
PHYSICAL REVIEW RESEARCH 2, 023262 (2020)

Polaritonic coupled-cluster theory
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We develop coupled-cluster theory for systems of electrons strongly coupled to photons, providing a promising

theoretical tool in polaritonic chemistry with a perspective of application to all types of fermion-boson

coupled systems. We show benchmark results for model molecular Hamiltonians coupled to cavity photons.

By comparing to full configuration interaction results for various ground-state properties and optical spectra, we

demonstrate that our method captures all key features present in the exact reference, including Rabi splittings

and multiphoton processes. Furthermore, a path on how to incorporate our bosonic extension of coupled-cluster

theory into existing quantum chemistry programs is given.
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I. INTRODUCTION

In recent years seminal experiments at the interface be-

tween quantum optics, quantum chemistry, and material sci-

ences have shown that when photons and matter couple

strongly the emergence of light-matter hybrid states, called

polaritons, can substantially change chemical and physical

properties of molecular systems [1–9]. This has led to the

observation of changes in chemical reactions [10,11], suppres-

sion of photon degradation and photobleaching [12,13], tun-

able third-harmonic generation from polaritons [14], room-

temperature superfluidity in a polariton condensate [15], or

modifications of intersystem crossings [16]. While experi-

mentally the influence of strong coupling on matter, e.g., due

to placing molecules inside a cavity or plasmonic nanostruc-

ture, has been firmly established, theoretical approaches to

describe situations where photonic, electronic, and nuclear

degrees of freedom become strongly mixed so far do not

provide a detailed and general explanation of the observed

effects [17–20].

Although many observations can be described by problem-

adopted quantum-optical models [21–28], ab initio methods

are necessary for a detailed and unbiased understanding of

the effects [17,29,30]. To this aim, some electronic struc-

ture methods have already been extended to include the

photons explicitly [30–39] with quantum-electrodynamical

density functional theory (QEDFT) being one of the most
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prominent approaches [29,40–43]. While being formally ex-

act, QEDFT relies on development of accurate and robust ap-

proximate functionals, which is especially challenging in case

of significant correlation effects [44] and strong matter-cavity

couplings [45].

When reliability and accuracy is concerned, coupled-

cluster (CC) theory [46–49] has become the method of choice

in quantum chemistry. This wave-function method provides a

hierarchy of approximations with truncation based on excita-

tion order from a mean-field reference state. Size-consistent

and size-extensive molecular electronic energies, as well as

other ground and excited-state properties, can be calculated

with chemical accuracy [50]. This makes an extension of CC

theory to the case of strong matter-photon coupling highly

desirable. Fortunately, there is nothing intrinsic in CC the-

ory that imposes a restriction to purely electronic problems.

The requirements for a computationally tractable CC theory

can be satisfied for bosonic degrees of freedom as well, as

demonstrated by pioneering applications to molecular vibra-

tions [51].

In this article we develop the theoretical framework for

CC calculations on systems of interacting electrons coupled

to photons, and illustrate the potential of such an approach

to describe the behavior of matter strongly coupled to cavity

modes with a computational cost that scales polynomially

with problem size.

II. METHOD

We consider fixed-nucleus molecular Hamiltonians cou-

pled to a cavity in the dipole limit and in the length gauge

[52–54]

Ĥ = Ĥe +
∑

α

ωc,α â†
α âα + γαωc,α d̂ (â†

α + âα ) + γ 2
α ωc,α d̂2,

(1)
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where Ĥe is the electronic Hamiltonian, â(†)
α are the creation

and annihilation operators for a cavity mode with frequency

ωc, α , and d̂ is the electronic dipole operator. The coupling

parameter γα tunes the strength of the light-matter interaction;

here we focus mostly on cases where γα > 0.05, where the

system is typically considered to be in the strong-coupling

regime [19,31]. The theory can be extended to more general

light-matter Hamiltonians [17,29,52,53] in a straight-forward

manner.

