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Abstract: Resonance interaction between a localized electromagnetic field and excited states 

in molecules paves the way to control fundamental properties of a matter. In this study, we 

encapsulated organic molecules with relatively low unoriented dipole moments in the 

polymer matrix, placed them in tunable optical microcavity and realized, for the first time, 

controllable modification of the broad photoluminescence (PL) emission of these molecules 

in strong coupling regime at room temperature. Notably, while in most previous studies it was 

reported that the single mode dominates in the PL signal (radiation of the so-called branch of 

the lower polariton), here we report on the observation of two distinct PL peaks, evolution of 

which has been followed as the microcavity mode is detuned from the excitonic resonance. A 

significant Rabi splitting estimated from the modified PL spectra was as large as 225 meV. 

The developed approach can be used both in fundamental research of resonant light-mater 

coupling and its practical applications in sensing and development of coherent spontaneous 

emission sources using a combination of carefully designed microcavity with a wide variety 

of organic molecules. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Light-matter coupling between dipole transitions in matter and the localized electromagnetic 

field is a central topic of cavity quantum electrodynamics research. It could lead to reversible 

coherent energy exchange between a single or an ensemble of emitters and a cavity mode [1–

3]. This coupling imposes strict restrictions on system parameters and occurs only when the 

transition is in resonance with the electromagnetic mode. One of the main features of coupled 

systems is strong dependence of their properties on the interaction between the material and 

its local electromagnetic environment [4,5]. Thus, altering the environment by placing an 

emitter in a cavity can drastically affect the spectral properties in controlled manner [6–8]. In 

general, properties of a coupled system are governed by the competition between the rate of 

the coherent energy exchange (Rabi frequency) and the damping rates of the emitter and 

microcavity. Depending on the ratio between these rates, two coupling regimes can be 

distinguished: weak and strong coupling. Weak coupling regime takes place when damping 
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rates prevail over coupling rate [9]. In this regime, the spontaneous emission rate of the 

emitter is modified by altering the photon density of states, which is also known as Purcell 

effect [10]. This regime can be effectively used in photonics, biosensing and the development 

of many electro-optical devices [6,11,12]. Strong coupling regime is reached when energy 

exchange between the emitting dipole and the cavity mode is faster than their damping rates. 

Strong coupling leads to formation of the new eigenstates separated by the energy of the Rabi 

splitting that can be described in terms of hybridized light-matter bosonic quasiparticles 

called polaritons [13]. The fundamental properties of these new eigenstates originate from the 

quantum-mechanical superposition of the two original states. Thus, the implementation of 

strong coupling is of a special interest since in this regime the fundamental properties of 

coupled matter can be greatly altered. This effect can be used in a variety of applications, 

such as enhancement of Raman scattering [14], modifications of chemical reactivity [15], 

enhanced conductivity [16], nonradiative energy transfer [17–19] and fabrication of coherent 

spontaneous emission sources [20–22]. 

In general, Rabi splitting value ( RΩ ) for the ensemble of emitters could be estimated 

using the following equation [4]: 
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where g  is the coupling strength, N  is the number of coupled emitters, 
geomF  is the 

parameter depending on the spatial orientation of dipole moment and cavity mode 

distribution, d  is the transition dipole moment, ω  is the frequency of the cavity field, mV  is 

the mode volume, and 0ε is the vacuum permittivity. Over the past decades, a strong

coupling has been achieved by coupling emitter to selected optical modes of various 

resonators, which resulting in different values of Rabi splitting [3]. However, most of these 

systems consist of an emitter placed in a microcavity, which has fixed separation distance 

between two metal layers or distributed Bragg reflectors, which makes it laborious to study 

strong coupling effect for different samples since each sample requires unique set-up 

arrangement. This necessitates the development of a versatile experimental set-up based on 

open access microcavities with tunable parameters. In this regard, a tunable Fabry–Perot 

microcavity with opposite plane-convex mirrors is a great promising approach for the 

investigation of the strong coupling phenomenon [23,24]. Using this approach, a tunable 

microcavity cell (TMC) was recently developed in our group [25], which is equipped with 

interchangeable mirrors with different reflective indices, a piezo-positioner for adjustment of 

the resonator length, and a high-precision alignment system. Among the advantages of this 

design we would like to accentuate the availability of the optical mode for coupling to the 

electronic or vibronic states of freestanding molecules and nanoparticles, high-precision 

tunability of the resonance wavelength by precise control of cavity length using the 

piezoelectric actuator, and an open access to the TMC for effortless sample replacement. 

Furthermore, the variable distance between the mirrors provides an ability to directly measure 

the dispersion of polaritons and to demonstrate the avoided crossing between two (upper and 

lower) polariton branches in the spectra of hybrid states. 

