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Polarisation-insensitive generation 
of complex vector modes from a 
digital micromirror device
Carmelo Rosales-Guzmán1 ✉, Xiao-Bo Hu1, Adam Selyem2, Pedro Moreno-Acosta3, 

Sonja Franke-Arnold4, Ruben Ramos-Garcia3 & Andrew Forbes5

In recent time there has been an increasing amount of interest in developing novel techniques for 

the generation of complex vector light beams. Amongst these, digital holography stands out as 

one of the most flexible and versatile with almost unlimited freedom in the generation of scalar and 
complex vector light fields featuring arbitrary polarisation distributions and spatial profiles. In this 
manuscript we put forward a novel technique, which relies on the polarisation-insensitive attribute 

of Digital Micromirror Devices (DMDs). In a prior work where we outlined a new detection scheme 

based on Stokes projections we alluded to this technique. Here we outline the creation process in full, 

providing all the details for its experimental implementation. In addition, we fully characterise the 

performance of such technique, providing a quantitative analysis of the generated modes. To this end, 

we experimentally reconstruct the transverse polarisation distribution of arbitrary vector modes and 

compare the ellipticity and flatness of the polarisation ellipses with theoretical predictions. Further, we 
also generate vector modes with arbitrary degrees of non-separability and determine their degree of 

concurrence comparing this to theoretical predictions.

Complex vector light �elds are fascinating states of light that have captured the interest of researchers across 
a wide variety of �elds where they have found a myriad of applications1,2. In vector light �elds the spatial and 
polarisation degrees of freedom are coupled in a non-separable way, as in tightly focused beams but not to be 
confused with these, giving rise to a non-homogeneous transverse polarisation distribution that holds many 
interesting properties3–7. �is non-separability has been identi�ed as the classical analogue of local quantum 
entanglement, enabling quantum-like phenomena at the classical level8–14. In the last decade several techniques 
have been proposed to generate vector beams, including interferometric arrays15–18, liquid crystal wave plates19,20, 
glass cones21,22, metamaterials23, Spatial Light Modulators (SLMs)24–31 and more recently Digital Micromirror 
Devices (DMDs)32–35. Ultimately, most techniques aim for the full control over the phase, amplitude and polarisa-
tion of light towards the generation of arbitrary vector modes, being computer-controlled devices one of the most 
�exible and versatile technologies. Crucially, while SLMs are polarisation dependent, allowing only the modula-
tion of linear polarisation (typically horizontal), DMDs can modulate any polarisation, a property that has gone 
almost unnoticed since common experimental setups still resemble those associated to polarisation-dependent 
SLMs. �at is, in order to generate arbitrary vector beams with an SLM, the transverse pro�les of both polarisa-
tion components have to be manipulated independently, either in interferometric arrays containing one or two 
SLMs16,18,25,29,31,36, or via a temporal sequence using a double pass over a single SLM30,37. Crucially, the DMD 
technology allows the generation of complex light �elds at high refresh rates (~30 KHz) and over a broad band of 
the visible spectrum of monochromatic sources38.

In this manuscript, we put forward a compact and robust technique for the generation of arbitrary vector 
modes, which takes full advantage of the properties of DMDs, in particular their polarisation-insensitive attribute. 
In our prior work39 we outlined a new detection scheme based on Stokes projections, only alluding to the ability to 
create such beams from DMDs. Here we outline the creation process in full, highlighting its performance through 
a quantitative characterisation of the generated modes. Our device comprises the illumination of a DMD with 
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two beams of orthogonal polarisation impinging at di�erent angles to modulate the spatial degree of freedom of 
both polarisation components in a single pass and independent to each other. For this purpose, we display on the 
DMD a binary multiplexed hologram formed by the superposition of two independent holograms overlapped 
with unique linear phase gratings designed to ensure the overlap of the �rst di�raction order along a common 
propagation axis, where the vector mode is generated. Given that both constituent holograms are independent, 
our all-digital technique can generate high-quality vector modes with tunable degrees of non-separability, and 
arbitrary spatial and polarisation distributions. We demonstrate this by performing an exhaustive evaluation of 
the generated modes. First, we reconstruct experimentally the transverse polarisation distribution of arbitrary 
vector modes and compare the �attening and rotation angle of each polarisation ellipsis on a 18 × 18 grid with 
theoretical predictions40. Second, we generate vector modes with increasing degrees of non-separability, which we 
measure experimentally through the degree of concurrence39,41,42, to estimate the degree of accuracy of our device.