CC theory is based on an exponential ansatz for the ground-

state wave function

∣∣�CC
0

〉
= eT̂ |�0〉, (2)

where |�0〉 is an uncorrelated reference state (usually Hartree-

Fock) and T̂ is the cluster operator. The cluster operator is a

weighted sum of excitation operators

T̂ =
∑

μ

tμτ̂μ, (3)

where μ labels a general excitation in the system, and the

tμ amplitudes are to be determined. The exponential form

makes the CC state multiplicatively separable, introducing the

fundamental feature of size extensivity. It also has the property

that even when the cluster operator is truncated to include only

low-order excitations, higher-order effects are incorporated

through the expansion of the exponential of T̂ .

Standard CC theories are classified by the number of

electrons excited in the list of operators τμ. For example, the

method that includes all single and double excitations is called

CC singles and doubles (CCSD). The excitation operators

are written in terms of fermionic creation and annihilation

operators ĉ(†), e.g., the operator τ̂ a
i = ĉ†

aĉi excites an electron

from occupied orbital i to unoccupied orbital a.

The amplitudes and the ground-state energy are obtained

through projected equations

〈�0| ˆ̄H |�0〉 = E0, 〈�μ| ˆ̄H |�0〉 = 0, (4)

where |�μ〉 = τ̂μ|�0〉 and ˆ̄H is the similarity-transformed

Hamiltonian e−T̂ ĤeT̂ . The polynomial scaling of the theory

is attributed to the fact that usually a polynomial number of

excitation operators enters T̂ and that the Baker-Campbell-

Hausdorff expansion of ˆ̄H truncates [48]. The latter condi-

tion is met when excitation operators are commutative and

nilpotent. Hence, there is nothing special about electrons in

the formulation and CC theory can be applied to general

many-particle systems.

The natural excitation operator for a bosonic mode is

simply the creation operator â†, but the lack of nilpotency

[(â†)2 �= 0] means that a formalism based on â† would lack

the simple structure of electronic CC theory. However, if the

number of photons in the system is limited to nmax, which is

necessary for numerical treatment of bosons in the basis of

Fock number states (see Appendix B for convergence tests), it

is possible to map the bosonic mode to a lattice of nmax + 1

sites, |0〉, |1〉, . . . , |nmax〉, each corresponding to a number

state; then the excitation operators

τ̂n = |n〉〈0| (5)

|0

|1

|2

τ̂1

τ̂2

|3

â
†

â
†

FIG. 1. Two types of excitation operators for a bosonic degree of

freedom. Both can be used to access any number state, and both are

sets of commutative operators. But the operators τ̂n are additionally

nilpotent, simplifying CC formulations that use this form.

clearly fulfill both the commutativity and nilpotency condi-

tion, while allowing any number state to be addressed (Fig. 1).

Now, to build CC theory for electron-photon systems, we

introduce a more general cluster operator

T̂ =
∑

μ

tμτ̂μ +
∑

n

tnτ̂n +
∑

μ̃,ñ

tμ̃ñτ̂μ̃τ̂ñ (6)

in which the electronic terms τ̂μ are supplemented by purely

photonic excitations τ̂n and connected light-matter excitations

τ̂μ̃τ̂ñ.

To describe the truncation of each term in the cluster

operator, we extend the terminology common in electronic

CC theory: in the acronym CC-X -Y -Z , X , Y , and Z will

specify the level of electronic, photonic, and mixed excitations

respectively; CC-SD-S-0 refers to conventional electronic

CCSD with additional single-photon excitations, CC-SD-S-D

includes coupled excitations of one electron together with

one photonic excitation additionally to CC-SD-S-0, and CC-

SD-S-DT adds coupled double electronic together with one

photonic excitations to CC-SD-S-D. In the one-mode calcu-

lations presented here the photonic excitation level is at most

singles, but multiphoton excitations within that single mode

are included [see Eq. (5)].

As the reference state we take a product of an electronic

Slater determinant and the vacuum state for radiation modes

|�0〉 = |�〉 ⊗ |0〉. (7)

In this form, polaritonic CC theory displays some simi-

larities with the polaron ansatz in quantum optics [55,56].

However, as opposed to CC theory, the polaron ansatz is

developed for two-level systems and does not target the elec-

tronic structure explicitly.

