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Polarities of G. Higman's symmetric design and a strongly regular graph on 

1 76 vertices *) 

by 

A.E. Brouwer 

ABSTRACT 

We investigate the polarities of G. Higman's symmetric 2- (176,50,14) 

design and find that there are two of them (up to conjugacy), one having 80 

and the other 176 absolute points. From the latter we can derive a strongly 

regular graph with parameters (v,k,A,µ) = (176,49,12,14). Its group of auto

morphisms is Sym(S) with orbits of size 8 and 168 on the vertices. It does 

not carry a partial geometry or a delta space. 

KEY WORDS & PHRASES: Higman-Sims simple gPoup, strongly PeguZax> graph 

*) This report will be submitted for publication elsewhere. 



INTRODUCTION 

It is well-known that given a symmetric 2- (V ,K,J\.) design with a polar

ity, we can find a strongly regular graph with parameters (v,k,A,µ) = 

(V,K,1\.,1\.,) if the polarity has no absolute points, and one with parameters 

(V,K-1,1\.-2,1\.) if all points are absolute. (In the first case take the sym

metric incidence matrix of the design as adjacency matrix of the graph; in 

the second case first delete the diagonal.) 

In [4] G. HIGMAN constructs a symmetric 2-(176,50,14) design with the 

Higman-Sims group as group of automorphisms, and indicates a polarity. Using 

the description given in SIMS [6] it is trivial to check that the polarity 

has only absolute points (but note that Sims's statement about the orbit 

lengths is inaccurate) so that we get a (176,49,12,14) graph. 

Computing the multiplicities of the eigenvalues shows that no (176,50, 

14,14) graph can exist, i.e., any polarity of the design must have absolute 

points. In fact the number of nonabsolute points is divisible by 12, so that 

the number of absolute points is congruent 8 (mod 12). Belowe we study this 

graph in some more detail. Looking at the possible polarities of the sym

metric design we find that up to conjugation there is ony one other polarity 

- one with 80 absolute points. Consequently our graph is the only one that 

can be derived in this way from the symmetric design. 

1. G. HIGMAN' S SYMMETRIC DESIGN 

C.C. SIMS [6] gives the following description of a symmetric 2 - (176 ,50, 

14) design: There are six ways to 111ake a set of six elements into a projec

tive line, or, equivalently there are six transitive representations of 

PGL(2,5) on six given points-. Now- fix as-et B of eight elements and let C 

be the set of 168 = 6.(~) groups PGL(2,5) acting on B with orbits of sizes 

1, 1, 6. Both the points and the blocks of the design will be indexed by 

Bu C. If x EB u C then let x denote a point of the design and L a block 
X 

of the design; w: x * L will be a polarity of the design. Incidences are 
X 

defined as follows: 

for b EB:~= Bu {HE CI H fixes b}, 
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for H E C: ½I = {b E B I H fixes b} u 

u {G E C I H has less than 60 conjugates under Nsym(8) (G)}. 

Since the 168 elements of C fall into orbits of sizes 1 + 5 + (6+6) + 30 + (30+ 

30) + 60 under conjugation with elements of G (where the bracketed orbits 

fuse under N(G)) we see that 11;, I = 8 + 42 = 50 and l½il = 2 + 1 + 5 + 12 + 30 = 50 

so that blocks have size 50. It is an easy (but somewhat tedious) exercise 

to check that A= 14. {It might be useful to notice that the orbits can be 

described as follows: 

* 1 : G = H; 

* 5: G and H have same fixed points but are not identical; 

* 6+6: G and H have one fixed point in common and IGn HI = 20 (i.e., 

G n H contains an element of order 5); 

30+30: G and H have one fixed point in conm.on and IG n Hl = 4; 

* 30: G and H have no fixed points in common and IGn HI = 4 (i.e., 

G n H contains an element of order 4); 

60: G and H have no fixed points in common and IG n HI = 2. 

Here the asterisks mark the cases where GE ½I or, equivalently HE LG. So, 

obviously, xi+ L indeed is a polarity.} 
X 

The automorphism group of this design is the simple Higman-Sims group 

HS. It has index 2 in the group of correlations <HS,~>~ Aut HS. From the 

description given it is clear that Sym(8) centralizes~; in fact CHS(~)~ 

Sym(8). Consequently, if r is the graph derived from the design with polar

ity ~ then Aut r ~ Sym(8), and Aut r has orbits B and C of sizes 8 + 168 on 

the vertices of r. 

2. POLARITIES OF THE DESIGN 

From the character table (see FRAME [2]) we see that there are two con

jugacy classes of involutions in (Aut HS)\HS. One is the above polarity with 

176 absolute points; we want to find the number of absolute points under the 



other polarity. To this end, consider the permutation representation of 

Aut HS on the unordered flags, and compute the corresponding character X· 

For the classes of involutions Cj and Cj 0 (in Frame's notation) we find 
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x(Cj) = 176 and x(cj 0) = 80 so that the other polarity has only 80 absolute 

points and cannot be used to construct a strongly regular graph. {As follows: 

first identify the elements of Sym(7), the stabilizer of a flag in HS, among 

the conjugacy classes of HS. In fact we can identify the elements of Sym(8) 

as follows: 