Generation of cylindrical vector vortex modes
It is well-known that the spatial degree of freedom of vector modes can be encoded using any set of solutions of 
the wave equation in its exact or paraxial approximation. Common examples of such are, Bessel- Laguerre-, 
Mathieu-, Ince or Airy-Gaussian vector modes32,37,43–47. Amongst these, vector beams with cylindrical symmetry, 
commonly know as cylindrical vector vortex modes, have raised an increasing amount of interest, in part due to 
their wide variety of applications1,43. As such, to demonstrate our technique and without loss of generality, we will 
restrict our analysis to the Laguerre-Gaussian ( LGp) modes, natural solutions of the paraxial wave equation of the 
cylindrical coordinates (ρ, ϕ)48. Such modes are characterised by an azimuthally-varying phase of the form 

ϕiexp( ) , where the index ∈ , known as the topological charge, is associated to the number of times the phase 
wraps around the optical axis where for 0≠  it becomes singular. Such singularity gives rise to an intensity null 
along the optical axis, producing ring-shaped light beams commonly-known as optical vortices. Further, such 
beams carry a well-de�ned amount of orbital angular momentum  per photon, where  is the reduced Plank’s 
constant49,50. �e index p ∈  is responsible for the generation of (p 1+ ) intensity rings along the radial direc-
tion. As per the polarisation DoF, in principle we can use any orthogonal bsis, namely, linear, diagonal, circular or 
elliptical. Here and without the loss of generality, we will use the circular polarisation basis defined as, 
r h iv( )/ 2ˆ ˆ ˆ= +  and = −l h iv( )/ 2ˆ ˆ ˆ , where ĥ and v̂ represent the unitary vectors of the horizontal and vertical 
polarisation basis, respectively. Hence, using the above described spatial an polarisation DoF, cylindrical vector 
vortex modes can be described mathematically as36,51,

ˆ ˆρ ϕ θ ρ ϕ θ ρ ϕ→ = +α α−u LG r LG l( , ) cos( ) ( , )e sin( ) ( , )e , (1)p
i

p
i

1

1

2

2 

where, the coe�cients θcos( ) and θsin( ) (θ π∈ [0, /2]) are weighting factors that allow a smooth transition of the 
�eld u ( , )ρ ϕ→ , from scalar (θ = 0 and /2θ π= ) to vector (θ π= /4)39. In addition, the term αei  ( [ /2, /2]α π π∈ − ) 
generates a phase di�erence between both polarisation components.

To begin with, we will show that our technique enables the generation of arbitrary vector modes on the 
Higher-Order Poincaré Sphere (HOPS). To this end, lets recall that vector modes given by Eq. 1 are mapped to 
unique positions (2α, 2θ) on the surface of a unitary sphere in which, the north and south poles are assigned to 
the scalar modes ρ ϕLG r( , )p1

1 ˆ  and ˆρ ϕLG l( , )p2

2 , respectively52. Further, points along the equator correspond to 
pure vector beams while the remaining to vector modes with elliptical polarisation. Figure 1 shows representative 
examples of vector modes generated with our device, represented on the HOPS. For these examples we used 

ˆρ ϕLG r( , )1
3  and LG l( , )1

3 ρ ϕ− ˆ. �e top-right insets of Fig. 1(a1–a5) show the intensity pro�le of modes generated 
along the dashed line (green) that connects the North and South poles, which were generated according to Eq. 1 
by keeping α constant while varying [0, /2]θ π∈  (see also Visualisation 1). �e bottom-right insets (b1–b5) show 
representative examples of the modes generated along the equatorial solid line (yellow) generated by keeping θ 