Additionally, since our method is in principle formulated

in the full Hilbert space of the problem, it does not suffer per

se from gauge-ambiguity issues exhibited by some effective

quantum optical models [57,58].

Because the structure of polaritonic CC theory is closely

analogous to that of conventional electronic CC theory, it

is possible to anticipate many of the advantages of the for-

malism. The properties of the operators in Eq. (5) ensure

truncation of the energy and amplitude equations to produce

a polynomially scaling theory. Because the photon mode is

modeled by a lattice, the situation is identical to one in which

there is simply a single additional fermion beyond the ↑- and

↓-spin electrons, making an even more explicit connection to

electronic CC theory.
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FIG. 2. A four-site Hubbard chain in half-filling serving as a

model molecule. The molecule has a dipole moment �d , which is

strongly coupled to the cavity mode with frequency ωc.

III. APPLICATION

As a proof-of-principle, we consider a half-filled four-

site Hubbard chain with an additional dipole coupled to a

single photon cavity mode with frequency ωc (see Fig. 2

and Ref. [59]). Here we consider three values for the

light-matter coupling parameter γ , representing weak (γ =
0.01), strong (γ = 0.07), and ultrastrong (γ = 0.2) coupling

regimes [18,19]. The Hamiltonian of the model system is as

in Eq. (1), but without the sum over α and with

Ĥe = −t0
∑

iσ

(ĉ†
i+1,σ ĉiσ + ĉ

†
iσ ĉi+1,σ ) + U

∑

i

n̂i↑n̂i↓, (8)

where n̂iσ = ĉ
†
iσ ĉiσ denotes the density of a spin-σ electron on

site i, and t0 and U are the usual hopping and on-site repulsion

constants. The dipole operator of the system is given by d̂ =∑
i di(n̂i↑ + n̂i↓).

The results for the ground-state energy E0 and photonic

mode occupation 〈â†â〉 in the system are summarized in

Table I for different levels of CC theory and compared to full

configuration interaction (FCI) results for the coupled electron

photon system and to FCI and CCSD results in the limit

of vanishing electron-photon coupling, FCI(0) and CCSD(0),

respectively. We observe an increasing impact of the cavity

on the ground-state properties of the system for growing

coupling strengths. For instance, the gap between CC-SD-S-0

and CCSD(0) energies widens due to increasing importance

of the dipole self-interaction term. This behavior is captured

very well with polaritonic CC theory for all coupling strength

as soon as coupled excitation are included, namely with CC-

SD-S-D and CC-SD-S-DT approximations.

The photon-mode occupation 〈â†â〉, which is now acces-

sible with CC theory, is zero for CC-SD-S-0 for all coupling

strength, which shows the intrinsic mean-field character of the

CC-SD-S-0 approximation. The photon-mode occupation is

also captured well as soon as coupled excitation are included.

The best agreement with FCI is achieved for both observables

with CC-SD-S-DT.

However, a considerable effect of the cavity on the molec-

ular ground state is observed only in the ultrastrong cou-

pling regime (	E0 ≈ 0.02), which is captured well with CC

theories that include coupled excitations. For the other two

regimes this impact is, as was to be expected, rather small

[30,45,60]. The power of CC theory therefore also lies in the

treatment of excited (polaritonic) states that we show in the

following.

A key experimentally accessible feature to study is the

ground-state absorption spectrum. The matter absorption

cross section is given by [17,61]

σ (ω) = 4π
ω

c
Im

[
∑

k

|〈�k|d̂|�0〉|2
(ωk − ω0) − ω − iη

]
, (9)

where |�k〉 are many-body eigenstates of Ĥ with energy

h̄ωk , ω is the frequency of incident light, and η is a (small)

broadening parameter accounting for the finite lifetime of the

state.

