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Abstract

We present an overview of the general concepts of polaritonic chemistry with organic

molecules, i.e., the manipulation of chemical structure that can be achieved through

strong coupling between confined light modes and organic molecules. Strong coupling

and the associated formation of polaritons, hybrid light-matter excitations, leads to

energy shifts in such systems that can amount to a large fraction of the uncoupled

transition energy. This has recently been shown to significantly alter the chemical

structure of the coupled molecules, which opens the possibility to manipulate and

control reactions. We discuss the current state of theory for describing these changes and

present several applications, with a particular focus on the collective effects observed

when many molecules are involved in strong coupling.
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1 Introduction

When the coherent energy exchange between a confined light mode and a quantum emitter

becomes faster than the decay and decoherence of either constituent, the system enters into

the regime of strong coupling or vacuum Rabi splitting .1,2 The fundamental excitations of the

system are then polaritons, hybrid light-matter excitations. This requires a large (collective)

Rabi frequency ΩR ∝ µE1ph

√
N , where N is the number of involved emitters, µ is their

transition dipole moment, and E1ph ∝ V −1/2 is the electric field strength associated with

one photon in the light mode (with V its effective mode volume). The figure of merit for a

material is thus its dipole density µ2N/V , with organic materials presenting a particularly

favorable case due to their large dipole moments and high possible density. In addition,

the large binding energies of Frenkel excitons in organic materials make them stable at

room-temperature. This has allowed reaching the strong-coupling regime with a large variety

of electromagnetic (EM) modes,3 such as cavity photons,4–8 surface plasmon polaritons,9–12

surface lattice resonances,13,14 and localized surface plasmons.15,16 Typical Rabi frequencies

range from ≈ 100 meV to more than 1 eV, a significant fraction of the uncoupled transition

energy, for a wide range of organic materials such as dye molecules, J-aggregates, and even

carbon nanotubes.17,18 By using localized surface plasmon modes with extreme-subwavelength

light confinement, recent experiments have achieved strong coupling at room temperature

even down to the single-emitter level.19–21

The mixed light-matter character of organic polaritons enables a large number of inter-

esting applications (see Ref. 22 for a recent review discussing polaritonic devices, including

a comparison between organic and inorganic materials), such as polariton lasing and/or

Bose-Einstein condensation23–25 including nonlinear interactions,26 long-range excitation

transport,27–30 and nonlinear optical response.31,32

While organic molecules favor polariton formation, they are not simple two-level quantum

emitters, but rather have a complicated level structure including not only electronic excitations,

but also rovibrational degrees of freedom. Most microscopic models for strong coupling treat
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organic molecules as two-level systems (see Ref. 33 for a recent review), with some works

modeling rovibrational degrees of freedom using effective decay and dephasing rates,34

by allowing phonon-driven transitions between polaritons,35,36 or by explicitly including a

phononic degree of freedom37–39 and examining its influence on the polariton properties. In

2012, a pioneering experiment by the group of Thomas Ebbesen showed that strong coupling

could affect the rate of a photochemical reaction, photoisomerization from spiropyran to

merocyanine.40 Inspired by this result, polaritonic chemistry, i.e., the potential to manipulate

chemical structure and reactions through the formation of polaritons (hybrid light-matter

states) has become the topic of intense experimental41–44 and theoretical research45–56 in the

past few years.

In this article, we first present an overview over the general concepts and theory of

polaritonic chemistry with organic molecules, with some comparison of available theoretical

approaches, in section 2. Afterwards, we discuss some specific examples of modifying

photochemical reactions under single-molecule (section 3) and collective strong coupling

(section 4). Here, we also demonstrate a novel type of collective conical intersection involving

nuclear motion on separate molecules found within the dark states of the system, i.e., states

that are not coupled to the light modes within a two-level approximation. The bulk of the

article focuses on the single-excitation subspace that is relevant under linear response (i.e., not

too strong driving) and provides general insight into the properties of polaritonic chemistry.

However, in section 5, we discuss the double-excitation subspace and, in particular, examine

correlation and effective interaction effects between polaritons, and their possible influence

on chemical reactions.

2 General concepts

In this section, we present and extend the model for polaritonic chemistry that we developed

over the last few years.45,57,58 This fully quantum model describes a collection of organic
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molecules strongly coupled to a confined light mode. It combines the concepts of quantum

electrodynamics (QED), most notably quantized light modes, with those of quantum chemistry,

such as potential energy surfaces (PES) that determine molecular structure and nuclear

dynamics. This combination leads to the emergence of polaritonic PES (PoPES) determined

by the energies of hybrid light-matter excitations.

A general molecule is described by the Hamiltonian

Ĥmol = T̂n + Ĥe(~R), (1)

where T̂n is the kinetic energy operator for the nuclei, while Ĥe(~R) is the electronic Hamiltonian,

which contains all electronic contributions as well as the internuclear interaction, but only

depends parametrically on the nuclear degrees of freedom, ~R. Diagonalization of Ĥe(~R) yields

a set {Φk(~R)} of adiabatic electronic eigenstates, with Ĥe(~R)Φk(~R) = Vk(~R)Φk(~R), where

the Vk(~R) are the electronic PES. The so-called Born-Huang expansion consists in writing

the total system wavefunction in terms of this basis,

Ψ =
∑

k

χk(~R)Φk(~R), (2)

where the nuclear wavefunctions χk(~R) act as the expansion coefficients. Inserting this in the

Schrödinger equation leads to

(T̂n + Vk)χk(~R) +
∑

k′

Λ̂k,k′χk′(~R) = Eχk(~R), (3)

where the operator Λi,j = 〈Φi(~R)|T̂n|Φj(~R)〉 − T̂nδi,j accounts for nonadiabatic coupling

between electronic surfaces. These couplings become small for energetically well-separated

PES, such that molecular dynamics can often be understood by considering nuclear motion

on isolated PES and neglecting intersurface couplings, leading to the Born-Oppenheimer

approximation. However, nonadiabatic couplings do become relevant when different PES
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approach each other, especially close to conical intersections (points of degeneracy) which are

known to determine many photochemical processes. For a more detailed analysis, see59–63

and references therein.

We now extend the formalism discussed above to treat coupling of a collection of N

molecules to one or several quantized light modes. The corresponding Hamiltonian includes

a sum over bare-molecule Hamiltonians, the energy of the quantized light modes Ĥph, and

the interaction between the molecules and the light modes Ĥ
(i)
int(

~Ri). While they could be

included easily, for simplicity we assume that direct interactions between the molecules are

negligible. The total Hamiltonian is then given by

Ĥtot =
N
∑

i

T̂ (i)
n +

N
∑

i

Ĥ(i)
e (~Ri) + Ĥph +

N
∑

i

Ĥ
(i)
int(

~Ri). (4)

The Hamiltonian in this form is still completely general and can also be seen as an extension of

the well-known Dicke or Tavis-Cummings models64,65 to more complex emitters. It forms the

starting point for almost all treatments of strong light-matter coupling involving molecules.

For example, in the Holstein-Tavis-Cummings models,39,47,48,52,66,67 nuclear motion is assumed

to be described by harmonic oscillator potentials, which allows for trivial diagonalization of

the full bare-molecule Hamiltonian (usually restricted to a single nuclear degree of freedom),

and thus provides a convenient starting point for treatments of the strong-coupling regime.

Another approach consists in extending density functional theory to also include photonic

degrees of freedom, leading to quantum-electrodynamical density-functional theory.46,53,68,69

The main challenge for practical applications of this powerful idea is the development of

suitable functionals describing light-matter interaction based on the electron-photon density.

In a related approach, the so-called Cavity Born-Oppenheimer approximation, the photon

mode is described as a harmonic oscillator with “kinetic” and “potential” energy terms

(corresponding to the electric and magnetic energy, respectively), which are then grouped

with the corresponding molecular terms to obtain a Born-Oppenheimer description with an
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additional formal “nuclear” degree of freedom corresponding to the photonic mode.53,54

Finally, the approach we follow here is based on the similarity between Eq. (4) and Eq. (1),

and exploits that all contributions apart from the nuclear kinetic energy terms depend at

most parametrically on the nuclear degrees of freedom. This allows the definition of an

“electronic-photonic” Hamiltonian Ĥe−ph(~q) = Ĥtot −
∑N

i T̂
(i)
n , where ~q = (~R1, . . . , ~RN ) is the

vector describing all nuclear coordinates of all molecules. Diagonalization of Ĥe−ph(~q) then

yields an adiabatic basis formed by polaritonic PES (PoPES). In Ref. 45, we introduced and

explored this approach and the validity of performing the BOA within this setting, using a

first-principles quantum approach that fully accounts for the electronic, nuclear, and photonic

degrees of freedom on equal footing for a model molecule with restricted dimensionality.