Figure 1. Representative examples of vector modes shown as points along the green-dashed and solid-yellow 
lines drawn on the HOPS, labelled as (a1–a5 and b1–b5), respectively. �eir corresponting experimental intensity 
pro�les, acquired by passing these through a linear polariser, are shown on the le� panel, see also Visualisation 1 
and Visualisation 2. Here, ĥ, v̂ , d̂, â, r̂  and l̂  represent the horizontal, vertical, diagonal, antidiagonal, right- and 
le�-handed unitary polarisation vectors.
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constant while changing α π π∈ −[ /4, /4] (See also Visualisation 2). �e intensity pro�les were obtained by pass-
ing the vector beams through a linear polariser.

Characterisation of vector beams
Characterisation through Stokes polarimetry. In order to quantify the capabilities of our generation 
technique, we programmed on the DMD various Poincaré beams obtained from di�erent combinations of p1

, 1 , 
p2

, and 236. A�erwards we reconstructed their transverse polarisation distribution, through Stokes polarimetry, 
and compared with theory. �e Stokes parameters were computed from a set of four intensity measurements as53,

S I S I S S I S S I S, 2 , 2 , and 2 , (2)h d r0 0 1 0 2 0 3 0= = − = − = −

where I0 is the total intensity along the transverse plane, and Ih, Id and Ir the intensity of the horizontal, diagonal 
and right-handed polarisation components, respectively. Experimentally, Ih and Id can be measured by passing the 
generated vector mode ρ ϕ→u ( , ) through a linear polariser at Θ = 0° and Θ = 45°, respectively, while the intensity 
of the Ir polarisation component by passing it simultaneously through a QWP at 45β = ° and a linear polariser at 
Θ = 90°. Figure 2(a) shows an example of the Stokes parameters obtained for the speci�c case ˆ ˆLG r LG l( )/ 21

2
1
2+− , 

where α = 0. �e reconstructed polarisation is shown in Fig. 2(b), featuring a spider-like distribution.
In Fig. 3(a) we show experimental examples of the transverse polarisation distribution, reconstructed as 

explained before, of a representative set of vector modes de�ned by the pairs of scalar LGp modes, from right to 
le�, LG LG{ , }1

2
1

2− + , + +LG LG{ , }0
2

1
1 , LG LG{ , }0

2
0

2− + , + −LG LG{ , }2
1

2
1  and + −LG LG{ , }1

2
2

1 . �ese modes are compared to 
their theoretical counterpart shown in Fig. 3(b). Here, white and black ellipses represent right and le� circular 
polarisation, respectively. A straight comparison of the experimentally reconstructed polarisation ellipses with 
theoretical predictions provides information about the quality of our generated modes. �is can be done by com-
paring the �attening (f) and orientation (a) of the experimental and theoretical polarisation ellipse across the 
entire transverse plane. To this end, we computed f and α on an 18 × 18 grid as40,
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Figure 2. Experimental reconstruction of polarisation using Stokes polarimetry. (a) Example of the stokes 
parameters S0, S1, S2 and S3 used to reconstruct the polarisation distribution of the vector mode 

ˆ ˆ+−LG r LG l( )1

2 1
2

1
2  shown in (b), where the local polarisation is indicated on an 18 × 18 grid using polarisation 

ellipses.

Figure 3. Experimental (a) and theoretical (b) reconstruction of the transverse polarisation distribution of a set 
of vector modes given by pairs of scalar LGp

 modes, from le� to right, − +LG LG{ , }1
2

1
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2
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respectively, and computed the Root Mean Squared Error (RMSE) between experiment and theory. �e �attening 
is a number between 0 and 1 that measures the eccentricity (shape) of the polarisation ellipse, 0 for circular polar-
isation and 1 for linear, while the parameter α measures its orientation. Table 1 shows the averaged RMSE across 
the transverse plane, for each of the vector modes shown in Fig. 3. Notably, both the RMSEα and the RMSEf are 
relatively small, not exceeding 7% and 2%, respectively. It is worth mentioning that the quality of the modes pre-
sented here can be further enhanced in two ways. Firstly, their elliptical shape, caused by phase distortions arising 
from aberrations produced by the DMD’s screen, which in general is not optically �at, can be measured and 
compensated for using an interferometric technique as detailed in34. Secondly, the polarisation distribution can 
be corrected by �nely adjusting the coaxial superposition of both beams, which can be done digitally by tuning 
the frequency of the linear di�raction grating of each beam.