] 8 C Cl' ]7 C C4, 153 u 1232 C c6 , 

1223 u 26 c C7, 1422 u 4 2 c c8, 224 2 
u 4 c Cg, 

1224 C ClO, 8 C C 11' 35 C c14' 135 C C15' 

125 c c16 , 

34 C c19 , 4 ] 4 C c20 • 

Next obs~rve that xis induced by 1 on Sym(7), so that we find the decomposi

tion of x in HS by Frobenius reciprocity. This yields (in HS) 

X = 1 + 77 + 3*175 + 231 + 2*693 + 154 + 1386 + 2*2520 

so that x has values 

(8800,0,l,0,25,l,160,0,8,0,0,0,30,2,72,9,1,160,0,0,0) 

on the classes of HS (in the order given by Frame). The requirement that x 

has nonnegative values now determines x on the classes of (Aut HS)\HS. We 

find the decomposition (in Aut HS) 

X = 1 + 77 + 2*175 + 175 + 231 + 2*693 + 154 + 1386 + 2520 + 2520 

and the values 

(176,1,5,1,16,0,0,0,0,80,5,5,0,6,0,0,0,0) 
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on the classes of (Aut HS)\HS. Here the bar above a character denotes the 

associate character (i.e., the negative of the column given by Frame). The 

computations were checked by explicit computation of x on the classes of 

Sym(8).} 

We can describe the polarities explicitly in several ways. 

A. In Sims' representation the elements 18 and 162 of Sym(8) give a polar

ity with 176 absolute points, while 1422 and 1223 give polarities with 80 

absolute points. 

B. MARGARET SMITH [7] has given a beautiful decsription of the symmetric 

design, as follows: Let u, v be two fixed points of the Steiner system 

S(S,8,24). Let the points of the design be the blocks of the Steiner system 

containing u but not v. Let the blocks of the design be the blocks of the 

Steiner system containing v but not u .• Define incidence between points and 

blocks by B ~ B' if£ IB n B' I E {0,4}. Using the parameters of the near

hexagon associated with S(S,8,24) one immediately sees that this defines a 

design with the right parameters. 
' 

From CONWAY[l]we learn an explicit representation of S(S,8,24) showing 

large parts of its group of automorphisms. In fact consider 4 x 6 matrices 

with entries O or 1 satisfying the following restraints: 
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(i) the si:x aolwrm awns and the awn 

of the first r()'I;) have the BC011e 

parity. 
(ii) if r. denotes the i-th r()'I;) (l~i~4) 

-1. 

and IF4 .;,{O,l,w,w} and C is the 

linear [n,k,d] = [6,3,4] aode over 

IF 4 generated by the r()'l;)s of the 

matri:x 
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It is almost trivial to verify that these matrices form a linear [24,12,8] 

code over IF2, i.e., the extended Golay code. The Steiner system S(S,8,24) 

is obtained by taking the matrices with weight 8. 

Now if cr is an involution in M24 interchanging u and v (say u = (1,5), 

v = (1,6)) then cr defines a polarity of the design. The involutions with 8 

fixed points (such as: interchange the last two rows and the last two col

umns) have 176 absolute points, and those 'without fixed points (such as: 
• st nd rd th th th nd rd interchange 1 and 2 , 3 and 4 , 5 and 6 column, and 2 and 3 

row) have 80 absolute points. 

3. THE STRUCTURE OF THE GRAPH r 

Let r be the (176,49,12,14) strongly regular graph constructed above. 

By choosing one fixed polarity we destroyed much of the synunetry in the 

design - the graph r is a rather ugly-looking animal. As we saw above, its 

group is Sym(8) and has orbits of sizes 8 and 168 on the vertices. Since 

the graph has the right parameters for the point graph of a partial geometry 

pg(8,7,2) we investigate its structure somewhat more closely. Let a Zine be 

an 8-clique. 

Each point b €Bis in 8 lines, forming the 'comb' configuration in rb: 

In fact rb can be obtained from the Hoffman-Singleton graph by deleting a 

vertex x0, making its set of neighbours {x1, ••• ,x7} into a 7-clique, and 

then making the set of neighbours of x. together with x. itself into a 7-
1 1 

clique for 1 sis 7. 

Each point c € C is in 6 lines, forming a comb with two teeth missing: 



0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

6 

re contains the following maximal cliques: 18*K2, 50*K3 and 6*K7• It can be 

obtained from the Hoffman-Singleton graph by deleting a vertex x0 , making 

its set of neighbours {x1, ••• ,x7} into a 7-clique, next making the set of 

neighbours of Xi together with xi itself into a 7-clique for 1 ~ i ~ S, and 

finally putting a K6, 6 between the neighbours of x6 and those of x7• We see 

that 12 of the neighbours of care not in 7-cliques, i.e., 12 of the edges 

incident with care not in a line, and the graph does not carry a partial 

geometry. 

The complementary graph r satisfies the parameter restrictions for 

delta-spaces 6(3,63,35,45) or 6(4,42,35,30). But if ab is an edge of r con

tained i~ two lines then the subgraph of r consisting of the points non

adjacent to both a and bis the complete bipartite graph K6 , 6 and does not 

contain cliques of size 3 or 4. Hence r does not carry a nontrivial delta

space. 

It is not inconceivable that a distance regular graph with diagram 

7 6 6 2 

exists. The 'distance 3' graph has the parameters of r, and so such a dis

tance regular graph might be obtained by choosing 7 of the 49 edges incident 

with each vertex of r. However, I cannot see a reasonable way to do this. 
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