Since the achievement of the strong coupling regime requires a large coupling strength, 

which is proportional to the emitter dipole moment, it is necessary for the emitter to have a 

dipole moment as large as possible. The most effective way to significantly increase the 

dipole moment is to use the phenomenon of collective coupling [3]. In this case ensemble of 

coupled emitters act like one collective dipole due to the bosonic nature of polaritons [26]. 

Consequently, the coupling strength becomes proportional to the square root of the 

concentration of emitters in the ensemble [27]. In this regard, organic materials are a 
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particularly favorable choice, since they have large binding energies, can reach high densities 

and have large dipole moments through collective interaction. 

Rhodamine 6G (R6G) is one of the most frequently used fluorescent molecule in many 

fundamental optical studies due to its high quantum yield of fluorescence (up to 100% [28]) 

in the visible range (500-600 nm) and significant absorption cross section [29–31]. Recently, 

the drastic change in emission properties of R6G has been demonstrated, such as the 

modulation of the emission spectrum, the fluorescence lifetime, and the fluorescence quantum 

yield, upon placing the molecules inside a metal microcavity with metal mirrors which were 

separated by a subwavelength spacer [32–34]. On the other hand, R6G has very broad 

absorption and emission bands, which makes it difficult to fulfill the requirements for strong 

coupling. It is noteworthy that some of the previous studies were performed using plasmonic 

modes for coupling with R6G transitions [29,30,35]. In these nanostructures, extremely small 

plasmonic mode volume leads to the considerable increase in the coupling strength. However, 

the coupling to the plasmonic modes has several fundamental disadvantages. The plasmonic 

mode cannot be changed or adjusted during the experiment and, therefore there is no 

possibility to make the coupling process tunable and reversible. Moreover, an ensemble of 

molecules assembled with plasmon structures is inaccessible for any other manipulations, and 

hence it becomes difficult to use such systems in practical applications. Besides, the close 

contact of organic molecules with the surface of the metal nanoparticles leads to a strong 

quenching of their emission due to the effective Förster resonance energy transfer. 

Here we present results of the investigation of the emission properties of R6G molecules 

encapsulated in the Poly(methyl methacrylate) (PMMA) matrix, whose electronic transitions 

are coupled with electromagnetic modes of tunable optical microcavity at room temperature. 

The developed approach based on the use of an open-access microcavity for the controllable 

wide-range tuning of the coupling strength can be effectively used both in fundamental 

researches of resonant light-mater interaction and for practical applications of strong coupling 

phenomena in chemistry, biosensing, fabrication of optoelectronic devices and novel sources 

of coherent emission [16–22]. 

2. Materials and methods 

2.1 Experimental setup 

Scheme of the experimental setup consisting of the TMC and the light excitation/collection 

system, is shown on Fig. 1. The design and implementation of the TMC has been described 

elsewhere [25]. More specifically, TMC is a tunable unstable λ/2 Fabry–Perot microcavity 

consisting of plane and convex mirrors. This configuration satisfies the plane-parallelism 

condition, at least at one point of the curved mirror, and also minimizes the mode volume. 

Fine-adjustment of the microcavity length is provided by the Z-piezopositioner in the range 

up to 10 µm with a step of several nm. The moving console used for the upper 

interchangeable convex mirror holding is equipped with the XY precision positioner for the 

alignment of the plane-parallelism point and the sample. A sample was deposited directly on 

the bottom flat mirror, which consists of standard (18x18 mm) glass coverslips with Al films 

of different thicknesses on their upper side. The coverslips with a sample were glued to the 

interchangeable holders, which, in turn, were placed on Z-piezo-positioner of the TMC. The 

intracavity space was filled with Cargille Type DF (Cargille Labs) immersion oil. The TMC 

was placed on the homemade inverted confocal microspectrometer that included an Ntegra-

base (NT-MDT) with a 100X/0.80 MPLAPON objective (Olympus) mounted on a Z-piezo-

positioner, an XY scanning piezo-stage, and a confocal unit. 

The light excitation/collection system consisted of a 488-nm Ar + laser (LGN-519M, 

Plazma Ltd.) with the power of 0.1 mW, an Andor Shamrock 750 monochromator equipped 

with an Andor DU971P-BV CCD (Andor Technology Ltd) and two 488-nm ultrasteep long-

pass edge filters (RazorEdge, Semrock). To align the “area of interest” on the sample with the 

field of view of the confocal microspectrometer, the TMC can be adjusted in transverse plain 
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units) in contrast to the value of 105 in the case of conventional optical resonators [3]. 