Here equation of motion CC (EOM-CC) theory will be

used to access excited-state information [62–65]. In EOM-CC

each excited state of the system is produced by applying a

linear excitation operator to the correlated ground state:

∣∣�CC
k

〉
= R̂k

∣∣�CC
0

〉
= eT̂

R̂k|�0〉. (10)

The coefficients entering the excitation operator Rk are found

by diagonalizing ˆ̄H in the subspace of excited states |�μ〉

TABLE I. Ground-state energy E0 and mode occupation 〈â†â〉 of the four-site Hubbard chain coupled to one cavity mode (resonant to first

bare absorption peak, see Appendix B) with selected coupling strengths for different levels of CC theory compared with FCI as well as with

FCI and CCSD for the bare electronic system [FCI(0) and CCSD(0)]. We observe excellent agreement of CC results with FCI. By including

coupled excitations in the CC description the ground-state energy is improved. Furthermore, purely photonic observables like mode occupation

become accessible. Parameters: ωc = 1.028, t0 = 0.5, U = 1.0, d = [−1.5, −0.5, 0.5, 1.5], nmax = 1 (weak) nmax = 4 (strong), and nmax = 7

(ultrastrong).

Weak coupling Strong coupling Ultrastrong coupling

γ = 0.01 γ = 0.07 γ = 0.2

E0 〈n̂p〉 E0 〈â†â〉 E0 〈â†â〉
FCI(0) −1.43797 – −1.43797 – −1.43797 –

CCSD(0) −1.43801 – −1.43801 – −1.43801 –

CC-SD-S-0 −1.43791 0 −1.43335 0 −1.40227 0

CC-SD-S-D −1.43795 2.14 × 10−5 −1.43551 1.04 × 10−3 −1.41745 7.75 × 10−3

CC-SD-S-DT −1.43796 2.24 × 10−5 −1.43561 1.09 × 10−3 −1.41873 8.57 × 10−3

FCI −1.43792 2.27 × 10−5 −1.43557 1.11 × 10−3 −1.41864 8.69 × 10−3
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FIG. 3. Ground-state absorption cross section σ (ω) of the half-filled four-site Hubbard chain in a cavity as a function of cavity frequency

ωc in the strong-coupling regime γ = 0.07 for (b)–(e) different levels of CC theory compared with (f) FCI results and (a) zero-coupling limit

(FCI-0). Parameters: t0 = 0.5, U = 1.0, d = [−1.5, −0.5, 0.5, 1.5], nmax = 4, η = 0.005.

addressed by each excitation operator in the expansion of T̂

in Eq. (6).

Since ˆ̄H is non-Hermitian, we obtain a biorthogonal set of

left (L̂ j) and right (R̂k) operators satisfying

ˆ̄HR̂k = EkR̂k, L̂ j
ˆ̄H = L̂ jE j, L̂ jR̂k = δ jk1̂, (11)

and we define the left eigenstates as

〈
�̃CC

j

∣∣ = 〈�0|e−T̂
L̂ j . (12)

With these states, the absorption cross section can be

approximated as

σCC(ω) = 4π
ω

c
Im

[
∑

k

〈
�̃CC

k

∣∣d̂
∣∣�CC

0

〉〈
�̃CC

0

∣∣d̂
∣∣�CC

k

〉

(ωk − ω0) − ω − iη

]
. (13)

A final detail is that the non-Hermitian form of the CC the-

ory can lead to problems for close-lying or degenerate states

(such as at conical intersections), that either have complex

eigenvalues or exhibit significant overlaps among the right (or

left) eigenvectors which can cause numerical instability. Both

issues can be resolved following a correction method based on

Ref. [66] and details can be found in Appendix C.

Leaving the weak-coupling case to Appendix A, we start

our discussion of excited-state properties with the case of

strong light-matter coupling of γ = 0.07. Absorption spectra

for different approximations are shown in Fig. 3 as functions

of cavity frequency ωc.

For reference, the panels at either end show the FCI spec-

trum for the purely electronic problem (left) and for the full

light-matter problem (right). In between we show the results

of EOM-CC calculations with various levels of truncation of

the cluster operator. The bare electronic spectra [FCI(0) and

CCSD(0)] feature horizontal nondispersive absorption lines;

as expected, approximate EOM-CC accurately reproduces

low-energy features in the spectrum.

When coupled to a cavity, the spectrum includes matter

absorption lines and additional linear dispersive branches for

one-photon (lines where ω = ωc) and many-photon processes

(ω = 2ωc, etc.).

