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Abstract
Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon

measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various

advanced vector measurement/sensing techniques, physical interpretation methods, and approaches to analyse

biomedically relevant information have been developed and harnessed. In this review, we focus mainly on

summarising methodologies and applications related to tissue polarimetry, with an emphasis on the adoption of the

Stokes–Mueller formalism. Several recent breakthroughs, development trends, and potential multimodal uses in

conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general

overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical

and clinical research.

Introduction
Light, as an electromagnetic wave, possesses several

fundamental properties, which include intensity, wave-

length, phase and polarisation1,2 (see Fig. 1a). While the

former three are scalar quantities, polarisation has vec-

torial properties; its use has therefore required more

advanced optical and computational approaches. Hence,

studies of either the vector properties of light, described

via the state of polarisation (SOP) or the full vectorial

transformation properties of an object, have a shorter

history in biomedical analysis compared with their scalar

counterparts, and the extent of their application is still

being explored3–5. So far, numerous intriguing areas of

research have been enhanced through harnessing vec-

torial information acquired via polarisation optics; these

range from fundamental research6–10, such as quantified

polarisation entropy11, across quantum physics12, such as

spin-orbital interaction of light13,14, to material char-

acterisation (e.g. chiral characteristics15) or for biomedical

studies and clinical applications (e.g. characterisation of

structural features in tissue16–21).

Scattering, especially through multiple-scattering pro-

cesses, alters the degree of polarisation and SOP of the

incident light beam22. While it is an insightful procedure

for evaluating structural information of biomedical sam-

ples including tissues and cells16, it also introduces

uncertainty in expected photon properties22. This char-

acteristic largely hinders the development of modern tis-

sue polarimetric techniques and related information

analysis20,22,23. The turbidity of many tissue structures

imposes randomness on the photons’ interaction pro-

cesses, which complicates the detection and analysis of

vectorial information20. Such phenomena also distinguish

tissue polarimetry from the traditional polarisation mea-

surement technique of ellipsometry22–26. As summarised

in Fig. 1b, their comparison shows several commonalities

and differences. The Jones formalism is used for clear and

non-depolarising media such as thin films; it consists of

the Jones vector (describing the polarisation property of

the light) and Jones matrix (describing the polarisation

transformation properties of the object). They have been
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widely used in ellipsometry techniques25,26 (see Fig. 1b;

and summary in ref. 26). Another polarisation formalism is

Stokes–Mueller, in which the Stokes vector and the

Mueller matrix are used to describe the light beam and

the object, respectively. Neither the Stokes vector nor the

Mueller matrix maintain absolute phase information, but

have the advantage of being able to represent depolar-

isation27,28. This is often essential in biomedical polari-

metry, whose applications normally involve scattering

induced light depolarisation20–23. There exists an

increasing trend in both modern ellipsometry and

polarimetry to deal with increasingly complex media,

moving from isotropic and homogeneous media towards

anisotropic and inhomogeneous ones20–31. While modern

ellipsometry is developing towards full polarisation

measurement using the Stokes–Mueller formalism,

advanced polarimetry is gradually changing from full

vectorial measurement to partial detection, as some key

features of biomedical specimens could possibly be

revealed through partial, rather than complete, measure-

ments of vectorial information16,32,33.

The structure of this review is given in Fig. 1c; it

consists of introducing the basic polarisation optical

tools, summarising the current vectorial information

detection, extraction, and analysis approaches, and

pointing out the possibilities for future multi-modal

synergy with other cutting-edge technologies. Although

biomedical polarimetry is still developing towards var-

ious research fields and applications, largely unexplored

spaces still exist. We also hope this review could
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stimulate new explorations or breakthroughs in such

prospective fields.

It is worth noting that the use of biomedical polarimetry

is expanding and has also been summarised in several

recent reviews by Tuchin22, Ghosh & Vitkin20, Ramella-

Roman et al.23, Qi & Elson24, De Boer et al.34, He et al.16.

They have demonstrated the fast progress of this techni-

que in the biomedical and clinical fields.

Fundamental vectorial representation for
polarised optics in biomedical applications
Sample induced scattering is prevalent in biomedical

imaging, particularly in tissues16,20,22,23. This introduces

additional SOP modulations that affect diattenuation and

retardance as well as depolarisation16,22,23. A complex

scattering medium can often be modelled by several basic

components, like spherical scatterers of different sizes35;

cylindrical rod-like scatterers with different orientational

distributions36; and birefringence for an interstitial med-

ium37–39; combinations of these features can all be

adjusted to mimic the real object36,40–42. Other physical

conditions such as layer complexity (single-layered or

multi-layered scattering43), or scattering type (elastic

domain for Mie and Rayleigh scattering; or inelastic

domain, like Raman scattering) are also described in the

literature, e.g., see ref. 44. Modelling of the scattering

assumptions can be conducted via Monte Carlo simula-

tion45,46. This is a widely used statistical method for

quantitative analysis of the interactions between polarised

photons and complex biomedical media40–42, especially

bulk media with multiple-scattering properties, for which

the analytical solutions to describe the interactions cannot

be obtained. In this review, we focus on the occurrence of

elastic scattering in conjunction with other polarisation

characteristics (see Fig. 2a) for biomedical polarimetry.

In the presence of depolarisation, Jones calculus,

which represents only transitions between pure polar-

isation states, is of limited use as it cannot comprehen-

sively describe the light properties, especially the degree

of polarisation for partially polarised light2–5. Intrinsi-

cally, Jones calculus is based on the assumption that

electric field vector holds a particular stationary state.