Characterisation through concurrence. As stated earlier, our device can generate any complex mode on 
the HOPS, from vector to scalar, as such, in this section we provide speci�c numbers to show its accuracy in gen-
erating vector modes with tunable degrees of non-separability. To this end, we will use a well-known technique 
that exploits the similarities between classical and quantum local entanglement, concurrence (C). Concurrence 
has been identi�ed as a proper tool to measure the degree of non-separability of vector beams, which has been 
termed Vector Quality Factor (VQF). �e VQF assigns values in the interval [0, 1] to the degree of coupling 
between the spatial and polarisation degrees of freedom, 0 for scalar and 1 for vector modes41,42. �is technique 
comprises the projection of the vector mode onto one degree of freedom, polarisation in our case, which is later 
passed through a series of phase �lters that performs a projection onto the spatial degree of freedom. Explicitly, 
the VQF is determined as41

∑ σ= =












−
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


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CVQF Re{ } Re 1 ,
(4)i

i
2

1/2

where σ1 , σ2  and σ3  are the expectation values of the Pauli operators. To measure this value experimentally, the 
two circular polarisation components are �rst split into their le� and right polarisation components, which prop-
agate along di�erent trajectories, this can be done, for example, with a polarisation grating. �e resulting beams 
are then projected onto a set of six phase holograms that performs the projection onto the spatial degree of free-
dom. �e holograms, encoded on an SLM, consist of helical phases, two with topological charges  and −  plus 
four superposition of the same, namely, ϕ γ ϕ+ −exp(i ) exp(i )exp( i )   with {0, /2, , 3 /2}γ π π π= . �e 12 inten-
sities Iij are then measured as the on-axis values of the far-�eld intensity recorded on a Charge-Coupled Device 
(CCD) camera. For the sake of clarity, the 12 required intensity measurements are explicitly shown in Table 2. 
Incidentally, the number of required measurements can be reduced to a minimum of 8 by projecting �rst over the 
spatial degree of freedom followed by a projection onto the polarisation degree of freedom54.

Here, for example, +Ir  represents the intensity of the right circular polarisation component a�er its projection 
on the exp(i )φ  phase �lter. �e expectation values σi are explicitly computed from the twelve intensity measure-
ment Iij as,
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Figure 4 shows representative examples of the concurrence measured for three di�erent modes, as function of 
the weighting factor [0, /2]θ π∈ , which allows a monotonic variation from scalar to vector. �e speci�c modes 
are, ˆ ˆLG r LG l( )/ 23

1
3
1+− , ˆ ˆ+−LG r LG l( )/ 22

2
2
2  and LG r LG l( )/ 20

3
0
3+− ˆ ˆ , Fig. 4(a–c), respectively. To obtain the 

transition from scalar to vector, we varied digitally the amplitude coe�cients determined by θ π∈ [0, /2]. �e 
insets of each plot show the recorded intensity distribution of the input field u r( )→  at the specific values 

[0, /8, /4, 3 /8, /2]θ π π π π= , a�er passing through a linear polariser. Notably, Small intensity �uctuations at the 

Vector 
mode − +LG LG{ , }1

2
1

2 + +LG LG{ , }0
2

1
1 − +LG LG{ , }0

2
0

2 LG LG{ , }2
1

2
1+ − LG LG{ , }1

2
2

1+ −

RMSEα 5.52% 6.31% 5.33% 5.50% 5.68%

RMSEf 1.39% 1.53% 1.26% 1.32% 1.36%

Table 1. RMSEα and RMSEf of the Poincaré modes shown on Fig. 3.