In the strong-coupling case of Fig. 3, we see at most

three-photon processes with significant amplitude. At points

where there are matter excitations resonant with cavity modes

we observe avoided crossings in the absorption lines. In these

regions hybrid light-matter states (polaritons) are formed,

accompanied by the signature Rabi splitting of an absorption

peak. They can be clearly seen in various regions of the

FCI spectrum, and are well captured by the EOM-CC ap-

proximation that includes coupled excitations. The systematic

improvement in the CC treatment as the cluster operator is

extended is clear, and remaining deviations from FCI are

largely caused by the truncation of the electronic part of the

cluster operator.

The exact (FCI) spectrum in the ultrastrong coupling case

is much more complicated (Fig. 4). Additional features are

seen beyond the simple combination of nondispersive mat-

ter lines and linear dispersive photon lines with avoided

crossings.

These include induced transparencies (dark states) in re-

gions of crossings of various absorption lines with the lowest

FIG. 4. Ground-state absorption cross section σ (ω) of the half-

filled four-site Hubbard chain in a cavity as a function of cavity

frequency ωc in the ultrastrong-coupling regime γ = 0.2 for (b) and

(c) different levels of CC theory compared with (d) FCI results

and (a) zero-coupling limit (FCI-0). Parameters: t0 = 0.5, U = 1.0,

d = [−1.5, −0.5, 0.5, 1.5], nmax = 7, η = 0.005.
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one-photon line, and complicated structures in the high en-

ergy part of the spectrum where many multiphoton processes

overlap in the spectrum.

The CC-SD-S-DT calculation captures much of this com-

plex structure, with remaining deviations mainly caused by

the truncation of the electronic cluster operator. The low-

energy part of the spectrum is reproduced extremely accu-

rately, including the induced transparencies. The qualitative

features of the high-energy part of the spectrum are also

captured.

IV. CONCLUSION

Overall, we have shown that subtle light-matter correla-

tions that appear in strong and ultrastrong cavity experiments

can be captured in the framework of CC theory, paving the

way for high-accuracy modeling and interpretation of experi-

ments in these regimes.

Although this work has focused on model systems, ex-

tension to real ab initio Hamiltonians is straightforward. In

this work we simulated the CC equations in the framework

of exact diagonalization, but the formulation of the theory in

terms of photon excitation operators τ̂n means that affordable

polynomial scaling implementations will very closely mirror

standard electronic CC codes, but with extra channels to

describe the additional quantum degrees of freedom.

The individual photonic creation and annihilation opera-

tors are quadratic expressions in the excitation operators τ̂n

[for example â = ∑
n

√
n (τ̂n−1τ̂

†
n )] so that the light-matter

interaction in Eq. (1) becomes a four-point interaction, ex-

actly analogous to the four-point two-particle interaction in

the electronic ab initio Hamiltonian. Thus the equations for

the polynomial-scaling implementation of polaritonic CC-

SD-S-DT theory are effectively identical to a subset of the

conventional CCSDT equations, but with removal of ex-

change diagrams and inclusion of alternative values in place of

two-electron integrals. The theory scales as O(N6nmax) that is

roughly the same as the O(N6) scaling of conventional CCSD

theory, since nmax is usually much smaller than the number of

electronic orbitals N .

Following this insight, we can conclude that the polari-

tonic CC method be applied to study linear and nonlinear

optical processes occurring in molecules in the gas phase. We

further believe that the applicability of our approach can be

extended to liquid or condensed-matter systems by employing

polarizable continuum solvation models [67,68] or QM/MM

techniques [69].

Furthermore, the formalism developed here can be ex-

tended to CC theories for coupling of electrons to polarization

modes, phonons, or thermal reservoirs, including coupling to

multiple boson modes and boson-boson interactions. Work

along these lines is underway in our groups.
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APPENDIX A: ABSORPTION CROSS SECTION, WEAK-COUPLING REGIME

In Fig. 5, we show absorption spectra for different levels of CC theory compared to FCI in the weak-coupling regime (γ =
0.01).