This work demonstrated that the PoPES provide a useful picture in the strong coupling

regime, but that nonadiabatic effects can be important, especially for the upper excited

states (i.e., the “dark” states and the upper polariton). It also showed that it is possible to

diagonalize the electron-photon Hamiltonian in two stages, first for each molecule (e.g., using

the well-known tools of quantum chemistry, or by exploiting simple analytical models), and

then coupling only a relevant subset of states to the photonic modes.49–51,57,58 It should be

noted that in this approach, one obtains two types of nonadiabatic couplings between PoPES:

those induced by the light-matter interaction, as well as the bare-molecule nonadiabatic

couplings that have to be transformed into the new polaritonic basis. This formulation

also allows for a straightforward interface to existing quantum chemistry methods, which

can be used to calculate the bare-molecule structure at configuration ~Ri for each molecule

separately. The light-matter coupling can then be treated within a small Hamiltonian

involving only a few states per molecule, similarly as in existing excitonic models.70,71 This

effective decoupling between the “chemical” and “quantum optical” parts of the calculation

allows the use of well-known approaches such as QM/MM (quantum mechanics/molecular

mechanics) for treating big molecular systems.72 Here, nuclear motion on the PoPES is treated

classically, with nonadiabatic couplings introduced through surface hopping algorithms. The
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Figure 1: Conceptual potential energy surfaces for a single molecule and a light mode in (a)
weak coupling and (b,c) strong coupling for different coupling strengths. The color represents
the photonic fraction of the state from purely excitonic (orange) through polaritonic (light
gray) to purely photonic (purple).

straightforward parallelizability of this approach has allowed the treatment of up to 1,600

Rhodamine molecules (within the single-excitation subspace) and their surrounding solvent,

corresponding to 43,200 QM and 17,700,800 MM atoms in total, using 38,400 CPU cores

in parallel.72 However, this approach obviously requires considerable amounts of computing

time, and due to the classical treatment of nuclear motion, the PoPES are only calculated

“on the fly” and no structural information about the strongly coupled system is provided a

priori. In the following, we focus on the general properties of PoPES and design strategies

for achieving desired functionalities, based on simplified model molecules as in Refs. 57,58.

To demonstrate the general properties of PoPES, we first treat a minimal model involving

a single molecule with two electronic states and one nuclear degree of freedom. The bare

molecule is then characterized by its ground and excited PES, Vg(q) and Ve(q), respectively,

which we here take to be similar to typical bound and dissociative PESs of diatomic molecules

(blue and orange lines in Fig. 1a). We also assume that only the electronic transition

is coupled to the light mode, which suffices to describe molecular excited-state processes,

but cannot reproduce effects such as vibrational strong coupling.73–75 Finally, the coupling

to the electronic part is introduced within the dipole and rotating-wave approximations,

such that the total number of electronic and photonic excitations is conserved, but the

ultrastrong-coupling regime (where Rabi splittings become comparable to the transition
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energies) cannot be treated (see Ref. 56 for an application of PoPES to ultrastrong coupling).

The electronic-photonic part of the Hamiltonian then becomes

Ĥe−ph(q) = Vg(q) + V ′
e (q)σ̂

†σ̂ + ωcâ
†â+ ~E1ph · ~µeg(q)(â

†σ̂ + âσ̂†) (5)

where V ′
e (q) = Ve(q) − Vg(q) is the position-resolved ground-to-excited-state excitation

energy, σ̂ = |g〉〈e| is the molecular electronic transition operator, ωc is the confined photon

frequency, and â is the bosonic photon annihilation operator. The exciton-photon interaction

is determined by ~E1ph, the single-photon electric field strength of the confined light mode,

and ~µeg(q), the (configuration-dependent) electronic transition dipole moment between the

ground and excited states. Diagonalization of Ĥe−ph(q) then yields the adiabatic PoPES of

the coupled light-matter system.

When the coupling is negligible (Fig. 1a), two clearly distinguishable excited states

exist: the molecular exciton, characterized by the excitonic PES (orange line), and the state

corresponding to a photon in the light mode, with the molecule in its ground state (giving

a copy of the ground-state PES shifted up by the photon energy ωc, purple line). As the

coupling is increased (Fig. 1b,c), these two surfaces hybridize in regions close to resonance,

resulting in new polaritonic PES with mixed light-matter character, as codified by the color

scale measuring their photon component nph = 〈â†â〉, spanning from orange (bare exciton)

through light gray (polariton) to purple (bare photon). Already in this simple example,

it becomes clear that the PoPES have significantly different shapes than the PES of the

uncoupled system, i.e., that strong coupling can influence the molecular structure. In addition,

the presence of crossings between the two types of excited states in the uncoupled system

(which become higher-dimensional seams when more than one nuclear degree of freedom is

involved) immediately suggests that strong coupling could lead to the emergence of new,

cavity-induced nonadiabatic transitions and conical intersections.45,49,57 It should be noted

that these effects are strongly reminiscent of the changes in molecular structure observed
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under illumination with intense laser pulses.76–81 However, while these approaches rely on

the presence of many photons in the light field to achieve strong interactions, strong-coupling

induced modifications appear due to vacuum Rabi splitting, where the field associated with a

single photon becomes sufficiently strong to change the molecular structure even when no

external driving at all is present.

For simplicity, we have neglected dissipative processes such as decay and dephasing here

and in the following sections. For organic polaritons, these processes can either originate

from the molecules or from the photonic modes. In most current experiments, the photonic

modes show very fast decay, with typical lifetimes on the order of tens to hundreds of

femtoseconds.4,13,16,20,82 This is an intrinsic limitation in metallic structures (with strong

absorption in the visible), but can be mitigated somewhat by working at lower transition

frequencies in the near-infrared where metal reflectivities become larger.32 In contrast,

wavelength-scale dielectric structures such as Fabry-Perot or photonic crystal cavities can

in principle be engineered with long lifetimes on the order of tens of picoseconds,83,84 or

even above nanoseconds for whispering gallery mode resonators.85 Reactions in polaritonic

chemistry that rely on relatively long excited-state lifetimes could thus benefit from the use

of such photonic structures. Regarding the molecular part, the intra-molecular vibrational

degrees of freedom and interactions with the host or solvent typically lead to effects on a

variety of timescales, such as (essentially static) inhomogeneous broadening, but also relatively

fast vibrational relaxation, dephasing, and nonradiative decay through conical intersections,

with timescales on the order of hundreds of femtoseconds to picoseconds.60,61,86 However, these

processes take place on the PES of the system, and can thus in principle be described within

the framework of polaritonic chemistry (as, e.g., done in Ref. 72, where the solvent molecules

are represented through molecular mechanics, i.e., with interactions given by classical force

fields). The intrinsic linewidth of the PoPES is then given only by their (free-space) radiative

decay, which is determined by the dipole transition matrix element and leads to lifetimes

on the order of nanoseconds even for good emitters. Since the photonic contribution to the
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polariton decay depends strongly on the actual system, and the molecular contribution can in

principle be treated within the framework, we thus mostly neglect them in the current text,

which aims to give a general introduction to the concepts of polaritonic chemistry. However,

more detailed treatments of dissipation processes both in the photonic and in the molecular

parts of polaritonic systems will certainly be beneficial to a complete understanding of such

systems and in particular, the limitations of experimental implementations.