Basis states
+ − γ0 γπ/2 γπ γ3π/2

r +Ir Ir− γIr 0 γπ
Ir /2

Irγπ
Ir 3 /2γ π

l Il+ −Il γIl 0
Il /2γπ γπ

Il Il 3 /2γ π

Table 2. Normalised intensity measurements Iij to determine the expectation values 〈σi〉.
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detector caused uncertainty in the measured concurrence (shown as error bars in Fig. 4) which was characterised 
for each intensity measurement by taking the standard deviation a�er averaging over the 64 central pixels. As an 
additional comment, the error bars increase as the radial index p of the LGp

 modes increase, this can be attributed 
to the fact that the spatial projection was performed on the azimuthal index ϕ ignoring the radial index. One way 
to solve this, is by using our recently proposed basis-independent technique which allows to measure the concur-
rence C directly from the Stokes parameters39. Speci�cally, C can be measured as,

= −
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where i are the values of the Stokes parameters Si integrated over the entire transverse pro�le. A complete expla-
nation of this technique as well as additional experimental measurements are given in39.

Discussion
�e approach outlined in this manuscript, which is capable to generate arbitrary vector modes using a single 
DMD, takes full advantage of their polarisation-insensitive attribute that allows them to modulate any polarisa-
tion state. Even though DMDs have been around for several decades it is only in recent time that they became an 
alternative device for the generation of scalar beams. Importantly, their use in the generation of vector beams is 
quite recent and therefore, most approaches still resemble the experimental setups which make use of 
polarisation-sensitive spatial light modulators. �at is, the polarisation-insensitive property of DMDs has not 
been properly exploited, and this is precisely the key factor in our approach. To this end, we illuminate the DMD 
with two beams of orthogonal polarisation impinging at two di�erent angles, this is achieved by splitting a diag-
onally polarised beam, either with a Wollaston prism or a polarising beam splitter, into their two orthogonal 
polarisation components. Further, the DMD is addressed with a binary amplitude multiplexed hologram consist-
ing of two independent holograms, each superimposed with a linear phase gradient that di�racts the �rst di�rac-
tion order along a speci�c angle. Each hologram encodes the amplitude and phase of a desired target mode, in our 
case the LGp

 modes, which can be controlled independently. �e frequency of each linear phase grating is care-
fully selected to ensure the spatial overlap of the �rst di�raction order of each beam along a common propagation 
axis, where the complex vector mode is generated.

Notably, our device is very compact and of easy implementation, all at an a�ordable cost, at least one order of 
magnitude cheaper than liquid crystal spatial light modulators. Nonetheless, it is very powerful, enabling the 
generation of arbitrary complex light modes with unlimited spatial and polarisation distributions. Here, as a 
proof-of-principle we generated LGp cylindrical vector modes but, as it has been demonstrated, DMDs can gen-
erate scalar modes with almost unlimited freedom32,55–57. �erefore DMDs can generate vector modes with arbi-
trary transverse spatial pro�les. Here we further demonstrated that the quality of the vector modes generated with 
this speci�c device is very high. We show this by comparing the �atness and orientation of the reconstructed 
polarisation ellipses across the entire transverse plane with theoretical predictions. We did this through the 
RMSE, �nding error values lower than 7% for the �atness and lower than 2% for the orientation of the polarisa-
tion ellipses. Importantly, the ellipticity in the spatial shape of the generated modes can be corrected by compen-
sating for the optical aberrations introduced by the screen of the DMD. In addition their polarisation distribution 
can also be improved by adjusting digitally the overlap between both constituting beams. We also generated 
cylindrical vector modes, as defined on the higher-order Poincaré sphere with arbitrary degrees of 
non-separability and quanti�ed this through the concurrence C. We measured this using a well-known method 
that relies on projecting the vector mode onto the polarisation degree of freedom, followed by its projection onto 
a series of phase �lters that perform a projection on the spatial degree of freedom. Our measurements indicate our 
device can generate vector beams with a choice of VQF within ±5% of the theoretical VQF when beams are close 
to fully vectorial, and presumably performs just as well at low VQF, but our measurement technique has low 
signal-to-noise ratio there. In addition, the projection of the vector modes into the spatial degree of freedom was 
performed considering only the azimuthal degree of freedom, ignoring the radial one. �is could explain why the 
concurrence plots shown in Fig. 4 feature higher error bars for the cases of higher radial indices (p) of the LGp