However, the use of the developed TMC with small mode volume allows not only to achieve 

the strong coupling regime in the optical microcavity, but also to make it in a tunable manner. 

Recently we have shown [39] that the mode volume of developed TMC could be as small as 

73 in 

3

n

λ 
 
 

 units. Moreover, it can be tuned in a wide range, up to 105, with the 

corresponding tunability of the spectral position of transmission peaks and their Q-factor. As 

a result, it is possible to tune not only the energy of the coupled states, but also the coupling 

strength, as well as to investigate the properties of the same system in weakly or strongly 

coupled regimes in comparison to the properties of the uncoupled states of the exactly the 

same system. In order to eliminate the possibility of coupling of electronic transitions of R6G 

simultaneously with more than one longitudinal mode of the microcavity, the free spectral 

range of microcavity modes must be sufficiently wide. This means that there is an upper limit 

for the separation between mirrors. On the other hand, one of goals of this work was to 

maximize this separation in order to demonstrate the effect of the lateral confinement on the 

mode volumes and, consequently, show the potential for further development of TMC. 

Promisingly, even a distance of a few microns between the mirrors opens up the possibility of 

fabricating microfluidic channel on the surface of bottom mirror and achieving strong 

coupling regime in a dynamic flow of molecules. Furthermore, the damping rate of the optical 

modes should be significantly lower than that of R6G molecule. Otherwise it would be 

difficult to achieve the coupling rate high enough to overcome the damping rate of the whole 

system and make the coherent energy exchange dominant. To ensure that these conditions are 

met, we carried out all experiments with a mirror separation of about 2 micrometers and 

mirror reflection coefficients of 67% and 87%. 

Another important feature of the developed setup is that at relatively low concentrations 

of R6G molecules in PMMA films, the number of photons from the white LED used for 

transmission measurements greatly overcomes the number of generated excitons, and most of 

the transmitted light passes the cavity uncoupled. As a result, the effect of coupling in 

transmission spectra cannot be observed. In contrast, in the case of fluorescence, the number 

of emitted photons fundamentally cannot exceed the number of excited excitons, and the 

requirement for a collective coupling observation can be fulfilled. 

Figure 3 shows the normalized fluorescence spectrum measured from a cavity containing 

a R6G-PMMA film, as well as the transmission spectrum and fluorescence spectrum of R6G-

PMMA film on a mirror. In this experiment, the distance between the mirrors was about 1830 

nm, and the reflectivity of the mirrors was about 67%. The resulting Q-factor of the 

eigenmode was 140 and the free spectral range (FSR) was 0.22 eV. 
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integrated with quantum emitters, but, strictly speaking, do not exceeds the broadening of the 

original emission spectrum of R6G film. Indeed, the full width at half maximum of the 

fluorescence spectrum of R6G monomers is estimated to be about 160 meV [30]. In order to 

achieve the maximum coupling strength and demonstrate the evolution of the energies of the 

two polaritonic branches, experiments were carried out in which the mirror separation was 

varied with a step of 30 nm while recording the emission spectra. In that way, the distance 

between the mirrors was changed from 1790 nm to 1970 nm, causing a corresponding 

variation of the eigenmode energies from 2.1 to 2.3 eV, which covers the entire area of 

maximum emission of the R6G film. The resulting fluorescence spectra are shown in Fig. 4. 

 

Fig. 4. Fluorescence spectra (color curves) of the R6G-PMMA film in a tunable microcavity 

with different distances between low (67%) reflecting mirrors. The spectra are vertically 

shifted for better presentation. From the upper spectra to the bottom one, the distance between 

the mirrors increased from 1790 nm to 1970 nm. Black arrows mark the maxima of the 

emission of the cavity polaritons. The corresponding spectral shift of the transmission maxima 

is marked with a dashed grey line. The solid grey line indicates the emission maximum of the 

R6G film without the microcavity. 

The upper and lower spectra correspond to the maximum detuning of the maxima of 

cavity transmission from the maximum of the R6G fluorescence spectrum measured without a 

microcavity. The presented data clearly demonstrate the anti-crossing behavior of polaritonic 

branches. In all measured spectra, the most pronounced emission was observed in the spectral 

region of two separate peaks, which correspond to two hybridized modes. The only exception 

is one weak emission peak, which coincides in energy with the position of the transmission 

maximum of an empty microcavity, and is due to the contribution of a small number of 

unbound dye molecules. Similar mechanism of weak coupling but with the higher energy 

cavity mode leaded to the formation of additional peaks with the energy about 2.32 eV for 

black and red curves. 
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In the anti-crossing regime, the value of Rabi splitting, and, therefore, the coupling 

strength, can be deducted from the spectrum measured at zero detuning, when the resonator 

mode energy coincides with the energy of the emission maximum of R6G (about 2.22 eV). 