For partially polarised light (or fully depolarised light),

the variation of the electrical vector as the light propa-

gates is semi-disordered (or completely disordered) so

that more degrees of freedom are required to describe

the light field47. In the scope of linear optics, the Stokes

vector, which is a 4 × 1 vector, is used to characterise the

SOP of the light beam47,48; while the Mueller matrix,

which is a 4 × 4 matrix, describes the transformation

properties of the object that affect the Stokes vector47,48.

Hence, considering that the scope of this review focuses

on tissue polarimetry, we place an emphasis on the

Stokes–Mueller formalism.

Stokes vector

The Stokes vector can be expressed with the format

shown in Fig. 2b47,48; where

I ¼ I0 þ I90

Q ¼ I0 � I90

U ¼ I45 � I�45

V ¼ IR � IL

I0, I90, I45, I�45 are the projection intensities (different

linear components in directions of 0°, 90°, 45°, −45° with

respect to the local coordinate system) of a light beam,

IL and IR are components of left/right-handed circular

polarised light, respectively. Note some other parameters

can be defined with components of Stokes vector: degree

of polarisation

DOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ U2 þ V 2
p

=I

degree of linear polarisation

DOLP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ U2
p

=I

and degree of circular polarisation of light3–5.

DOCP ¼
ffiffiffiffiffiffi

V 2
p

=I

From the above expressions, we see that the Stokes

vector can be calculated via intensity measurements that

can be readily performed in an experiment47,48. The Jones

vector, on the other hand, is defined by amplitude and

phase that cannot be directly measured, which is another

reason why the Jones approach is less well suited to

biomedical polarimetry20–23. The intrinsic reason for the

existence of depolarisation is due to temporal or spatial

averaging16,20–23. If an extremely fast and small detector

could monitor the vector properties of the light, then it

would only detect polarised light. Such averaging prop-

erties can also be found in the definition of the Stokes

vector47,48. Note the definitions of right-handed circular

polarised light (clockwise rotation) and left-handed cir-

cular polarised light (anticlockwise rotation) are different

in optics books and academic communities. It depends

on whether the observer ‘sees’ the light from the source

(Convention I), or from the detector (Convention II).

Institute of Electrical and Electronics Engineers (IEEE)

uses Convention I, so it is also widely used in engineering

fields; Quantum physicists also use Convention I, to be

consistent with the conventions for representing particle

spin states49,50. However, for numerous optics books

such as Principles of Optics (Born and Wolf48) and
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Handbook of Optics51, Convention II is used. In this

review, we use Convention II in order to correspond to

such scientific references.

The Jones vector has a graphical representation known

as the polarisation ellipse47,48 (if we add the parameter

DOP, the polarisation ellipse can also represent the

Stokes vector (see Fig. 2b (i))). While for Stokes vector

visualisation, the Poincaré sphere (PS) is commonly

used47,48 (see Fig. 2b (ii)). SOPs are represented via the

PS, which is defined in a three-dimensional coordinate

system, whose coordinates correspond to the eigenbasis

formed by Q, U and V (each normalised by I). The PS is a

unitary sphere that represents complete polarisation

states on its surface and depolarised states inside the

sphere. Any transformation of the SOP through a speci-

men is equivalent to manipulation of the original Stokes

vector between different points on or inside the PS.

Figure 2b (ii) gives a schematic demonstration of the PS.

The length of the vector from the origin point to the SOP

location denotes the DOP47,48. The letters H , V , M, P are

specific polarisation states: horizontally polarised (H),

vertically polarised (V ), 45° polarised (M) and −45°

polarised (P). The polarisation ellipse parameters (χ and

ψ) can be interpreted from the azimuth angle (and the

polar angle) of the derived vector inside the PS.

Such a graphical representation excludes the absolute

phase information, which is sometimes not addressed in

typical vectorial beam analysis such as pure polarisation
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the polarisation ellipse and the DOP can be used to represent a given Stokes vector. Bottom row: the Poincaré sphere visualises all states of

polarisation with linear states on the equator, circular states on the north/south poles and elliptical states in between2–5. c Vectorial properties that

can be encoded in the Mueller matrix. Linear/circular diattenuator, linear/circular retarder etc. are fundamental polarisation elements; the arrows on

the lines or circles represent the eigenbasis of modulated light beam passing through such media, where ‘before’ and ‘after’ illustrate the amplitude
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measurement or tissue polarimetry20–23,47,48. However,

one type of the absolute phase variation that is referred to

as geometric phase is related to the pathway of the SOP

movement on the surface of the PS47,48, which features

scope for the extension of the tissue polarimetric tech-

nique (also see “Discussion”).

Mueller matrix

The Mueller matrix (MM) describes the vectorial trans-

formation properties of an object16,20–23. As illustrated in

Fig. 2c, the MM describes the transformation of one Stokes

vector into another. The MM represents the full vector

properties of an object through its 16 elements (mkl; k; l ¼
1; 2; 3; 4). Among these, m11 represents the transformation

of scalar intensity (absorption or other loss); the other 15

elements encode the vectorial properties of the object47,48.