3 Single-molecule polaritonic chemistry

In the previous section, we introduced the concept of PoPES and showed the possibility

that strong coupling offers of influencing the excited-state energy landscapes of molecular

systems. In this section, we describe two examples of single-molecule strong coupling leading

to significantly modified chemical reaction dynamics. In addition to providing valuable insight

into the fundamental properties of polaritonic chemistry, single-molecule strong coupling has

recently entered the realm of experimental feasibility, with several experiments reporting

strong coupling down to the single-emitter level at room temperature within the last year.19–21

The two molecules we treat are again represented through restricted models describing

nuclear motion along a single reaction coordinate on two electronic PES. In the first case

(previously studied in Ref. 58), we demonstrate the possibility of significantly increasing the

quantum yield of a photochemical reaction, while in the second case (taken from Ref. 57),

we strongly suppress the reaction. In the first case, the bare-molecule level structure (shown

in Fig. 2a) is similar to that of molecules proposed for solar energy storage.87–89 It consists

of a ground state PES with two minima representing a stable and a metastable nuclear

configuration, respectively, as well as a relatively flat excited-state PES. In this model, the

excited-state minimum is energetically well-separated from the ground-state maximum, so

that nonadiabatic couplings are small and excited-state wavepackets survive long enough to

thermalize through interactions with low-frequency molecular vibrations and external bath
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Figure 2: Polaritonic potential energy surfaces of two model molecules in weak and strong
coupling. (a,c) Bare molecules without light-matter interaction. (c,d) Strongly coupled
molecules, with (b) ΩR = 0.3 eV and (d) ΩR = 0.5 eV (photon energy ωc = 2.65 eV in both
cases). The color scale is identical to Fig. 1.

modes, which happens on typical timescales of picoseconds. We study the back-reaction

(schematically indicated in Fig. 2a), with the molecule initially in the metastable left-hand

minimum (corresponding to stored vibrational energy of around 1 eV). Absorption of a photon

then creates a wavepacket at the same position on the electronically excited PES, from where

it relaxes to the local minimum. From there, it can decay (either radiatively or nonradiatively)

to the ground state. The ground-state nuclear wavepacket is then well-approximated by a

projection of the relaxed excited-state wavepacket onto the ground-state PES. In the further

propagation, this wavepacket splits, with roughly half (56%) returning to the metastable

isomer and half (44%) going to the stable isomer on the right-hand side. This corresponds to

a photochemical quantum yield of 0.44 for this energy-releasing back-reaction.

In Fig. 2b, we show the PoPES generated by bringing a single such molecule into strong

coupling with a quantized light mode. The lower-energy PoPES corresponds to a mix

between the ground-state-like photonically excited PES and the molecular excited PES,

with a minimum at the stable ground-state configuration. For the parameters chosen here,
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there are no barriers along the PoPES on the path from the metastable configuration to the

stable one. An excited wavepacket would thus vibrationally relax to this minimum, with its

character along the way changing from a polaritonic excitation at first to a mostly excitonic

one, then back to a polaritonic one, and finally to an almost purely photonic excitation.

The system would thus decay through radiative relaxation by emission of the photon with

very high probability, leaving the molecule in the stable configuration with a corresponding

reaction quantum yield approaching 100%. This phenomenon is described in Ref. 58 in more

detail, where it is also shown that under collective strong coupling, the process described here

can repeat multiple times in different molecules after just a single excitation, corresponding

to triggering a many-molecule reaction with just a single photon. The reaction quantum yield

then far exceeds unity, such that polaritonic chemistry could provide a strategy to overcome

the second law of photochemistry.90

Following our previous work,57 we next analyze a model molecule that undergoes rapid

isomerization after absorption of a photon. Photoisomerization is a class of photochemical

reactions of great importance in many biological systems,91,92 and is also relevant for an

extensive range of technological applications such as memories, switches, actuators, or

solar cells.93–95 We study a simplified model molecule that can represent a wide range of

photoisomerization reactions, such as cis-trans reactions in stilbene, azobenzene or rhodopsin

(rotations around C=C or N=N bonds), with an electronic structure depicted in Fig. 2c.

We again consider a single nuclear reaction coordinate, while orthogonal nuclear degrees

of freedom are considered to be fully relaxed. The ground state has two minima, each

representing one stable isomer, at q = q0 ≈ −1.05 a.u. and q ≈ 1 a.u. The system displays a

narrow avoided crossing at q ≈ 0 that allows for efficient nonadiabatic coupling between the

ground and excited PES, Vg(q) (blue line) and Ve(q) (orange line), respectively. The ground-

excited transition dipole moment has the shape µeg(q) ∝ arctan (q/qm), with qm = 0.625 a.u.,

in order to represent the sudden polarization effect occurring near nonadiabatic transitions,96

although the specific shape of µeg(q) does not strongly affect the results presented here.
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In the bare molecule, excitation from the left-hand (stable) ground-state minimum again

produces a nuclear wavepacket on the electronically excited PES, which in this case rapidly

reaches the narrow avoided crossing where it undergoes efficient nonradiative decay to the

ground-state PES and continues propagating to the right-hand side minimum of the ground

state. This process is very fast, with typical timescales of a few hundred femtoseconds.92

After bringing the system into strong coupling, this picture changes drastically. The lower

PoPES, being a mixture of the ground and excited-state surfaces, can be made to possess a

minimum close to the initial position, with a potential energy barrier preventing the initial

nuclear wavepacket motion towards the nonadiabatic crossing (see Fig. 2d). For this molecule,

it is thus possible to efficiently suppress a photochemical reaction through strong coupling. In

the next section, we discuss collective effects under strong coupling involving many molecules

and, in particular, demonstrate that these can lead to an even more efficient suppression of

photochemical reactions.

4 Collective effects

In this section, we treat the effects found when strong coupling is achieved through collective

coupling, i.e., the coherent interaction of many molecules with the same light mode. As

already discussed above, this leads to an electronic-photonic Hamiltonian that depends

parametrically on ~q = (~R1, . . . , ~RN), i.e., on the nuclear degrees of freedom of all involved

molecules. This general property is inherited by the associated PoPES, and implies that the

effective intermolecular interaction induced by strong coupling could lead to novel correlations

between nuclear motion on different molecules. Stated differently, collective strong coupling

can be seen as leading to the formation of a “supermolecule” spanning all coupled molecules. In

the following, we show that this indeed offers a range of new phenomena that further enhance

our ability to control the dynamics and chemistry of a molecular ensemble. In particular,

we will discuss the collective protection effect, one of the central features of collective strong
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coupling, in some detail.

For simplicity, we again assume that the molecules are described by only two electronic

states, and in addition we take all molecules to be coupled equally to the photonic mode.

The Hamiltonian is then a straightforward extension of Eq. (5) to include sums over the

molecules. Since we will study cuts where several molecules have the same configuration (e.g.,

we will assume that most molecules are in the equilibrium position), we can significantly

reduce the size of the associated Hilbert space by introducing collective spin operators64,97

Ŝα
+ =

Nα
∑

iα=1

σ̂†
iα

and Ŝα
− =

Nα
∑

iα=1

σ̂iα , (6)

where σ̂i correspond to the single-emitter operators for molecule i already used above and α

labels groups of molecules with the same configuration ~Riα ≡ ~Rα (with
∑

α Nα = N). The

single-molecule two-level operators are formally identical to spin-1/2 operators, such that the

collective operators Ŝα
± are spin-Nα/2 operators.97 We can thus extend Eq. (5) as

Ĥe−ph(~q) = VG(~q) +
∑

α

V ′
e (~Rα)n̂α + ωcâ

†â+ ~E1ph ·
∑

α

~µeg(~Rα)
(

â†Ŝα
− + âŜα

+

)

, (7)

where VG(~q) =
∑

i Vg(~Ri), and n̂α =
∑

iα
σ̂†
iα
σ̂iα = Ŝα

z + Nα/2 is the excitation number

operator for group α (with Ŝα
z the z-component of the collective spin operator). Since

the Hamiltonian now contains only collective molecular operators, the electronic-photonic

states can be expressed in the collective spin basis n̂α|nα〉 = nα|nα〉 (for convenience, we use

nα = mα +Nα/2 as the quantum number, where mα is the z-component of the spin), which

leads to a significant reduction of the Hilbert space. Within the single-excitation subspace,

the savings afforded by this approach are not essential unless N becomes very large, as

even the size of the “naive” molecular Hilbert space only scales linearly with N . However, if

more than one excitation is allowed (as we will discuss below in section 5), the size rapidly

explodes and the collective approach enables treatment of systems that would otherwise be

unreachable. For example, the full Hilbert space for the molecular part scales as 2N for the

14



q1

Energy N=5

(c)

q1

N=50

(d)q1
q 2

(a) Energy

q

Energy

(b) 1 2 3 4 5n

Figure 3: Collective dynamics in the single-excitation subspace. (a) Lowest excited two-
dimensional PoPES for motion of two molecules out of N = 50 molecules. (b) Lowest excited
PoPES for correlated simultaneous motion of n = 1, . . . , 5 molecules (for N = 50). (c,d)
Full PoPES for motion of one molecule for the case of (c) N = 5 molecules and (d) N = 50
molecules, with identical color scale as in Fig. 1.