. 
�is is a problem related to our measuring technique rather than to the quality of the generation method, this 

Figure 4. Experimental veri�cation of the concurrence C as function of the modal weighting θ that allows the 
transition between scalar and vector modes. �e cases shown here correspond to vector modes generated by the 
combinations (a) −LG LG{ , }3

1
3
1 , (b) LG LG{ , }2

2
2
2−  and (c) LG LG{ , }0

3
0
3− , for α = 0. �e insets show the intensity 

pro�le a�er a linear polariser for θ π π π π= [0, /8, /4, 3 /8, /2].
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measuring problem could be solved by using for example a basis-independent measure of concurrence39. Finally, 
it is worth mentioning that the modulation e�ciency of DMDs is quite low, compared to spatial light modulators, 
and in general, the �rst di�raction order contains around 10% of the input power. In our case, we achieved values 
smaller than 5%, which can be attributed to factors such as, absorption of the di�erent optical components. 
Nonetheless, in the cases where efficiency can be traded out for higher refresh rates, DMDs are a great 
alternative.

Methods
Our proposal to generate arbitrary vector light �elds relies on the fact that DMDs can modulate any polarisation 
state and therefore can tailor simultaneously, polarisation, phase and amplitude. To better understand our 
approach, Fig. 5(a) shows a schematic representation of our device. Here, a horizontally polarised laser beam 
(λ = 523 nm, 500 mW) is expanded and collimated by lenses L1 and L2 (with focal length =f 201

 mm and 
=f 2002

 mm). Afterwards, a half-wave plate at 45° rotates its polarisation to the diagonal state 
u x y u x y h v( , ) ( , )( )/ 20 0

ˆ ˆ→ = + . A Wollaston prism (WP) separates the beam according to their polarisation com-
ponents into two beams, separated approximately by 1.5°, one with horizontal polarisation and the other with 
vertical. A quarter-wave plate (QWP) placed immediately a�er the Wollaston prism changes the horizontal and 
vertical polarisation to the circular polarisation basis ˆ ˆl r, . A 4f imaging system composed by lenses L3 and L4 (of 
focal length = =f f 2003 4

 mm) redirects both beams towards the centre of a DMD (DLP Light Cra�er 6500 from 
Texas Instruments), where they impinge under slightly di�erent angles but are spatially overlapped. �e DMD 
displays a multiplexed binary amplitude hologram, consisting of the superposition of two independent holograms 
corresponding to the desired spatial wave functions of each polarisation component. Each hologram is superim-
posed with a linear di�raction grating, which in combination with the di�erent input angles, ensure the overlap-
ping of the �rst di�raction order along a common propagation axis, where the desired complex vector �eld u ( , )ρ ϕ→  
is generated. �is is illustrated in Fig. 5(b), where, for the sake of clarity, the DMD is represented as a transmission 
device. Both input beams with orthogonal circular polarisation impinge on the centre of the hologram displayed on 
DMD. At this step, the positioning of the DMD is crucial to ensure the overlap of both beams. A�er the DMD, the 
0th di�raction order of each beam propagate diverging from each other. Nonetheless, the di�raction grating 
ensures the overlap of the �rst di�raction order of each beam along a common propagation axis, where the vector 
mode is generated. A spatial �lter (SF) placed in the far �eld plane of a telescope imaging the DMD plane, realised 
with lenses L5 and L6 of focal lengths = =f f 1005 6

 mm, removes all higher di�raction orders leaving only the �rst 
order from each beam. For the sake of clarity, higher di�raction orders are not shown neither in Fig. 5(a), nor in 
Fig. 5(b). Notably, our device can generate arbitrary vector �elds at high speed rates and without the mechanical 
movement of optical components by simply refreshing the digital holograms displayed on the DMD.