Direct physical meanings of these 15 elements taken indi-

vidually are normally ambiguous16,20–23. As illustrated in

Fig. 2c, several fundamental polarisation properties are

encoded in (and can be extracted from) the MM. They are

linear/circular diattenuation, linear/circular retardance,

linear/circular polarisance, linear/circular depolarisation

and so on2–5,52–62. The effects of each of these fundamental

optical mechanisms on the light vectors along the propa-

gation direction z are shown in Fig. 2c (i) to (vi), where

‘before’ and ‘after’ illustrate the amplitude and/or relative

phase change of the chosen eigenbasis. Amongst these

mechanisms, the diattenuator possesses two different

absorption ratios for two polarisation directions; it in effect

reduces the intensity of one polarisation compared to the

other. The retarder exhibits different refractive indices for

two polarised eigenvectors, in effect leading to an addi-

tional relative phase difference between the two vectors.

The depolariser can modify the DOP of the light beams.

For more detailed descriptions of the mechanisms and

further examples see refs. 2–5.

Both Stokes vectors and MMs can represent the effects

of time-averaged induced depolarisation16. An object may

introduce two different classes of depolarisation: homo-

genous depolarisation and inhomogeneous depolarisation.

The former one can lead to a similar DOP change for any

SOP; such properties can be observed in media such as a

polystyrene sphere solution. The later one can lead to

different DOP change for different SOP; typical examples

are found in complex biomedical tissue.

Several factors may contribute to depolarisation in

experimental scenarios. We describe three main reasons

here. (a) The first reason relates to the time domain. In

general, the Stokes vector polarimeter is based on inten-

sity measurement26, so in practice the intensity recorded

at the detector includes a time-integration process. If the

SOP changes rapidly, possibly due to multi-scattering

induced by complex bio-media, then depolarisation would

be measured. (b) This reason relates to the spatial domain.

When imaging processes are involved, every point on the

beam section is created through the integration of various

sub-beams that could have different polarisation states.

The superposition of these states leads to depolarisation.

(c) The final reason is given in the spectral domain. Many

processes that affect polarisation, such as birefringence

and scattering, are also dependent on wavelength. Hence

for different wavelengths, variations in amplitude and

phase may also lead to depolarisation.

Vectorial information measurement techniques
for biomedical applications
Numerous vectorial information measurement methods

have been put forward in the past decades4,7,11,26,28,29,63.

In this section, we categorise the polarisation measure-

ment techniques into two types: time-sequenced and

snap-shot approaches28,29,64–67 (see Fig. 3). For both cases,

the preparation required before detection is similar and

can be divided into three general steps: denoising, opti-

misation and calibration32,68–78 (see Fig. 4). The aim of

those steps is to reduce the complex errors that would

occur during the measurement process, hence obtaining

imaging results with higher precision and accuracy32,69–72.

The technical aspects of such advanced polarimetry are

summarised in the review papers by Azzam28, Chipman63

and Tyo79.

Before full Stokes vector/MM measurements became

widely adopted, there was successful work using fixed

input SOP and fixed analysers to perform partial vectorial

detection for biomedical applications. Jacques et al.

showed crossed-polarised light imaging to enhance sur-

face contrast, detect skin cancer and other lesion mar-

gins80,81; Demos et al. added the dimension of wavelength

based on crossed SOPs82,83; Groner et al. noted such

techniques can enhance superficial vascular contrast, and

hence adopt it into brain perfusion, pancreatic and further

clinical diagnoses84; Bargo et al. took angle-dependency

into consideration when measuring skin tissue85. Sridhar

et al. also studied multiply scattered photons to enhance

information extraction from biological specimens via

elliptically polarised light86.

Both time-sequenced and snap-shot polarimetry tech-

niques can be classified in two general ways: firstly, as

either Stokes vector (light property) or MM (material

property) measurement; and secondly, as partial or full

vectorial measurement (Fig. 3). We will classify different

techniques using the second criteria in later sections of

this review.

Time-sequenced techniques

Stokes polarimetry is clearly the basis for more

advanced MM polarimetry. Both of their intrinsic

mechanisms can be interpreted with respect to the

instrument matrix (A)68–72 (see Fig. 4). This matrix
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represents the settings of the polarisation state generator

(PSG) and polarisation state analyser (PSA) in the various

measurement steps: for MM measurement it represents

the PSG and PSA, for Stokes vector measurement it

represents one the PSA. Combinations of the rotating

waveplate and/or polariser are widely adopted in such

approaches64–66. The original proposal for a Stokes vector

measurement scheme (that using SOPs of H , V , M, P, L

and R) was from Collett87 in 1984. Later it was adopted for

biomedical information extraction or phantom analysis

with ability of the full depolarisation information char-

acterisation16,20–23.

The use of rotating components has disadvantages,

such as increasing measurement time and introducing

unexpected errors from mechanical movements.

However, such systems are easy to construct. Hence,

numerous commercialised polarimeters still use this

approach. In order to make improvements, research-

ers have tried to reduce the number of the rotating

components (such as the dual-rotating waveplate MM

polarimeter with fixed polarisers that was proposed by

Azzam64 in 1978, which is widely used in tissue ana-

lysis16,22) or use fast modulation devices (such as

Stokes or MM polarimeters enabled via liquid crystal

variable retarders (LCVR)88, spatial light modulators

(SLM)89, ferroelectric liquid crystals (FLC)90, or

photoelastic modulators (PEM)91). Besides full MM

detection, partial MM measurement, such as 3 × 3

MM imaging of linear polarisation states, also gained

wide attention. Qi et al. used related methods in

analysing linear depolarisation and retardance of rat

tissue92.
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Although there are some applications that require high-

speed operation, such as detection in dynamic situations

like in vivo sensing for clinical diagnosis24, time-

sequenced polarimeters still play an important role in

modern polarimetric research, due to their mature state of

development and simple configuration. Such applications

include characterisation of complex vector fields6,7,9, or

providing ground truth validation in tissue research (e.g.,

differentiating human breast cancer93–95).