“naive” approach, but as
∏

α(Nα + 1) when using collective states (the product of the Hilbert

spaces of spins Nα/2 with Nα + 1 distinct states). This savings comes from the fact that

the collective basis only includes bright states, superpositions of molecular excitations that

couple to the photonic mode, but excludes uncoupled dark states from the Hilbert space.

We start by analyzing collective strong coupling for the simple model molecule depicted in

Fig. 1, and restrict ourselves to the single-excitation subspace. We initially take a cut where 2

molecules move, with the remaining N − 2 molecules fixed in the equilibrium position qeq (the

minimum of the ground state PES Vg(q)). Fig. 3a shows the corresponding lowest excited

PoPES for N = 50 and Rabi frequency ΩR = 0.3 eV. Simple inspection already reveals that

globally, the lowest excited PoPES here is not an independent sum of single-particle potentials

VLP (q1, q2, . . .) 6=
∑

i vi(qi), i.e, that strong coupling implies some correlation between the

nuclear motion of different molecules.45 In addition, the chosen cut here shows a general

feature that aids in the analysis of these high-dimensional surfaces: While motion of only a
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single molecule at a time (dashed yellow line in Fig. 1a) only shows a small barrier towards

dissociation, motion of multiple molecules at the same time (green dashed line along the

diagonal in Fig. 3a) results in a high potential energy barrier. This can be understood

easily: There is only a single excitation in the system, such that motion for all but one

molecule proceeds along a ground-state like surface for all uncoupled states, which introduces

a barrier for deviations from the equilibrium position. This feature of the uncoupled states

is necessarily reflected also in the PoPES, and suppresses motion of several molecules at a

time. To confirm this, in Fig. 3b we show the lowest excited PoPES for concerted motion of

between 1 and 5 molecules, which very quickly leads to a significant barrier that increases

with the number of comoving molecules. This implies that for many typical molecules with

locally stable ground states, motion on the lowest excited PoPES after photon excitation

will proceed mostly along a cut corresponding to motion of a single molecule, significantly

simplifying the analysis.

We thus turn to the full excited-state spectrum, with motion restricted to just a single

molecule. The uncoupled excited-state surfaces then consist of N surfaces that follow the

ground-state PES along q1 (the photonically excited PES and N−1 surfaces where a molecule

at the equilibrium position is excited), as well as one surface where the moving molecule is

excited and the PES thus follows Ve(q1). In Fig. 3c,d, the resulting PoPES are shown for

N = 5 and N = 50 molecules, respectively (while keeping the Rabi frequency fixed). As in

Fig. 1, the color scale again encodes the excitonic/polaritonic/photonic nature of the state.

It can be seen that the polaritonic parts (in light gray) of the PoPES approximately follow

the shape of the ground state PES. This can be understood by the fact that in polaritonic

states, a single excitation is coherently distributed over all molecules and the light mode,

and nuclear motion is thus mostly determined by the ground-state PES. This effect can

be seen as a generalization of the so-called “polaron decoupling” found in Holstein-Tavis-

Cummings models39,48,52,66 (where nuclear degrees of freedom are restricted to harmonic

oscillator motion) to arbitrary PES. This effect is also well-known for molecular J- and
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H-aggregates, where an excitation is distributed over many molecules not due to coupling

with a confined light mode, but due to direct intermolecular interactions.98 As in molecular

aggregates, the similarity between the ground-state PES and the lowest excited PoPES also

implies that optical transition lineshapes should be significantly narrower compared to a bare

molecule due to the fact that the Franck-Condon factors become approximately diagonal

if the excited PoPES is ground-state-like in a large enough region around the equilibrium

position.

We next study the avoided crossing between a purely excitonic PES and a polaritonic

one that is seen for q1 slightly larger or smaller than the equilibrium position in Fig. 3c,d.

This avoided crossing is clearly seen to become much sharper as the number of molecules

is increased. The crossing occurs since the excited molecule has moved sufficiently to fall

out of resonance with the photonic mode, but then becomes resonant with the polariton

formed by the remaining N − 1 molecules and the photon. Using a diabatic basis based

on these ingredients reveals that the effective coupling becomes proportional to the single

molecule-photon coupling, which scales as ∼ N−1/2 for the chosen case of the collective Rabi

frequency being independent of N (corresponding to a molecular material with constant

density coupled to photonic modes with different effective mode volumes). This reduction

in coupling can be understood as the distributed excitation having to collapse onto a single

molecule, or equivalently by interpreting the polariton involving the N − 1 other molecules

as simply a shifted photonic mode coupling to the single-molecule exciton at this position.

In any case, this reduction in coupling constitutes the second aspect of collective protection

that stabilizes polaritonic excitations chemically. It should be noted, however, that while we

study motion of just one molecule here, the symmetries of the system dictate that any one of

the N molecules could move, partially offsetting the reduced coupling.

Finally, these considerations also suggest some general design principles for obtaining a

desired functionality through polaritonic chemistry. In particular, the excited-state PoPES

can be obtained by “cutting and pasting” ground-state-like (polaritonic) parts of the surface
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Figure 4: Collective protection effects: (a) PoPES for N = 50 molecules in strong coupling,
one of which can move while the rest are frozen in their equilibrium position. The inset shows
a zoom to the region where the effect of collective protection is most clearly seen. (b) Energy
barriers vs number of molecules for different values of Rabi splitting. The right axis shows
the equivalent lifetime predicted through transition state theory.

together with exciton-like parts, with the details determined by the coupling strength and

photonic mode frequency in addition to the bare-molecule structure.

4.1 Supressing photochemical reactions

In this section, we illustrate how it is possible to take advantage of the collective protection

effect to almost completely suppress a photoisomerization reaction, as first demonstrated in.57

We use the same molecular model as in Fig. 2c,d, but now for the case of N molecules coupled

to the same cavity mode. Fig. 4a shows the corresponding PoPES for N = 50 molecules,

again concentrating on motion of only one molecule with all others in the equilibrium position.

For the model considered here, the ground-state-like region of the lowest PoPES is sufficiently

extended to provide a well-defined local minimum with a significant potential energy barrier

∆E (see inset in Fig. 4a) towards the surface leading to isomerization. As discussed above,

optical excitation from the ground state to the lowest PoPES will mostly proceed to the

lowest vibrational state, so that initially no motion takes place. The wavepacket can then
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thermalize (on typical timescales of picoseconds at room temperature), with the lifetime for

passing over the barrier determined by the probability of gaining enough energy from the

bath to overcome the barrier. While a detailed calculation of this lifetime is outside the scope

of this paper, we here obtain an estimate based on transition state theory.99 This estimate

should be taken with some caution, as there are at least two features of the polaritonic system

considered here that differ from the situation treated by standard transition state theory:

For one, there is not just an energetic barrier that has to be overcome, but, as discussed

above, the top of the barrier corresponds to an increasingly narrow avoided crossing as N is

increased, with the splitting there scaling as 1/N . Within a diabatic picture, this corresponds

to a transition probability to the excitonic PES that also scales as 1/N . At the same time,

there is not a single barrier, but N identical barriers for motion of any one of the molecules

(with all others close to equilibrium). This gives an enhancement by a factor of N , and

the two effects discussed approximately cancel each other. We thus assume that transition

state theory provides a useful estimate of the excited state lifetime, which gives the following

relation between the energy barrier height ∆E of the potential well and the lifetime τ within

it:

τ ≈ h

kBT
exp

(

∆E

kBT

)

, (8)

where kBT ≈ 25.9 meV at room temperature. Under the condition that the photon frequency

is fixed to stay close to resonance at the equilibrium position, the barrier height in the lowest

PoPES depends on two parameters: the Rabi frequency and the number of molecules. Their

combined effect on ∆E is shown in Fig. 4b, which demonstrates that increasing N leads

to higher barriers, with the value saturating for a given Rabi splitting at around N = 100.

