure numerical convergence for the solutions. The average area of a triangular

mesh element was kept as approximately 5 nm2 for all simulations.

Scattering cross section was calculated by evaluating the flux of scattered Poynting vector on

a sphere centred at the structure and having a radius of 50 µm, and normalising the result to the

incident field intensity:

Csc =

∮

1
2
Re [Esc ×H∗

sc] ·dS
∣

∣

1
2
Re [Ein ×H∗

in]
∣

∣

(1)
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For this, scattered electric and magnetic fields were calculated at 1050 nearly equidistant points

on the sphere [28]. Bisection method was used to locate peak scattering wavelength with high

accuracy. Polarisation charges were calculated at the structure surfaces from the discontinuity

in the normal component of electric field on either side of the surface:

σp =
Eout −Ein

ε0
· n̂ . (2)

This was performed by subdividing the surface mesh into smaller triangles and evaluating the

electric field 1 nm away from the centre of the triangles in either direction of the surface normal.

3. Results and discussion

Fig. 2. Scattering cross section as a function of wavelength for various rounding radii (r)

of the cube.

Consider a silver cube with a side length of 40 nm. Figure 2 shows the effect of rounding

on the scattering cross section of the cube. It can be noted that the scattering plots exhibit a

regular trend on increasing rounding radii. As the cube is gradually deformed into a sphere

by increasing the rounding radius, two major changes occur: The wavelength at which peak

scattering cross section is obtained blue shifts significantly while the peak value of the scattering

cross section decreases to about one-fifth of the original value.

To understand what happens in the near field at the nanocubes for various radii of round-

ing, we look at the polarisation charges at the surface. The results are shown in Fig. 3. For

the nanocube rounded only by 3 nm, the polarisation charges are heavily concentrated at the

corners. This is akin to the lightning rod effect. As the rounding radius increases, the size of

Fig. 3. Normalised polarisation charges on the surface of rounded nanocubes. From left to

right: Rounding radius of 3 nm, 9 nm, 15 nm.
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Fig. 4. Scattering cross section as a function of wavelength for a silver cuboid of 20 nm

length, 40 nm×40 nm cross section and rounding radius of 4 nm

the “corner” increases as well. As a result, the charges become less localised, and spread to the

edges and faces of the rounded nanocube.

The numerical accuracy of the surface integral method and the computational tool has been

validated many times for different structures [9,12,28]. The continuous shifting of the scattering

peaks also suggests that there are no numerical problems arising due to the sharpness in the cube

geometry. For additional validation, we performed analytical calculations using Mie theory for

the case of the sphere and found perfect agreement in the location of the scattering peak. There

is no such analytical treatment possible for a cube. However, various numerical methods have

been used to calculate the scattering cross sections of cubes of different sizes and they have

found the dominant scattering mode of the cube to be corner charge dominated. The value

of scattering peak wavelength we calculated for the cube agrees well with those predicted in

literature [17, 26, 29].

The trend of lower wavelength scattering peaks being associated with more spread-out charge

distributions was also noticed in individual structures with multiple scattering peaks. As an ex-

ample, consider a thin nanocuboid of dimensions 20 nm×40 nm×40 nm rounded to a radius of

4 nm. This structure has three prominent scattering cross section peaks occurring with a wave-

length separation of about 20 nm, as shown in Fig. 4. The polarisation charges corresponding to

the three scattering peaks have been shown in Fig. 5. There is significant difference between the

charge profiles for the three cases. The lowest wavelength peak has polarisation charges distrib-

uted all over the square faces whereas the highest wavelength peak has the charges concentrated

at the corners. The scattering peak at the intermediate wavelength has charges concentrated pri-

Fig. 5. Normalised polarisation charges on the surface of the 20 nm× 40 nm× 40 nm an-

tenna for the three scattering peaks in Fig. 4. The figures, from left to right, correspond to

the peaks from left to right, respectively.

#193624 - $15.00 USD Received 9 Jul 2013; revised 27 Aug 2013; accepted 29 Aug 2013; published 5 Sep 2013
(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021500 | OPTICS EXPRESS  21504



Fig. 6. The peak wavelength shift relative to an ideal structure for various values of round-

ing radii for (Left) Silver and (Right) Gold.

marily at the edges. Once again, the bluer scattering peak is seen to be associated with the more

spread-out charge distribution. This correlation between spreading of charge and blue shifting

of scattering peak needs to be studied further. However, we believe that the spreading of charges

due to the reduction in the lightning rod effect might be what causes the blue shift of scattering

peak on rounding nanostructures.