Snap-shot techniques

Rapidly changing or dynamic objects need snap-shot

detection, in order to correctly extract vectorial informa-

tion that would be complicated by time-sequenced mea-

surement. Snap-shot approaches are configured to take

different measurements in parallel, as opposed to the serial

measurement of sequential techniques. In general, snap-

shot techniques must, to some degree, sacrifice alternative

dimensions to enable simultaneous vector measure-

ment67,96. Those methods include (see Fig. 3b): Stokes

vector polarimeters with division-of-amplitude97–99,

division-of-wavefront71,100–105 or division-of-focus-

plane106–122— these fit in the category of spatial

modulation with respect to different analysis channels (see

Fig. 3b (iii)). Savart-plate-based polarimeters (Oka et al.)

are in the category of Fourier frequency domain segmen-

tation, which are interferometric systems where the

polarisation information is encoded in the spatial carrier

fringes123. If combined with the property of birefringence

dispersion, spectroscopic polarimetry with channelled

spectrum can also be presented67,96.

Similar to Stokes vector polarimeters, there exist con-

cepts for snap-shot MM polarimeters, in which certain

dimensions are sacrificed to enable simultaneous MM

estimation (see Fig. 3b (iv)). Dubreuil et al.67 and Hagen

et al. 96 utilised different wavelength-dependent birefrin-

gent media to resolve the MM in a single shot, within the

limitation of the sample being achromatic. Piquero

et al. 124 utilised full Poincaré beams as a PSG, enabling

MM polarimetry with the division of the wavefront. He

et al. applied a spatially segmented method with defo-

cusing to measure statistically averaged properties of

biomedical samples72. As complete snap-shot MM tech-

niques are rather complex, their usage for extractions of

biomedical information is less common than the use of

single-shot partial MM or Stokes vector polarimetry. For

Polarisation measurement theory
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instance, 3 × 4 MM imaging is also gaining attention

using circularly polarised illumination32; Chang et al.

brought such a technique into the human liver and cer-

vical carcinoma tissue analysis32 (see Fig. 3b (ii)).

Denoising, optimisation and calibration

The measurement precision and sensitivity are vital in

polarimetric techniques, hence the errors need to be

properly controlled28,32,68–78,125. However, as Stokes vec-

tor or MM measurements belong to high dimensional

information detection with multiple components64,66,126,

the error sources and error transfer process (such as

accumulated amplifications through matrix calculations)

are very complicated. Several previous analyses can be

found in refs. 28,29,32,68–78,125–128. In Fig. 4, we summarise

in one diagram an overview of the structure of the

‘denoising, optimisation, and calibration’ processes in

polarimetric techniques with respect to random errors

(δA, δI) and systematic errors (ΔA, ΔI). It also can be seen

in the figure that three directions towards obtaining the

correct vectorial measurements are still developing.

Note again that A is the instrument matrix for

polarimetric measurement specifically, which is deter-

mined by the systematic configurations of polarisation

optics and determines the error propagation amplifica-

tion20–24,69–72; while I refers to the recorded intensity

information. In Fig. 4, we take Stokes vector measure-

ment equation (S = inv(A)·I)20–24,69–72 as a main illus-

tration, to show the relationships between three steps in

a picture, for simplicity. A similar structure (using the

generalised equation: M = inv(A′)·I) can be derived for

the MM measurement, which is based fundamentally on

the Stokes vector measurement process.

In order to reduce δA and δI32,68–78, a ‘denoising pro-

cess’ is adopted. Figure 4 shows the approaches in time or

spatial domain including time average and interpretation

methods. To deal with the ΔA and ΔI, a ‘calibration

process’ is required. Numerous polarimetric calibration

methods have been proposed23,29,63,71,129; these can be

divided into global and local calibration approaches. Note

that the calibration process itself also suffers from the

error transfer process. Hence, determining the SOPs for

calibration, choosing the standard calibration samples, as

well as designing specific calibration methods for different

systems should be taken into consideration130,131. Figure 4

also shows the process of ‘optimisation’, which can deal

with both types of errors, through global and local opti-

misation approaches. For this process, different evaluation

standards have been put forward to estimate the sys-

tematic performance. Marenko et al. considered the

condition number (CN) in polarimetric optimisation132,

Ambirajan, Tyo and others have analysed CN-based

optimisation on different phantoms70,133–137; and

Sabatke et al. introduced equally weighted variance

(EWV)69 into the polarimetric area; Azzam et al. and

following researchers explained the usage of geometry

optimisation based on Poincaré sphere internal volume

(PSIV)138–140. Other useful criteria have also been pro-

posed141,142. Such optimisation parameters can be used

for evaluating the intrinsic error amplification of a

polarimetry, which affect the accuracy and precision of

the measurement23,29,63,71,129–131. If we consider the CN,

the minimum CN value for a matrix-based Stokes

polarimetry is
ffiffiffi

3
p

, which is the theoretical limit for sys-

tematic error amplification68,70, as opposed to the mini-

mum possible CN value (CN = 1) for matrix inversion. A

similar error amplification also exists in MM polari-

metry143. The three above-mentioned processes (denois-

ing, optimisation, calibration) are vital for any biomedical

polarimetry, as they determine the credibility of the

information extraction and further analysis.