Alternatively, larger Rabi frequencies and the associated reduction in the minimum energy of

the lowest PoPES lead to effectively higher barriers and thus a more efficient suppression

of the photoisomerization reaction. The associated lifetimes (shown on the right axis in

Fig. 4b) range from about one picosecond to about 10 nanoseconds depending on parameters.

The final fate of an excited wavepacket will thus depend on the competition between two
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Figure 5: Zoom on the collective light-induced conical intersection between dark state PoPES
under motion of two molecules.

timescales: that of the vibrational wavepacket trapped inside the local potential well in the

lower PoPES, as well as that of the polaritonic state against relaxation, typically dominated

by the photonic fraction of the polariton. As discussed at the end of section 2, this can range

from tens of femtoseconds to picoseconds or more.

4.2 Dark-state collective conical intersections

As a second example of collective effects induced by strong coupling, we focus in more detail

on the mostly excitonic regions of the PoPES close to the bare-molecule excitation energy

at equilibrium. When all molecules are in the same configuration there are N − 1 so-called

“dark” states, superpositions that do not couple to the photonic mode, at the energy of

the bare exciton. When nuclear motion is considered, this corresponds to N − 1 PoPES

becoming degenerate exactly at this point, but these degeneracies are lifted for motion along

any nuclear degree of freedom. A zoom into the region close to the point of degeneracy is

shown in Fig. 5 for motion of two molecules. Here, the two sloped surfaces (green and red)

roughly correspond to motion of the single-molecule excited PES of each of the two molecules,

while the orange horizontal surface corresponds to the remaining N − 3 degenerate dark
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PES. Along the seams where this surface crosses the two sloped surfaces, N − 2 surfaces

are degenerate. The structure discussed here thus gives rise a to high-dimensional hierarchy

of hyperdimensional surfaces where between 2 and N − 1 PoPES become degenerate, i.e.,

conical intersection seams of different dimensionality.60,61,63

Here, it should be noted that these intersections do not correspond simply to intersections

of completely decoupled surfaces, but that they actually show non-zero coupling away from

the point of intersection (see, e.g., along the diagonal q1 = q2 in Fig. 5). This interaction is

due to the cavity, as the approximate dark states are not completely dark anymore if the

perfect degeneracy between emitters is lifted. At the same time, the very small coupling to

the cavity implies that the resultant electronic-photonic states are almost purely excitonic and

their intrinsic linewidth due to radiative decay is small, similar to the bare molecules (with

lifetimes on the order of nanoseconds), even within lossy cavities. One particularly interesting

detail here is that these conical intersections necessarily describe nuclear motion of spatially

separated molecules. They thus provide another example of collective strong coupling

inducing potentially nontrivial correlated nuclear dynamics between different molecules,

validating the concept of a “supermolecule” formed from all molecules through collective

strong coupling. It should also be noted that the occurrence of this structure is quite robust

against inhomogeneous broadening, i.e., energy shifts of the transition energies of the different

molecules. This just leads to slight shifts of the nuclear positions where the different molecular

PES become degenerate, but does not destroy the topology

5 PoPES in the two-excitation subspace

Up to now, we have only discussed the PoPES within the zero- and single-excitation subspace.

While this is the subspace probed under weak excitation (linear response) in experiment,

the nonlinear response of polaritonic systems is a topic of great current interest. It be-

comes relevant in, among others, transient absorption measurements,40,100 nonlinear optics
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Figure 6: PoPES up to the two-excitation subspace for the model molecule of Fig. 2(c,d).
The two color scales indicate the photon fraction in the single- and two-excitation subspace,
respectively.

setups,31,32,101 and studies of polariton lasing and condensation.13,23–26 We here focus on the

two-excitation subspace and investigate whether we still observe the collective protection

effect, and whether we observe any effective polariton-polariton interactions leading to corre-

lated motion. As in the rest of the manuscript, we neglect direct dipole-dipole interactions

between the molecules, such that saturation is the only source of nonlinearities or effective

polariton-polariton interactions (as typically observed in organic-based polaritonic systems

due to the localized nature of Frenkel excitons23). When the number of molecules is much

larger than the number of excitations, it is expected that the system bosonizes, i.e., that the

response becomes linear and polaritons become approximately independent of each other.102

However, it has recently been found that nonlinearities can survive even for surprisingly large

values of N under strong coupling conditions.103 As mentioned above, the use of collective

spin operators becomes essential for the computational treatment in this case, as it keeps

the problem easily tractable even for relatively large numbers of molecules (where a naive
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Figure 7: (a,b) Comparison of the PoPES in the double-excitation subspace for motion of
one molecule (red line) and two molecules (green line), and twice the lower PoPES in the
single-excitation subspace for motion of one molecule (orange dashed line), for N = 5 and
N = 100 coupled molecules, respectively. (c) Dependence of the energy barrier for double
photoisomerization with the number of molecules for the reaction paths corresponding to the
PoPES in (a,b).

approach would scale with N2).

We use the molecular model for which we found suppression of photochemical reactions

and calculate the PoPES for up to two excitations with N = 50, shown in Fig. 6. The large

number of surfaces seen in the two-excitation subspace can be approximately qualified within

an independent-particle picture (expected to be exact in the limit N → ∞), corresponding

to, for example, excitation of 2 lower polaritons, or one lower and one upper polariton. The

color scale within the two-excitation subspace again measures the photonic contribution to

each state, now spanning from 〈nph〉 = 0 (two excitons, dark orange) through dark gray (one

exciton, one photon) to 〈nph〉 = 2 (two photons, dark purple).

In the following, we will focus on the lowest PoPES within the two-excitation manifold,

which we label as V2LP (q1, q2, . . . , qN ) as it corresponds approximately to two lower polaritons

close to equilibrium. Note that for the two-state molecules considered here, isomerization after

double excitation (i.e., after absorption of two photons) in the uncoupled system corresponds

to two independent excitons on separate molecules, with motion proceeding on the surface

V2e(q1, q2) = Ve(q1) + Ve(q2). This implies that, in contrast to the single-excitation subspace,

concerted motion of two molecules (e.g., along q1 = q2) is not a priori suppressed under strong
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coupling. In the limit N → ∞, the lowest surface should again support independent motion,

but now on polaritonic surfaces. Consequently, a cut where only two molecules move should

approximately fulfill V2LP (q1, q2, qeq, . . . , qeq) ≈ VLP (q1) + VLP (q2).

This is studied in Fig. 7, which shows two cuts through V2LP , one in which only q1 is

varied (red solid line) and one in which q1 = q2 are varied together (green solid line). In

addition, it shows the independent-particle limit of 2VLP (q1) (dashed yellow line). In all three

cases, all remaining molecules are fixed to the equilibrium position. The plots are restricted to

the region of interest q . −0.5 a.u., with subplots showing the cases N = 5 (a) and N = 100

(b). For the case of N = 5 molecules, it is clearly visible that simultaneous motion of two

molecules has a slightly lower barrier than would be expected in the independent-particle limit

due to a noticeable blueshift around the equilibrium position, indicating saturation-induced

effective polariton-polariton interactions. These differences disappear for large enough N and

are barely visible for the case N = 100 shown in Fig. 7b.

In order to clearly distinguish whether simultaneous motion of several molecules is favored

compared to the independent-particle limit, we now directly compare the barrier heights for

two-molecule reactions for the different cases studied here in Fig. 7c. Each line corresponds

to the same case in Fig. 7a,b, with the difference that the energy barrier ∆E for motion

of one molecule in the two-excitation subspace has been multiplied by 2 for the sake of

comparison. As expected, all correlations disappear for large numbers of molecules, with the

barrier heights converging to the same value. However, even for a considerable number of

molecules such as N = 100 the correlations are non-negligible (remember that transition rates

depend exponentially on barrier height, Eq. (8)), suggesting that polaritonic chemistry could

possess subtle non-bosonic response even for mesoscopic numbers of molecules, similarly as

recently found for photon correlations.103 In particular, for the model studied here, the barrier

for simultaneous motion of two molecules after double excitation of the system V2LP (q1, q2) is

slightly smaller than expected from an independent-particle model (2VLP (q1)). Interestingly,

motion of just a single molecule in the two-excitation subspace is even less suppressed, with
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the barrier consistently less than twice as high. It should be noted that the subtle effects found

for the specific model discussed here will of course be challenging to measure experimentally,

but they could point a way towards more pronounced polariton-polariton interaction effects

in polaritonic chemistry.