FIG. 5. Ground-state absorption cross section σ (ω) of the half-filled four-site Hubbard chain in a cavity as a function of cavity frequency

ωc in the weak-coupling regime γ = 0.01 for (b)–(e) different levels of CC theory compared with (f) FCI results and (a) zero-coupling

limit (FCI-0). We observe the usual nondispersive matter absorption lines and additionally some low-intensity liner dispersive branches for

one-photon processes. No multiphoton processes or significant Rabi splittings occur, meaning that treating the photon field perturbatively

would be sufficient in this regime of light-matter coupling. Parameters: t0 = 0.5, U = 1.0, d = [−1.5, −0.5, 0.5, 1.5], nmax = 1, η = 0.005.
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FIG. 6. Convergence of the optical spectra with the number of photons for (b) weak (γ = 0.01), (c) strong (γ = 0.07), and (d) ultrastrong

(γ = 0.2) coupling compared to (a) the bare-molecule spectrum. The following parameters were used: ωc = 1.028, t0 = 0.5, U = 1.0, d =
[−1.5, −0.5, 0.5, 1.5], η = 0.005.

APPENDIX B: CONVERGENCE STUDY, PHOTON

NUMBER CUTOFF

The Fock space for the bosonic modes is infinite, so a

reasonable truncation has to be performed in practice by

imposing a maximum number of quanta per mode nmax
ph . Here

we demonstrate convergence with respect to nmax
ph for the FCI

spectra of Figs. 3–5. The absorption cross sections σ (ω) are

plotted in Fig. 6 for the cavity frequency ωc = 1.028, where

the cavity is resonant to the first absorption peak of the bare

electronic system, and for different photonic cutoffs nmax
ph for

weak, strong, and ultrastrong coupling and compared to the

bare spectrum. We observe a convergence of the spectra at

nmax
ph = 1 (weak coupling), nmax

ph = 4 (strong coupling), and

nmax
ph = 7 (ultrastrong coupling), respectively. These values of

nmax
ph were used for all results presented in this paper.

APPENDIX C: CORRECTION METHOD

FOR CLOSE-LYING EIGENSTATES

Coupled-cluster EOM provides a powerful framework for

treating excited states that is systematically improvable to-

wards exact solutions to the Schrödinger equation. One down-

side is that at finite truncation of the cluster operator, the

theory is non-Hermitian, and this can lead to difficulties for

near-degenerate excitations. For example, the non-Hermitian

model Hamiltonian ( ˆ̄H) has different right and left eigenvec-

tors, and pairs of right (or left) eigenvectors associated with

a near degeneracy can become almost parallel. Second, the

eigenvalues of ˆ̄H can develop nonzero imaginary components.

The issues can be resolved based on the analysis of Köhn

and Tajti [66], and we refer the interested reader to their work

for a detailed discussion. Here we briefly outline their method

to fully specify the calculations we present.

The eigenvalue Ei of the similarity-transformed Hamilto-

nian ˆ̄H is associated with left and right eigenvectors 〈�̃i| and

|�i〉 that fulfill the biorthogonality condition

〈�̃i|� j〉 = δi j . (C1)

The right eigenvectors are conventionally normalized, but

generally nonorthogonal. The elements of the metric matrix S

are Si j = 〈�i|� j〉, so we have Sii = 1 and Si j �= 0 with i �= j.

The left and right eigenvectors are related via

|�̃i〉 =
∑

j

|� j〉[S−1] ji. (C2)

This relation between the two causes problems, when right

vectors become (almost) parallel Si j → 1. The norm of the

corresponding left eigenvectors diverges and for Si j = 1 the

inverse of S simply does not exist, as the right vectors |�i〉 do

not span the full space anymore.

In order to compensate for this behavior, we employ here

a correction scheme based on the method of Köhn et al.

[66]. The idea is basically to rotate the close-lying eigen-

states within their subspace such that their overlap becomes

smaller and the implications described above become less

pronounced.