For the matrix-based calculation of Stokes polarimetry

(within the scope of the above explanations), there exist

two problems: first, the mathematical aspect of minimal

error amplification through the matrix calculation; sec-

ond, the practical aspect that the above-mentioned three

separate procedures contribute to error accumulation

separately, as they require different evaluation criteria and

are normally based upon different assumptions. In fact,

there exists the possibility to jump out of the domain of

matrix calculation for Stokes polarimetry, circumventing

those drawbacks. An interesting direction is the adoption

of a full Poincaré beam, taking advantage of its feature

that maps all SOPs in a single beam144. Vella, Zimmer-

man, He and others have proposed different measurement

approaches harnessing such beams based on different

phantoms such as stress engineered optics145–151 and

graded index optics68. The full Poincaré beam Stokes

vector technique has recently made it possible to have a

clear information-based learning approach (such as the

task of searching for the brightest points), combining the

‘end to end’ solution (a combination of above three pro-

cesses—denoising, optimisation and calibration) together

for an enhanced polarimetric measurement precision and

accuracy68. In essence, this approach means that the

Stokes vector retrieval process changes from matrix-based

calculation to information-based image processing.

Vectorial information extraction methods for
biomedical applications
Information about the vectorial properties of a biolo-

gical specimen can be derived partially from the polar-

isation properties of the light beam or, in a more

complete fashion, from the polarisation properties of the

tissue itself20–23,152. To extract information from the

measured Stokes vector or MM (or part of them), dif-

ferent decomposition methods and parameters were

proposed to represent meaningful physical processes, to
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extract information that could be used in subsequent

analysis52–62.

Information extraction from the vector properties of the

light beam

Several parameters can be calculated from the Stokes

vector directly (see Fig. 5a (i) and previous section): such as

the degree of polarisation (DOP), degree of linear polar-

isation (DOLP) and degree of circular polarisation (DOCP)

of light. For a single uniform light beam, the DOP is 1 for

fully polarised, 0 for unpolarised or completely depolarised,

and between 0 and 1 for partially polarised. The DOP

cannot be larger than 1. Despite containing four elements,

a Stokes vector contains fewer than four degrees of free-

dom due to physical constraints. The Stokes vector can also

be considered as an incoherent superposition of a com-

pletely polarised part and an unpolarised part3. Those

parameters have been adopted in different polarimetric

applications16,20,22,23,32,80,81. The polarisation angle (PA)

and intensity of the linear SOP also can be defined, with

respect to dipole orientation applications153–155 (see Fig. 5a

(iv)). For a beam generated via an incoherent light source

(such as a LED), the Stokes vectors can be directly added by

scalar calculation. Therefore, partially polarised light can be

divided into two parts—fully polarised/depolarised com-

ponents3, i.e., Stotal = Su + Sp; where Su and Sp represent

fully depolarised and polarised components, respectively.

For biomedical and clinical applications, characterising

the vectorial properties of the outgoing light with a fixed

incident SOP also showed great potential for structure

identification22–24,32. Wu & Walsh reported that Stokes

vector analysis with circular polarised illumination can

reveal structural information about tissue156. Macdonald

& Meglinski showed that turbid tissue can be quantita-

tively analysed via Stokes vector measurement with an

optical clearing technique157. Qi et al. proposed a method

of Stokes vector analysis for ex vivo porcine tongue, sto-

mach, kidney and other tissues based on circular polarised
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illumination158; the most useful information was provided

by circular depolarisation and linear retardance, which

can normally be provided via MM decomposition52,58 (as

Stokes vector projections shown in Fig. 5a (ii)). Kunnen

et al. employed Stokes vector detection with circular and

elliptical incident SOPs for differentiation between heal-

thy and cancerous lung tissues specifically using a Poin-

caré sphere illustration159 (as Stokes vector locations

shown in Fig. 5a (iii)). Note that the circular SOP illu-

mination is especially useful for biomedical analysis, as its

effects are independent of the orientation of the aniso-

tropic components that widely exist in biomedical speci-

mens20–24,32. What is more, its strong polarisation

memory effect with respect to tissue-induced Mie-scat-

tering has also gained attention160 (here the memory

effect161 means that circular polarisation can survive

many more scattering events than linear polarisation due

to excessive forward scattering, hence it has higher

probability to maintain the original information when

passing through turbid tissue consisting of Mie-scattering

particles that are comparable in size to the wavelength).

Information extraction from the vector properties of the

object

Measurement of the full vector properties of biomedical

targets requires illumination with multiple SOPs in com-

bination with multiple analysing SOPs20–24. As we have

mentioned above, the individual MM elements lack clear

physical meanings, or explicit associations with micro-

structures20–24. That is to say, vectorial characteristics of

the object, like diattenuation, retardance, and depolarisa-

tion are encoded within the MM elements. For a complex

optical system (like tissue), each MM element is always

associated with more than one polarisation property.