6 Summary and Outlook

In conclusion, we have presented an overview of the theory of polaritonic chemistry under

strong light-matter coupling, based on the concept of polaritonic potential energy surfaces

(PoPES). For the experimentally most relevant case of collective strong coupling, the general

properties of “collective protection” lead to PoPES that can be understood to arise from

a “cut & paste” operation combining ground-state-like polaritonic and excited-state-like

excitonic surfaces. This implies a wide range of freedom for the design of novel surfaces,

allowing to manipulate the photophysics and photochemistry of the involved molecules. We

illustrated these concepts using several examples on the single-molecule and many-molecule

level, and furthermore demonstrated a high-dimensional nested structure of collective conical

intersections with varying amount of degeneracy induced in the dark states of the system.

Finally, we showed that under multiple excitation, saturation effects leading to effective

polariton-polariton interactions can influence the molecular dynamics, with correlations and

deviations from an independent-particle picture even for relatively large numbers of molecules.

We expect that over the next few years, the potential of polaritonic chemistry will be

further explored. In particular, there is a need for more experiments to verify and challenge

the existing theoretical predictions. In terms of theory, there are several initiatives underway

to allow the treatment of more and more complex systems, which should also allow easier

comparison to forthcoming experiments. In the long term, a goal of the field will certainly be

to investigate the use and applicability of polaritonic chemistry for practical applications.

Such applications could include the catalysis of reactions for which no conventional catalyst
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is known, or to do so cheaper and/or with less pollution than conventional catalysts. Another

possible application is in future (room-temperature) quantum technologies exploiting the

hybrid light-matter nature of organic polaritons, where the tools of polaritonic chemistry

could help in controlling and tuning the properties of the polaritons, and possibly even to

exploit chemical reaction dynamics for quantum technology applications.

Acknowledgement

This work has been funded by the European Research Council under grant agreements

ERC-2011-AdG-290981 and ERC-2016-STG-714870, by the European Union Seventh Frame-

work Programme under grant agreement FP7-PEOPLE-2013-CIG-618229, and the Spanish

MINECO under contract MAT2014-53432-C5-5-R and the “María de Maeztu” program for

Units of Excellence in R&D (MDM-2014-0377).

References

(1) Thompson, R. J.; Rempe, G.; Kimble, H. J. Observation of normal-mode splitting for

an atom in an optical cavity. Phys. Rev. Lett. 1992, 68, 1132.

(2) Weisbuch, C.; Nishioka, M.; Ishikawa, A.; Arakawa, Y. Observation of the coupled

exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev.

Lett. 1992, 69, 3314.

(3) Törmä, P.; Barnes, W. L. Strong coupling between surface plasmon polaritons and

emitters: a review. Rep. Prog. Phys. 2015, 78, 013901.

(4) Lidzey, D. G.; Bradley, D. D. C.; Skolnick, M. S.; Virgili, T.; Walker, S.; Whittaker, D. M.

Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 1998,

395, 53.

26



(5) Lidzey, D. G.; Bradley, D. D. C.; Armitage, A.; Walker, S.; Skolnick, M. S. Photon-

Mediated Hybridization of Frenkel Excitons in Organic Semiconductor Microcavities.

Science 2000, 288, 1620.

(6) Kéna-Cohen, S.; Davanço, M.; Forrest, S. R. Strong Exciton-Photon Coupling in an

Organic Single Crystal Microcavity. Phys. Rev. Lett. 2008, 101, 116401.

(7) Schwartz, T.; Hutchison, J. A.; Genet, C.; Ebbesen, T. W. Reversible Switching of

Ultrastrong Light-Molecule Coupling. Phys. Rev. Lett. 2011, 106, 196405.

(8) Kéna-Cohen, S.; Maier, S. A.; Bradley, D. D. C. Ultrastrongly Coupled Exciton-

Polaritons in Metal-Clad Organic Semiconductor Microcavities. Adv. Opt. Mater.

2013, 1, 827.

(9) Bellessa, J.; Bonnand, C.; Plenet, J. C.; Mugnier, J. Strong Coupling between Surface

Plasmons and Excitons in an Organic Semiconductor. Phys. Rev. Lett. 2004, 93,

036404.

(10) Dintinger, J.; Klein, S.; Bustos, F.; Barnes, W. L.; Ebbesen, T. W. Strong coupling

between surface plasmon-polaritons and organic molecules in subwavelength hole arrays.

Phys. Rev. B 2005, 71, 035424.

(11) Hakala, T. K.; Toppari, J. J.; Kuzyk, A.; Pettersson, M.; Tikkanen, H.; Kunttu, H.;

Törmä, P. Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon

Polaritons and Rhodamine 6G Molecules. Phys. Rev. Lett. 2009, 103, 053602.

(12) Vasa, P.; Pomraenke, R.; Cirmi, G.; De Re, E.; Wang, W.; Schwieger, S.; Leipold, D.;

Runge, E.; Cerullo, G.; Lienau, C. Ultrafast Manipulation of Strong Coupling in

Metal-Molecular Aggregate Hybrid Nanostructures. ACS Nano 2010, 4, 7559.

(13) Rodriguez, S. R. K.; Feist, J.; Verschuuren, M. A.; García Vidal, F. J.; Gómez Ri-

27



vas, J. Thermalization and Cooling of Plasmon-Exciton Polaritons: Towards Quantum

Condensation. Phys. Rev. Lett. 2013, 111, 166802.

(14) Väkeväinen, A. I.; Moerland, R. J.; Rekola, H. T.; Eskelinen, A.-P.; Martikainen, J.-P.;

Kim, D.-H.; Törmä, P. Plasmonic Surface Lattice Resonances at the Strong Coupling

Regime. Nano Lett. 2014, 14, 1721.

(15) Baudrion, A. L.; Perron, A.; Veltri, A.; Bouhelier, A.; Adam, P. M.; Bachelot, R.

Reversible strong coupling in silver nanoparticle arrays using photochromic molecules.

Nano Lett. 2013, 13, 282.

(16) Zengin, G.; Wersäll, M.; Nilsson, S.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Realizing

Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular

Excitons at Ambient Conditions. Phys. Rev. Lett. 2015, 114, 157401.

(17) Graf, A.; Tropf, L.; Zakharko, Y.; Zaumseil, J.; Gather, M. C. Near-infrared exciton-

polaritons in strongly coupled single-walled carbon nanotube microcavities. Nat. Com-

mun. 2016, 7, 13078.

(18) Zakharko, Y.; Graf, A.; Zaumseil, J. Plasmonic Crystals for Strong Light–Matter

Coupling in Carbon Nanotubes. Nano Lett. 2016, 16, 6504.

(19) Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a

plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, 11823.

(20) Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.;

Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling

at room temperature in plasmonic nanocavities. Nature 2016, 535, 127.

(21) Liu, R.; Zhou, Z.-K.; Yu, Y.-C.; Zhang, T.; Wang, H.; Liu, G.; Wei, Y.; Chen, H.;

Wang, X.-H. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities

at the Quantum Optics Limit. Phys. Rev. Lett. 2017, 118, 237401.

28



(22) Sanvitto, D.; Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 2016,

15, 1061.

(23) Kéna-Cohen, S.; Forrest, S. R. Room-temperature polariton lasing in an organic

single-crystal microcavity. Nat. Phot. 2010, 4, 371.

(24) Plumhof, J. D.; Stöferle, T.; Mai, L.; Scherf, U.; Mahrt, R. F. Room-temperature

Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater.

2013, 13, 247.

(25) Ramezani, M.; Halpin, A.; Fernández-Domínguez, A. I.; Feist, J.; Rodriguez, S. R.-K.;

Garcia-Vidal, F. J.; Gómez Rivas, J. Plasmon-exciton-polariton lasing. Optica 2017,

4, 31.

(26) Daskalakis, K. S.; Maier, S. A.; Murray, R.; Kéna-Cohen, S. Nonlinear interactions in

an organic polariton condensate. Nat. Mater. 2014, 13, 271.