The peak shifting behaviour for cuboids of various lengths as well as gap antennae was

studied in the same fashion. This time, cuboids made of silver as well as gold were considered.

Dielectric function for gold was obtained from Johnson and Christy as well [27]. The trend of

blue shifting of the scattering peak as a result of rounding was found in all studied structures

made of gold and silver. The peak shift (relative to the scattering peak of ideal structures) as a

function of rounding radius is presented in Fig. 6.

Interestingly, cuboids of different lengths show similar trends of blue shifting of peak wave-

length on rounding. However, the gap antenna shows a significantly higher blue shift. The

reason for the same can be understood by comparing the polarisation charge distributions for

the peak scattering wavelengths of a single cuboid and that of a gap antenna. The polarisation

charges for a single 60 nm× 40 nm× 40 nm nanorod (r = 3 nm) and that for an arm of a gap

antenna formed by two such nanorods separated by 10 nm (r = 3 nm and r = 9 nm) are plotted

in Fig. 7. As expected, for the single cuboid, the polarisation charges are concentrated at the

corners. However, for the gap antenna, the charges are seen to be spread all over the surface

facing the gap. This can be explained by the fact that there is an opposite charge at the match-

Fig. 7. Normalised polarisation charges at the peak scattering wavelength for (Left) a single

60 nm×40 nm×40 nm cuboid with a rounding radius of 3 nm and the gap-facing surface

of a (Centre) gap antenna with two such cuboids separated by 10 nm and (Right) a similar

gap antenna but with a rounding of 9 nm.
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Fig. 8. The relationship between various wavelength shifts.

ing face of the other arm of the gap antenna, attracting charge on this arm towards it. The two

oppositely charged faces with charges almost uniformly spread over them acts as a capacitor,

providing high field coupling between the faces. However, when the rounding of the cuboids

is increased, the situation changes. The polarisation charges are still attracted towards the gap

face, but are now more dispersed around the curved edges. It is important to note that the flat

part of the face is what is closest to the other antenna arm, thus providing maximum coupling.

The presence of charges away from the flat region on the edges reduces the coupling.

This reduction in coupling is what results in a larger blue shift on rounding gap antennae as

compared to rounding single cuboids. Consider a cuboid being rounded from an ideal shape to

a maximally rounded shape. This would result in a blue shift of peak scattering wavelength by

a value as seen earlier, call this shift δs. Now consider making a gap antenna out of two such

identical ideal cuboids separated by d. Due to the field coupling between the two arms, the

peak scattering wavelength for the ideal gap antenna is red shifted with respect to the peak for

the ideal rod antenna by a value δ i
g. Similarly, the peak scattering wavelength for the rounded

gap antenna at the same separation d is red shifted with respect to the peak for the rounded

rod antenna by a value δ r
g . Since the coupling in the case of the rounded gap antenna is less

than that of the ideal gap antenna, we expect δ r
g < δ i

g. The shift between the peak scattering

wavelengths of the rounded gap antenna and the ideal gap antenna is given, as illustrated in

Fig. 8, by δg =
(

δs +δ i
g −δ r

g

)

. Since δ i
g > δ r

g , we obtain that δg > δs. That is, the rounding

induced blue shift is higher for a gap antenna as compared to a single cuboid antenna.

4. Conclusion

It has been shown that rounding affects the scattering from nanoantennae significantly. Since

the far field scattering properties change as well, this is not merely a near field effect and will

thus change any experimental parameters of the system. The difference is particularly signifi-

cant for gap antennae, where peak scattering wavelength has been shown to shift by up to 80 nm

in the case of Silver. This should be taken into consideration while simulating nanostructures

to be fabricated to have desired properties. Fabrication always introduces rounding effects into

structures, which must be estimated reasonably well and incorporated into the simulations so

that the fabricated structures behave as expected. Since peak scattering wavelength is a regu-

larly used quantity for sensing applications, the effect of rounding can be significant in those

applications [30, 31]. Rounding effects also need to be considered in other problems where
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coupling between surfaces plays a significant role, as similar to the case of the gap antenna,

coupling can be reduced due to curvature in such cases as well.
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