�e hologram displayed in the DMD consist of the multiplexing of two binary amplitude holograms. �e 
transmittance function T x y( , )i  of each hologram is computed as33,

φ π ν η= +




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(7)
i i i i

i

imax

Figure 5. Schematic representation of our polarisation-insensitive experimental setup. (a) A 500 mW 
horizontally polarised beam (λ = nm532 ), collimated and expanded through lenses L1 and L2, is converted to a 
diagonal polarisation state by use of a half wave-plate (HWP). A�erwards, a Wollaston prism (WP) separates it 
into its vertical and horizontal polarisation components. A quarter wave-plate (QWP) then changes these to the 
circular polarisation basis. A telescope formed by lenses L3 and L4 redirects both beams to a digital micromirror 
device (DMD), impinging at di�erent angles but onto the same geometric point of a digital hologram displayed 
on the DMD, as shown in (b). �e hologram is the result of multiplexing two independent holograms with 
unique spatial carrier frequencies, carefully selected to ensure the overlap of the �rst di�racted order from each 
beam along a common propagation axis. Higher di�raction orders are removed using a telescope, formed by 
lenses L5 and L6, in combination with a Spatial Filter (SF). �e intensity pro�le was recorded with a CCD (1.55 
µm pixel size).
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where, sgn{u} is the sign function. �e phase and amplitude of the encoded beams are denoted by x y( , )iφ  and 
A x y( , )i , respectively, where Aimax is the maximum amplitude value. Further, the term π ν η+x y2 ( )i i

 is an addi-
tional linear phase with spatial frequency νi and η

i
, that speci�es the angle of di�raction of the �rst di�racted 

order. �e position of the �rst di�raction order (U V, ) in the Fourier plane, is related to the grating frequency 
(ν η, ), the wavelength of the laser (λ) and the focal length (f) of the Fourier lens as, U fνλ=  and ηλ=V f 28,58. In 
order to generate a multiplexed hologram, we superimpose two individual holograms whose transmittance func-
tion is given by,

(8)
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were the amplitude terms C cos( )θ=  and S sin( )θ=  determines the amount of light di�racted into the �rst dif-
fraction order of each mode. �is is what allows our device to generate scalar beams (θ = 0 and /2θ π= ), vector 
beams ( /4θ π= ) or intermediate states. �e constant phases α1 and α2 allows us to change the intramodal phase 
between both modes. In our case to ensure an overlap of the first diffraction order of each beam, that is, 

=U V U V( , ) ( , )1 1 2 2 , we selected ν ν ν= =1 2  and η η η= − =1 2
. In this particular case and taking into account the 

initial separation of the beams (introduced by the Wollaston prism) as well as the focal length of the Fourier lens 
(f = 100 mm), we used frequency values ν ≈ −24 mm 1 and 24 mm 1η ≈ − . To better clarify this, Fig. 6 shows a 
schematic representation of our previous description, were we also show an example of the binary holograms 
generated through Eq. 8. In Fig. 6(a) we show, on the le�, the binary hologram that generates the mode LG ( , )1

2 ρ ϕ  
whereas on the right we illustrate how a positive linear grating shi�s the 1st di�raction order towards the right of 
the 0th di�raction order. In Fig. 6(b) we show the binary hologram required to generate the mode ρ ϕ−LG ( , )2

1  (le� 
panel), in this case we used a negative frequency to shi� the 1st order to the le� of the 0th order (right panel). 
Finally, in Fig. 6 we showed a multiplexed holograms composed of the previous two holograms (le� panel), as 
result, the 1st di�raction order of each beam overlaps wich each other. �e binary holograms shown here, does 
not correspond to the ones used in our experiment, we displayed these only to exemplify the e�ect of the linear 
phase grating. In addition and for the sake of clarity, in this schematic representation we only show the �rst dif-
fraction order of each beam as well as the zero order for reference, higher di�raction orders, which inevitably 
appear, were omitted. Experimentally, all higher di�raction orders are removed, using a spatial �lter, leaving only 
the �rst order from each constituting beam, as explained in our Methods section.
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