For simplicity, consider only two close-lying eigenstates of
ˆ̄H :

ˆ̄H |�1〉 = ε1|�1〉, ˆ̄H |�2〉 = ε2|�2〉. (C3)

We build a subspace matrix and shift it by � = ε2−ε1

2
,

A =
(

〈�̃1|H |�1〉 〈�̃1|H |�2〉
〈�̃2|H |�1〉 〈�̃2|H |�2〉

)
− �1 =

(−� 0

0 �

)
,

(C4)
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such that A is traceless and has either purely real or purely imaginary eigenvalues. We further write the metric matrix as

S =
(

1 S

S 1

)
=

(
1 cos ϕ

cos ϕ 1

)
, (C5)

where S is the overlap of the two right vectors S = 〈�1|�2〉. If S is complex, the state |�2〉 has to be rotated such that S becomes

real:

|�2〉 → eiθ , θ = arctan

(
Im S

Re S

)
. (C6)

We now use the overlap matrix S to first orthogonalize the right-hand basis within the subspace spanned by |�1〉 and |�2〉 by

multiplying it with S
−1/2,

S
−1/2 = 1

2| sin ϕ|

( √
1 − cos ϕ + √

1 + cos ϕ −√
1 − cos ϕ + √

1 + cos ϕ

−√
1 − cos ϕ + √

1 + cos ϕ
√

1 − cos ϕ + √
1 + cos ϕ

)
. (C7)

We then choose a new smaller overlap � (and the corresponding angle ϑ = arccos �). We define it as function of the old overlap

S and eigenvalue difference � and further impose the condition that it is monotonous and is bounded from below by 0 and from

above by a maximum value �max. The specific form of the function is not that important and we take the one used in Ref. [66]:

� = �max

{
tanh (|S|/�max), if � real,

tanh (1/(|S| · �max)), if � imaginary.
(C8)

The orthogonalized eigenstates are then rotated again, this time to have the new overlap � = cos ϑ . The corresponding rotation

matrix reads

�
1/2 = 1

2| sin ϑ |

(√
1 − cos ϑ + √

1 + cos ϑ
√

1 − cos ϑ − √
1 + cos ϑ√

1 − cos ϑ −
√

1 + cos ϑ
√

1 − cos ϑ +
√

1 + cos ϑ

)
. (C9)

To summarize the derivation above, the new subspace basis is obtained via
(|�1〉

|�2〉

)
→ �

1/2
S

−1/2

(|�1〉
|�2〉

)
. (C10)

Then the vectors |�1〉, |�2〉 have to be normalized and the left eigenvectors have to be transformed accordingly.

So far we have just rotated the eigenstates within their subspace and the eigenvalues remained unaffected by these operations.

Now also the eigenvalues have to be adapted with respect to the new overlap. This is done with following formula:

�corr = ±�
| sin ϑ |
| sin ϕ|

{
1, if � real,

−iS, if � imaginary.
(C11)

We refer the reader to Ref. [66] for a detailed derivation. Throughout the paper we use �max = 0.2 and apply the correction

scheme described above as soon as � < 0.05 or � imaginary. These parameters can be adapted if needed.
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[46] J. Čižek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).

[47] R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).

[48] T. D. Crawford and H. F. Schaefer III, Rev. Comput. Chem. 14,

33 (2000).

[49] C. Riplinger and F. Neese, J. Chem. Phys. 138, 034106 (2013).

[50] T. J. Lee and G. E. Scuseria, Quantum Mechanical Electronic

Structure Calculations with Chemical Accuracy (Springer,

Berlin, 1995), pp. 47–108.

[51] O. Christiansen, J. Chem. Phys. 120, 2149 (2004).

[52] D. P. Craig and T. Thirunamachandran, Molecular Quantum

Electrodynamics: An Introduction to Radiation-Molecule Inter-

actions (Courier Corporation, North Chelmsford, MA, 1998).

[53] H. Spohn, Dynamics of Charged Particles and Their Radiation

Field (Cambridge University Press, Cambridge, 2004).

[54] V. Rokaj, D. M. Welakuh, M. Ruggenthaler, and A. Rubio,

J. Phys. B 51, 034005 (2018).

[55] G. Díaz-Camacho, A. Bermudez, and J. J. García-Ripoll,

Phys. Rev. A 93, 043843 (2016).