Hence, numerous MM decomposition methods were

proposed to quantitatively characterise the optical and

structural properties of the object52–59. One prevalent

method is the Mueller matrix polar-decomposition

(MMPD) proposed by Lu & Chipman52, which has been

used and validated in lots of applications for characterisa-

tion of biomedical or material samples58,162–167 (see Fig. 5b

(i)); He et al. put forward the Mueller matrix transforma-

tion (MMT) with validations using phantom experiments

and Monte Carlo simulations57. Based on the MMT con-

cept, more rotation invariant parameters were extracted

from the MM and applied to biomedical sample char-

acterisation167–169 (see Fig. 5b (ii)); Arteaga and colleagues

derived Mueller matrix anisotropy coefficients (MMAC) to

describe the level of different kinds of anisotropy for dif-

ferent polarisation systems56. Furthermore, other decom-

position schemes were also developed, such as MM

differential decomposition55, symmetric decomposition60,61

and Cloude decomposition62. Among the various decom-

position approaches, different mathematical assumptions

need to be made for different applications52–62, such as

assuming a determined layer sequence of different funda-

mental polarisation components for a complex object,

which in effect simplifies the matrix reciprocity problem52.

Recently, those methods and related parameters have also

been compared quantitatively with each other for the

purpose of structural characterisation170–172. We can

summarise the parameters derived via the above methods:

MMPD: diattenuation (D), retardance (R) and depolarisa-

tion (Δ) (all of them maintain linear/circular compo-

nents)52; MMT: depolarisation (1-b), level of linear

anisotropy (t1), diattenuation property (t2), level of bire-

fringence (t3) and fast axis orientation (x3) and more16,57;

MMAC: horizontal linear anisotropy (α), 45° linear aniso-

tropy (β) and circular anisotropy (γ) respectively with

respect to the global anisotropy of the MM56.

The MM contains fundamental physical characters like

polarisance, diattenuation, retardance and depolarisation

(shown in Fig. 2c); however, some concepts like aniso-

tropy can be a combination of several fundamental

polarisation processes16,57. It is worth mentioning that the

depolarisation property—which is used for evaluating a

SOP’s disorder, randomness, or uncertainty3–5—is also

linked with the concept of entropy in polarimetric

research11,173. While the above parameters are derived

from a full MM (4 × 4); Ghosh et al. and Wang et al. also

reported works on 3 × 3 MM decomposition methods,

related simulations and experiments, with an emphasis on

biomedical applications174,175. In summary, the decom-

posed linear depolarisation and linear retardance from a

3 × 3 MM display similar qualitative relationships to the

changes with respect to the microstructure of the sample,

such as the density, molecule size, and orientation dis-

tributions of the scatterers as well as birefringence level of

the interstitial medium174,175.

The MM decomposition methods all require different

assumptions (strong or weak) such as matrix reciprocity,

the order that polarisation effects happen in the media, or

homogeneity for the tissue analysis52,58,176–178. Therefore,

their decomposed values are not strictly physically

determined, if the assumptions do not hold in reality,

which may well be the case, as biological tissue has high

spatial complexity58. However, extraction through the

MM polarisation parameters that have less assumptions

and clearer physical meaning is always something to strive

for. Several works pointed in such a direction: (1) Gil et al.

and Li et al. proposed different polarisation parameters

with physical determination via the asymmetric properties

of the MM elements168,169, by considering assumptions

about layer constructions or the presence of absence of

specific vector properties such as polarisance or diatte-

nuation; (2) Dong et al. employed a data-driven machine

learning technique to fit several polarimetry feature

parameters (PFPs) for characterising determined
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pathological applications, such as detection of the

abnormal areas of breast carcinoma and cervical cancer-

ous tissue slices95 (see Fig. 5b (iii)); 3) Breaking or

restoring the symmetry (see Fig. 5b (iv)), based on analysis

of different sub-regions of the MM, to extract determined

information of the system is recently gaining interest179;

The information extraction process is gradually develop-

ing from an analytical mathematics approach (equation-

based, forward problem), to fitting or observing vectorial

semantics/metrics (data-based, or shape/form-based

inverse problem).

Vectorial information analysis for biomedical
applications
Polarimetric techniques maintain unique advantages

compared with other optical techniques: they can provide

extra vectorial information through methods that are

compatible with many existing optical systems, such as

microscopes and endoscopes16,24,32,33,92,180. Much exist-

ing biomedical polarimetry research concerns sensing of

bio-information in a label-free way without extraneous

dyes16,22,24. In other areas, polarimetry can be used to

characterise the vectorial information of fluorescence

dyes, as the dipole orientation of the fluorophore is

encoded in the polarisation state of the emitted

light154,155. The SOP of such emission is always in a linear

state; hence the polarisation angle (PA) and intensity of

the linear SOP are quantities that can be harnessed, such

as in biomedical applications in super-resolution micro-

scopy153,181,182. Here we briefly summarise common

phantoms used for biomedical polarimetric techniques.