(27) Feist, J.; Garcia-Vidal, F. J. Extraordinary Exciton Conductance Induced by Strong

Coupling. Phys. Rev. Lett. 2015, 114, 196402.

(28) Gonzalez-Ballestero, C.; Feist, J.; Moreno, E.; Garcia-Vidal, F. J. Harvesting excitons

through plasmonic strong coupling. Phys. Rev. B 2015, 92, 121402(R).

(29) Gonzalez-Ballestero, C.; Moreno, E.; Garcia-Vidal, F. J.; Gonzalez-Tudela, A. Non-

reciprocal few-photon routing schemes based on chiral waveguide-emitter couplings.

Phys. Rev. A 2016, 94, 063817.

(30) Lerario, G.; Ballarini, D.; Fieramosca, A.; Cannavale, A.; Genco, A.; Mangione, F.;

Gambino, S.; Dominici, L.; De Giorgi, M.; Gigli, G.; Sanvitto, D. High-speed flow of

interacting organic polaritons. Light Sci. Appl. 2017, 6, e16212.

(31) Barachati, F.; De Liberato, S.; Kéna-Cohen, S. Generation of Rabi-frequency radiation

using exciton-polaritons. Phys. Rev. A 2015, 92, 033828.

29



(32) Barachati, F.; Simon, J.; Getmanenko, Y. A.; Barlow, S.; Marder, S. R.; Kéna-Cohen, S.

Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime.

arXiv:1703.08536

(33) Michetti, P.; Mazza, L.; La Rocca, G. C. In Organic Nanophotonics ; Zhao, Y. S., Ed.;

Nano-Optics and Nanophotonics; Springer: Berlin, Heidelberg, 2015; p 39.

(34) González-Tudela, A.; Huidobro, P. A.; Martín-Moreno, L.; Tejedor, C.; García-

Vidal, F. J. Theory of Strong Coupling between Quantum Emitters and Propagating

Surface Plasmons. Phys. Rev. Lett. 2013, 110, 126801.

(35) Litinskaya, M.; Reineker, P.; Agranovich, V. M. Fast polariton relaxation in strongly

coupled organic microcavities. J. Lumin. 2004, 110, 364.

(36) Mazza, L.; Kéna-Cohen, S.; Michetti, P.; La Rocca, G. C. Microscopic theory of

polariton lasing via vibronically assisted scattering. Phys. Rev. B 2013, 88, 075321.

(37) Ćwik, J. A.; Reja, S.; Littlewood, P. B.; Keeling, J. Polariton condensation with

saturable molecules dressed by vibrational modes. EPL 2014, 105, 47009.

(38) Canaguier-Durand, A.; Genet, C.; Lambrecht, A.; Ebbesen, T. W.; Reynaud, S. Non-

Markovian polariton dynamics in organic strong coupling. Eur. Phys. J. D 2015, 69,

24.

(39) Spano, F. C. Optical microcavities enhance the exciton coherence length and eliminate

vibronic coupling in J-aggregates. J. Chem. Phys. 2015, 142, 184707.

(40) Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying

Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chemie 2012, 124, 1624.

(41) Wang, S.; Mika, A.; Hutchison, J. A.; Genet, C.; Jouaiti, A.; Hosseini, M. W.; Ebbe-

sen, T. W. Phase transition of a perovskite strongly coupled to the vacuum field.

Nanoscale 2014, 6, 7243.

30



(42) Zeng, P.; Cadusch, J.; Chakraborty, D.; Smith, T. A.; Roberts, A.; Sader, J. E.;

Davis, T. J.; Gómez, D. E. Photoinduced Electron Transfer in the Strong Coupling

Regime: Waveguide–Plasmon Polaritons. Nano Lett. 2016, 16, 2651.

(43) Ebbesen, T. W. Hybrid Light–Matter States in a Molecular and Material Science

Perspective. Acc. Chem. Res. 2016, 49, 2403.

(44) Baieva, S.; Hakamaa, O.; Groenhof, G.; Heikkilä, T. T.; Toppari, J. J. Dynamics

of Strongly Coupled Modes between Surface Plasmon Polaritons and Photoactive

Molecules: The Effect of the Stokes Shift. ACS Photonics 2017, 4, 28.

(45) Galego, J.; Garcia-Vidal, F. J.; Feist, J. Cavity-Induced Modifications of Molecular

Structure in the Strong-Coupling Regime. Phys. Rev. X 2015, 5, 041022.

(46) Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio, A. Kohn–Sham approach to quantum

electrodynamical density-functional theory: Exact time-dependent effective potentials

in real space. Proc. Natl. Acad. Sci. 2015, 112, 15285.

(47) Ćwik, J. A.; Kirton, P.; De Liberato, S.; Keeling, J. Excitonic spectral features in

strongly coupled organic polaritons. Phys. Rev. A 2016, 93, 033840.

(48) Herrera, F.; Spano, F. C. Cavity-Controlled Chemistry in Molecular Ensembles. Phys.

Rev. Lett. 2016, 116, 238301.

(49) Kowalewski, M.; Bennett, K.; Mukamel, S. Non-adiabatic dynamics of molecules in

optical cavities. J. Chem. Phys. 2016, 144, 054309.

(50) Kowalewski, M.; Bennett, K.; Mukamel, S. Cavity Femtochemistry: Manipulating

Nonadiabatic Dynamics at Avoided Crossings. J. Phys. Chem. Lett. 2016, 7, 2050.

(51) Bennett, K.; Kowalewski, M.; Mukamel, S. Novel photochemistry of molecular polaritons

in optical cavities. Faraday Discuss. 2016, 194, 259.

31



(52) Zeb, M. A.; Kirton, P. G.; Keeling, J. Exact spectral properties of vibrationally dressed

polaritons. arXiv:1608.08929

(53) Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio, A. Atoms and molecules in cavities,

from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc.

Natl. Acad. Sci. 2017, 114, 3026.

(54) Flick, J.; Appel, H.; Ruggenthaler, M.; Rubio, A. Cavity Born–Oppenheimer Approxi-

mation for Correlated Electron–Nuclear-Photon Systems. J. Chem. Theory Comput.

2017, 13, 1616.

(55) Kowalewski, M.; Mukamel, S. Manipulating molecules with quantum light. Proc. Natl.

Acad. Sci. 2017, 114, 3278.

(56) Martínez-Martínez, L. A.; Ribeiro, R. F.; Campos-González-Angulo, J.; Yuen-Zhou, J.

Can ultrastrong coupling change ground-state chemical reactions? arXiv:1705.10655

(57) Galego, J.; Garcia-Vidal, F. J.; Feist, J. Suppressing photochemical reactions with

quantized light fields. Nat. Commun. 2016, 7, 13841.

(58) Galego, J.; Garcia-Vidal, F. J.; Feist, J. Many-molecule reaction triggered by a single

photon in polaritonic chemistry. arXiv:1704.07261

(59) Domcke, W., Yarkony, D. R., Köppel, H., Eds. Conical Intersections: Electronic

Structure, Dynamics and Spectroscopy ; Advanced Series in Physical Chemistry; World

Scientific Publishing Co. Pte. Ltd., 2004; Vol. 15.

(60) Worth, G. A.; Cederbaum, L. S. Beyond Born-Oppenheimer: Molecular Dynamics

Through a Conical Intersection. Annu. Rev. Phys. Chem. 2004, 55, 127.

(61) Levine, B. G.; Martínez, T. J. Isomerization Through Conical Intersections. Annu.

Rev. Phys. Chem. 2007, 58, 613.

32



(62) Tully, J. C. Perspective: Nonadiabatic dynamics theory. J. Chem. Phys. 2012, 137,

22A301.

(63) Domcke, W.; Yarkony, D. R. Role of Conical Intersections in Molecular Spectroscopy

and Photoinduced Chemical Dynamics. Annu. Rev. Phys. Chem. 2012, 63, 325.

(64) Dicke, R. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93, 99.

(65) Tavis, M.; Cummings, F. W. Exact solution for an N-molecule-radiation-field Hamilto-

nian. Phys. Rev. 1968, 170, 379.