For these conditions, the Rabi splitting was estimated to be 184 meV. This value exceeds the 

emission bandwidth of the R6G film measured without a microcavity, and, thus strong 

coupling criteria are met. 

It is important to note that while observation of Rabi splitting in extinction and reflection 

spectra of the hybrid systems combining organic dyes and confined electromagnetic field 

have been reported in a number of publications [3,29,30], investigation of hybrid states in 

fluorescence spectra is usually more complicated. Most often, only emission from the lower 

polaritonic branch is observed experimentally, in contrast to the case of extinction 

experiments, when both upper and lower polaritonic branches can be clearly detected. This 

peculiarity can be explained by the presence of uncoupled states in the ensemble of 

molecules, which leads to the prevailing fast recombination (of the order of 50 fs) from the 

upper hybrid state towards these uncoupled states [41]. It should be noted that the uncoupled 

states could also have delocalized character in case of discrete electromagnetic field spectrum 

[42]. However, in our experiments, a pronounced emission from both the upper and the lower 

polaritonic states was observed for all detunings. We speculate that it becomes possible 

because of the relatively low number of uncoupled states within the cavity mode volume, 

which leads to the suppression of recombination from the upper polaritonic branch to the 

uncoupled states. 

Another interesting effect, observed in our experiments, is a rather unusual splitting 

behavior upon changing the detuning. After passing the point of zero detuning, the spectral 

position of high-energy emission peak abruptly shifts to the lower energies and gradually 

approaches the energy of the emission maximum the R6G film at 2.2 eV (Fig. 4, blue, red and 

gray curves). This behavior can be explained by taking into account the multi-component 

nature of the emission of an R6G film containing monomers, dimers and, very likely, various 

aggregates of dye molecules. Tuning the cavity photon energy leads to a drastic change in the 

probability of coupling of cavity eigenmodes with electronic transitions of different 

constituents of the R6G film. Electronic transitions in monomers, dimers and aggregates of 

R6G molecules have different dipole moments, which leads to different coupling strength 

between the respective transitions and microcavity eigenmodes. Similar dispersion has been 

demonstrated previously in coupled systems with broadband emitters [29,43]. 

The experiments, the results of which are shown in Fig. 4, were carried out using TMC 

mirrors with a relatively low reflectivity (67%), which imposed a limit on the Q-factor of the 

microcavity, and, in effect, on the coupling strength. A further increase in coupling strength 

was achieved by replacing the mirrors with those that have a higher reflectivity of about 87%. 

In this case, a slight decrease in the distance between the mirrors along with an increase in 

reflectivity led to the increased Q-factor up to 187 and FSR of 0.29 eV. In line with the 

procedure used in previous experiment, the separation between the mirrors was gradually 

varied from 1424 to 1552 nm with a step of 26 nm. The corresponding eigenmode energies 

varied from 2.1 to 2.3 eV covering the area of the maximum in the emission spectrum of the 

R6G. The resulted fluorescence spectra are shown in Fig. 5. 
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spectra in such a system. In the emission spectra of the R6G films placed in a tunable 

microcavity, a strong dependence of the polariton state energy on the distance between the 

mirrors of the microcavity, as well as clear anti-crossing behavior of two branches were 

demonstrated. By changing the cavity parameters, the polariton energy varied from 1.98 to 

2.35 eV while experimenting with one sample. A large Rabi splitting energy of up to 225 

meV was reached, which, we believe, is not the upper limit of this parameter. The achieved 

value of the Rabi splitting energy is bigger than the emission bandwidth of the R6G measured 

without a cavity, which fully satisfies the condition for a strong coupling regime. It is 

expected that significant enlargement can further be made by increasing the concentration 

R6G molecules. The demonstration of polariton emission from both the higher and the lower 

energy states in a tunable open access optical microcavity with a few micron distances 

between mirrors opens up great prospects. First of all, it is promising opportunity to use thick 

films placed in a microcavity, which can significantly increase the range of materials in which 

electronic transitions are strongly coupled to the cavity photons. The second valuable 

prospect is the feasibility to fabricate the versatile flow cell for a dynamic strong coupling of 

the transitions of molecules in a microfluidic channel. Such a system can be used for dynamic 

control of chemical reactions or highly effective bio- and chemical sensing in a flow cell. In 

addition, R6G is a widely used dye for lasing applications and with its electronic transitions 

being strongly coupled it can be used to create novel sources of exciton-polariton coherent 

spontaneous emission, as well as exciton-polariton lasers with a tunable emission wavelength. 
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