These techniques include polarised wide-field micro-

scopy16,24,183, polarised light spatial frequency imaging184,

polarimetric endoscopy185–190, spectral light scattering

polarimetry18,82,191–193, polarised fluorescence spectro-

scopy194–196, polarised confocal microscopy197, polarised

Raman-spectroscopy198,199, polarised super-resolution

microscopy154,155, polarisation sensitive optical coher-

ence tomography200–218, non-diffraction beam polari-

metry (such as Bessel beam based)219, polarisation-

resolved nonlinear microscopy (including second/third

harmonic generation)220–226, and polarised speckle ima-

ging213,227 (several techniques will be mentioned again in

the Discussion). The relationship between incoherence

and depolarisation of the light should be kept in mind

when considering coherence based polarimetric techni-

ques: they are different but related optical concepts. If a

polarised coherent beam passing through a scattering

medium becomes incoherent, it can result in either

polarised light or depolarised light. If after such a medium

a polarised coherent beam changes into depolarised, the

coherence property may still be maintained. For more

details see ref. 228. Several of the above techniques have

also been adopted in three-dimensional (3D) imaging with

signal integrations or sample segmentations229. However,

numerous existing polarimetry techniques (within the

scope of this review) fall into two-dimensional (2D) ana-

lysis23–29. With the completion of the cutting-edge

mathematical interpretations and methodologies (see

“Discussion”) there exists of course intriguing scope for

further explorations.

In order to understand the interactions between polar-

ised photons and biological specimens, and link the

parameters obtained via the Stokes vector or MM with the

biomedical microstructural information, a software

phantom—Monte Carlo (MC) simulation—was proposed

to give plausible explanations for the originality of the

observed physical phenomena45,46. While biomedical

samples are considered as turbid media with complex

structures, different fundamental units to mimic the

microstructural architecture have been employed: sphe-

rical scatterers35,46; cylindrical scatterers41,46; birefringent

intermedia37–39, multi-layered geometry45 and so on46.

MC simulations have successfully reproduced most of the

important polarimetric characteristic features for biome-

dical samples16,230,231.

Thin specimens

Specimens and their mimicking phantoms can be thin

or bulky, which also, in general, determines the config-

urations of the biomedical polarimetry. A transmissive

geometry is used for the thin cases (see Fig. 6) which are

less scattering, thus most of the incident photons would

be transmitted. A backscattering geometry (see Fig. 7) is

preferred for the bulk cases (ex vivo and in vivo) which

are highly scattering and depolarising, thus most of the

incident photons would be backscattered. There is no

clear boundary between what constitutes thin or bulk

tissues. Indeed, intermediate or mixed states can exist,

for which both the transmission and backscattering

photons can be detected simultaneously16,22,23,152. In

response to the beginning of this section, biomedical

polarimetry can be used in labelled or label-free mea-

surement; Fig. 6 gives a summary for two types of the use

of thin tissue polarimetry.

For label-based direction, polarimetry has found use in

scientific applications, such as biomedical microscopy16.

The vectorial information of the dipole emitters is enco-

ded in the SOP of the detected light153,154. The dipole

orientation (and the fluorescence intensity) polarimetric

detection technique plays an important role in thin bio-

medical sample analysis: e.g., in fluorescence polarisation

microscopy (FPM)194,195,232,233; FPM can be used to study

the nuclear pore complex subcomplexes and the relative

orientations234, or be used to study different types of

cytoskeleton such as actin, myosin, kinesin, microtubule

and septin—those closely related with the performance of

the dipole behaviours235–239—enabling research such as
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ATP and ADP binding237. Advanced research has been

adopted in super-resolution imaging harnessing fluor-

escent dipoles via polarised illumination, with applications

such as revealing heterogeneity and dynamics of sub-

cellular lipid membranes181,240,241. These fluorescence

anisotropy properties also belong to the fundamental

polarisation properties that are encoded in the MM.

For label-free biomedical polarimetric research, espe-

cially in clinical/pathological related topics, cancerous tis-

sues detection is an important application22–24. In the past

decades, such polarimetric techniques have assisted the

diagnosis of various cancerous tissues, such as human skin

cancer242, cervical cancer243–246, colon cancer166,247–250,

liver cancer163,251, breast cancer and gastrointestinal

cancer93–95,252. A typical bio-information analysis of

polarimetric data is for quantitative evaluation of the

fibrosis process among different stages of cancer develop-

ment94,163. Beside the degree of fibrosis that can be

quantified via biomedical polarimetry, the distribution of

features in the fibrous regions also can serve as another

characteristic parameter to assist the pathological diag-

nosis; this distribution can be readily extracted via polar-

isation information164,165,171. Intuitively, such structures

contribute intrinsic birefringence mainly affecting the

fourth row and fourth column of the target MM16. A good

demonstration in ref. 164 shows how polarimetric textural

mapping of retardance properties can distinguish between

Crohn’s disease and gastrointestinal luminal tuberculosis

tissues (see Fig. 6b). Some thin specimen phantoms, as

found in ref. 152, target the fundamental understanding of

the constitution of certain biomedical specimens, such as

using nanoparticles or microspheres. Moreover, polari-

metry has recently been applied to other diseases detec-

tions including Alzheimer’s disease and bladder outlet

obstruction24,253,254.

Bulk specimens

Polarisation techniques can help improve the image

contrast of the superficial layers of tissues by eliminating

multiply scattered photons from the deep layers20–24. The
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previous literature shows that more than 85% of cancers

originate from the superficial epithelium, which means

that polarisation imaging methods have great potential in

screening and identifying cancer at an early stage255. This

would be specifically useful for in vivo clinical diagnosis,

such as for minimally invasive surgery (MIS)24. Mea-

surements in ex vivo thin tissue can use a transmissive

geometry, whereas ex/in vivo bulk tissue detection would

need backscattering configurations. Figure 7 gives a brief

demonstration of certain current research topics related

to bulk tissue polarimetry.