(66) Wu, N.; Feist, J.; Garcia-Vidal, F. J. When polarons meet polaritons: Exciton-vibration

interactions in organic molecules strongly coupled to confined light fields. Phys. Rev.

B 2016, 94, 195409.

(67) Herrera, F.; Spano, F. C. Dark Vibronic Polaritons and the Spectroscopy of Organic

Microcavities. Phys. Rev. Lett. 2017, 118, 223601.

(68) Tokatly, I. V. Time-Dependent Density Functional Theory for Many-Electron Systems

Interacting with Cavity Photons. Phys. Rev. Lett. 2013, 110, 233001.

(69) Ruggenthaler, M.; Flick, J.; Pellegrini, C.; Appel, H.; Tokatly, I. V.; Rubio, A. Quantum-

electrodynamical density-functional theory: Bridging quantum optics and electronic-

structure theory. Phys. Rev. A 2014, 90, 012508.

(70) Sisto, A.; Glowacki, D. R.; Martinez, T. J. Ab Initio Nonadiabatic Dynamics of

Multichromophore Complexes: A Scalable Graphical-Processing-Unit-Accelerated

Exciton Framework. Acc. Chem. Res. 2014, 47, 2857.

(71) Sisto, A.; Stross, C.; van der Kamp, M. W.; O’Connor, M.; McIntosh-Smith, S.;

Johnson, G. T.; Hohenstein, E. G.; Manby, F. R.; Glowacki, D. R.; Martinez, T. J.

Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab

initio exciton model. Phys. Chem. Chem. Phys. 2017, 19, 14924.

33



(72) Luk, H. L.; Feist, J.; Toppari, J. J.; Groenhof, G. Multiscale Molecular Dy-

namics Simulations of Polaritonic Chemistry. J. Chem. Theory Comput. 2017,

10.1021/acs.jctc.7b00388.

(73) Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T. W.

Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun.

2015, 6, 5981.

(74) Simpkins, B. S.; Fears, K. P.; Dressick, W. J.; Spann, B. T.; Dunkelberger, A. D.;

Owrutsky, J. C. Spanning Strong to Weak Normal Mode Coupling between Vibrational

and Fabry–Pérot Cavity Modes through Tuning of Vibrational Absorption Strength.

ACS Photonics 2015, 2, 1460.

(75) del Pino, J.; Feist, J.; Garcia-Vidal, F. J. Quantum theory of collective strong coupling

of molecular vibrations with a microcavity mode. New J. Phys. 2015, 17, 053040.

(76) Bucksbaum, P. H.; Zavriyev, A.; Muller, H. G.; Schumacher, D. W. Softening of the

H+
2 molecular bond in intense laser fields. Phys. Rev. Lett. 1990, 64, 1883.

(77) Frasinski, L. J.; Posthumus, J. H.; Plumridge, J.; Codling, K.; Taday, P. F.; Lang-

ley, A. J. Manipulation of Bond Hardening in H+
2 by Chirping of Intense Femtosecond

Laser Pulses. Phys. Rev. Lett. 1999, 83, 3625.

(78) Sussman, B. J.; Townsend, D.; Ivanov, M. Y.; Stolow, A. Dynamic Stark Control of

Photochemical Processes. Science 2006, 314, 278.

(79) Moiseyev, N.; Šindelka, M.; Cederbaum, L. S. Laser-induced conical intersections in

molecular optical lattices. J. Phys. B 2008, 41, 221001.

(80) Demekhin, P. V.; Cederbaum, L. S. Light-induced conical intersections in polyatomic

molecules: General theory, strategies of exploitation, and application. J. Chem. Phys.

2013, 139, 154314.

34



(81) Corrales, M. E.; González-Vázquez, J.; Balerdi, G.; Solá, I. R.; de Nalda, R.; Bañares, L.

Control of ultrafast molecular photodissociation by laser-field-induced potentials. Nat.

Chem. 2014, 6, 785.

(82) Schwartz, T.; Hutchison, J. A.; Léonard, J.; Genet, C.; Haacke, S.; Ebbesen, T. W.

Polariton Dynamics under Strong Light-Molecule Coupling. ChemPhysChem 2013,

14, 125.

(83) Velha, P.; Picard, E.; Charvolin, T.; Hadji, E.; Rodier, J.; Lalanne, P.; Peyrade, D.

Ultra-High Q/V Fabry-Perot microcavity on SOI substrate. Opt. Express 2007, 15,

16090.

(84) Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. High-Q photonic nanocavity in a

two-dimensional photonic crystal. Nature 2003, 425, 944.

(85) Spillane, S. M.; Kippenberg, T. J.; Vahala, K. J. Ultralow-threshold Raman laser using

a spherical dielectric microcavity. Nature 2002, 415, 621.

(86) May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems;

Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.

(87) Kucharski, T. J.; Tian, Y.; Akbulatov, S.; Boulatov, R. Chemical solutions for the

closed-cycle storage of solar energy. Energy Environ. Sci. 2011, 4, 4449.

(88) Cacciarini, M.; Skov, A. B.; Jevric, M.; Hansen, A. S.; Elm, J.; Kjaergaard, H. G.;

Mikkelsen, K. V.; Brøndsted Nielsen, M. Towards Solar Energy Storage in the Pho-

tochromic Dihydroazulene-Vinylheptafulvene System. Chem. Eur. J 2015, 21, 7454.

(89) Gurke, J.; Quick, M.; Ernsting, N. P.; Hecht, S. Acid-catalysed thermal cycloreversion

of a diarylethene: a potential way for triggered release of stored light energy? Chem.

Commun. 2017, 53, 2150.

35



(90) Rohatgi-Mukherjee, K. K. Fundamentals of photochemistry ; New Age International,

2013; p 370.

(91) Yoshizawa, T.; Wald, G. Pre-Lumirhodopsin and the Bleaching of Visual Pigments.

Nature 1963, 197, 1279.

(92) Polli, D.; Altoè, P.; Weingart, O.; Spillane, K. M.; Manzoni, C.; Brida, D.; Tomasello, G.;

Orlandi, G.; Kukura, P.; Mathies, R. A.; Garavelli, M.; Cerullo, G. Conical intersection

dynamics of the primary photoisomerization event in vision. Nature 2010, 467, 440.

(93) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene

Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114,

12174.

(94) Guentner, M.; Schildhauer, M.; Thumser, S.; Mayer, P.; Stephenson, D.; Mayer, P. J.;

Dube, H. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor.

Nat. Commun. 2015, 6, 8406.

(95) Zietz, B.; Gabrielsson, E.; Johansson, V.; El-Zohry, A. M.; Sun, L.; Kloo, L. Photoiso-

merization of the cyanoacrylic acid acceptor group – a potential problem for organic

dyes in solar cells. Phys. Chem. Chem. Phys. 2014, 16, 2251.

(96) Bonačić-Koutecký, V.; Bruckmann, P.; Hiberty, P.; Koutecký, J.; Leforestier, C.;

Salem, L. Sudden Polarization in the Zwitterionic Z1 Excited States of Organic

Intermediates. Photochemical Implications. Angew. Chem. Int. Ed. 1975, 14, 575.

(97) Garraway, B. M. The Dicke model in quantum optics: Dicke model revisited. Philos.

Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 1137.

(98) Kasha, M. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular

Aggregates. Radiat. Res. 1963, 20, 55.

36



(99) Eyring, H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3,

107.

(100) Virgili, T.; Coles, D.; Adawi, A. M.; Clark, C.; Michetti, P.; Rajendran, S. K.; Brida, D.;

Polli, D.; Cerullo, G.; Lidzey, D. G. Ultrafast polariton relaxation dynamics in an

organic semiconductor microcavity. Phys. Rev. B 2011, 83, 2.

(101) Gubbin, C. R.; De Liberato, S. Theory of Nonlinear Polaritonics: χ(2) Scattering on a

β-SiC Surface. ACS Photonics 2017, 4, 1381.

(102) Holstein, T.; Primakoff, H. Field Dependence of the Intrinsic Domain Magnetization

of a Ferromagnet. Phys. Rev. 1940, 58, 1098.

(103) Sáez-Blázquez, R.; Feist, J.; Fernández-Domínguez, A. I.; García-Vidal, F. J. Enhancing

Photon Correlations through Plasmonic Strong Coupling. arXiv:1701.08964

37



Graphical TOC Entry

38