For polarimetric bulk tissue research, ex vivo detection

plays an important role22–24. For example, collagen fibres,

which widely exist in tissues and organs such as tendons,

skin and bladder (from porcine, swine, lobster, calf or

other animals156,256–259), skeletal and myocardial muscle

fibres260–262, and elastin fibres are widely used due to their

linear birefringence properties20–23,164. The alignment

directions of all such fibrous structures are also linked with

the fast axis orientation of the generated linear birefrin-

gence16,165,171. Furthermore, the scattering of bulk media

is also studied via the extracted depolarisation16,167,263.

The retardance and depolarisation related properties are

the dominant parts of the vectorial properties of bulk

tissues, as the magnitude of diattenuation for majority of

tissue is typically very small158, with several exceptions like

skeletal and myocardial muscles167 (see Fig. 7a (i)). Pre-

vious research analysing muscle tissue264 showed lower

retardance compared with tendon tissue, owing to the

cellularity of these tissues. Sections of the bulk myocardial

fibre tissues showed two circularly aligned ring-shaped

fibrous structures (see Fig. 7a (i)), revealing their aniso-

tropic properties167. The different anisotropic vectorial

information obtained from polarimetric measurements

can be very helpful for the discrimination and identifica-

tion of different fibrous structures in tissues164,165,167.

While ex vivo studies are mainly oriented towards fun-

damental research24,152,171 (e.g., understanding the vectorial
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properties characterisation; see Fig. 7a (i), (ii), b (i)), in vivo

bulk tissue polarimetry is geared towards applica-

tions24,256,265. Typical backscattering-mode polarimetry

includes polarisation endoscopy24, reflection MM micro-

scopy16,266, MM colposcopy180,267, wide-field handheld

polarimetry16, and PS-OCT268 (see Fig. 7a (iii), b (ii)), tar-

geted to clinical diagnosis in vivo. As a promising in vivo,

label-free diagnostic tool, polarisation endoscopic imaging

has been implemented inside rat abdomen, revealing the

small bowel, stomach, liver and fat with different polarisa-

tion characters92. Recent work also includes development of

several different types of MM endoscope188–190,256, and

extension into the spectral domain (with certain fixed

wavelengths)92 (see Fig. 7a (iii)). PS-OCT200–218 is specifi-

cally used for in vivo ophthalmic imaging, where

polarimetric data accompanied with clinical analysis has

been demonstrated, for retinal imaging268 (see Fig. 7b (ii)).

Other types of bulk tissue analysis, such as human lung

cancerous tissue159 and skin tissue269, show good prospects

for future clinical diagnosis16,22–24.

While thin samples can feature multiple-scattering pro-

cess, such processes are of course more significant in bulk

samples20–22. Considering the intriguing scope of the

polarimetric technique for in vivo clinical diagnosis, beside

the simulations, there is a need for complex phantoms,

such as those exhibiting birefringence (see Fig. 7b (iii)) or

depolarisation, to establish reliable processes for investi-

gation of complex scattering mechanisms270,271. A recent

review has summarised various phantoms for both thin and

bulk samples152. Microspheres, silicon-based phantoms,
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nanoparticles, cylindrical scatterers, and birefringent/

dichroism films35,158,270,272 have all been employed in var-

ious validations. In vivo biomedical polarimetry and its

related applications clearly offer a large space for future

exploration.

Directions for advanced biomedical polarimetry
and future prospects
Biomedical applications of polarimetry have attracted

substantial attention. We hope this short review paper gives

readers a general overview from fundamental polarisation

concepts, through polarimetric techniques, to recent bio-

medical and clinical applications7,16,20–24,29,34,63,79,152. In

addition to the summaries of recent research trends

explained above, we provide here some further perspective

on prospects in this application area, considering the use of

polarimetry in a multimodal combination with other

advanced technologies (see Fig. 8 for a summary).

Firstly, the fast development of machine learning (ML)

is clearly going to have an impact on this field95,273,274.

Such data-driven techniques may pave new directions for

biomedical polarimetry, either through improving the

quality of polarimetry (such as overcoming the numerous

sources of error) or through enhanced information

extraction68,95. One possibility is to use low-resolution

information to reconstruct high-resolution patterns (fol-

lowing the spirit of works such as refs. 275,276). Secondly,

while ML is geared towards improving the information

processing aspects of polarimetry, new adaptive optics

techniques can be used to extend the capabilities of

polarimetry through full vectorial beam control. This

could enable enhanced polarisation imaging resolution

physically via beam shaping and compensation of polar-

isation errors277–280. Thirdly, the emerging techniques

based on metasurfaces—subwavelength arrays of nano-

scatterers that can modify polarisation—have been

adopted for polarimetry281, as well as for 3D polarisation

control282. Such developments may bring new opportu-

nities for advanced biomedical polarimetry, such as

forming compact vectorial sensors24,283 for deep tissue

information extraction. Fourthly, second harmonic gen-

eration (SHG) and third harmonic generation (THG)

based 3D MM techniques have been proposed284–287.

These are described by extended MMs that are more

complicated than 4 × 4 MMs used for linear scattering

(4 × 9 and 4 × 16 elements, respectively, for SHG and

THG)284,285. For these methods, further advanced infor-

mation extraction and analysis approaches are of course

intriguing. Finally, the intensity and wavelength have been

utilised together with polarisation in polarimetry for a

long time. However, the absolute phase information—

especially geometric phase-related techniques8,10—may

again open windows for new biomedical polarimetry

approaches with multi-modal performance.
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