[56] D. Zueco and J. García-Ripoll, Phys. Rev. A 99, 013807 (2019).

[57] D. De Bernardis, P. Pilar, T. Jaako, S. De Liberato, and P. Rabl,

Phys. Rev. A 98, 053819 (2018).

[58] O. Di Stefano, A. Settineri, V. Macrì, L. Garziano, R. Stassi, S.

Savasta, and F. Nori, Nat. Phys. 15, 803 (2019).

[59] T. Dimitrov, J. Flick, M. Ruggenthaler, and A. Rubio, New J.

Phys. 19, 113036 (2017).

[60] C. Schäfer, M. Ruggenthaler, and A. Rubio, Phys. Rev. A 98,

043801 (2018).

[61] T. N. Rescigno and V. McKoy, Phys. Rev. A 12, 522 (1975).

[62] J. Geertsen, M. Rittby, and R. J. Bartlett, Chem. Phys. Lett. 164,

57 (1989).

[63] J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).

[64] H. Koch, R. Kobayashi, A. Sanchez de Merás, and P. Jørgensen,

J. Chem. Phys. 100, 4393 (1994).

[65] A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).

[66] A. Köhn and A. Tajti, J. Chem. Phys. 127, 044105 (2007).

[67] R. Cammi, J. Chem. Phys. 131, 164104 (2009).

[68] R. Cammi, Int. J. Quantum Chem. 110, 3040 (2010).

[69] J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen,

Mol. Phys. 100, 1813 (2002).

023262-8

https://doi.org/10.1021/acsphotonics.7b00305
https://doi.org/10.1021/acsphotonics.7b00305
https://doi.org/10.1021/acsphotonics.7b00305
https://doi.org/10.1021/acsphotonics.7b00305
https://doi.org/10.1038/nphys4147
https://doi.org/10.1038/nphys4147
https://doi.org/10.1038/nphys4147
https://doi.org/10.1038/nphys4147
https://doi.org/10.1038/s41467-018-04736-1
https://doi.org/10.1038/s41467-018-04736-1
https://doi.org/10.1038/s41467-018-04736-1
https://doi.org/10.1038/s41467-018-04736-1
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1515/nanoph-2018-0067
https://doi.org/10.1515/nanoph-2018-0067
https://doi.org/10.1515/nanoph-2018-0067
https://doi.org/10.1515/nanoph-2018-0067
https://doi.org/10.1039/C8SC01043A
https://doi.org/10.1039/C8SC01043A
https://doi.org/10.1039/C8SC01043A
https://doi.org/10.1039/C8SC01043A
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevLett.114.196403
https://doi.org/10.1103/PhysRevLett.114.196403
https://doi.org/10.1103/PhysRevLett.114.196403
https://doi.org/10.1103/PhysRevLett.114.196403
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.118.223601
https://doi.org/10.1103/PhysRevLett.118.223601
https://doi.org/10.1103/PhysRevLett.118.223601
https://doi.org/10.1021/acsphotonics.7b00916
https://doi.org/10.1021/acsphotonics.7b00916
https://doi.org/10.1021/acsphotonics.7b00916
https://doi.org/10.1021/acsphotonics.7b00916
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1021/acs.jpclett.8b01176
https://doi.org/10.1021/acs.jpclett.8b01176
https://doi.org/10.1021/acs.jpclett.8b01176
https://doi.org/10.1021/acs.jpclett.8b01176
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1103/PhysRevX.5.041022
https://doi.org/10.1103/PhysRevX.5.041022
https://doi.org/10.1103/PhysRevX.5.041022
https://doi.org/10.1103/PhysRevX.5.041022
https://doi.org/10.1063/1.4941053
https://doi.org/10.1063/1.4941053
https://doi.org/10.1063/1.4941053
https://doi.org/10.1063/1.4941053
https://doi.org/10.1103/PhysRevB.93.155102
https://doi.org/10.1103/PhysRevB.93.155102
https://doi.org/10.1103/PhysRevB.93.155102
https://doi.org/10.1103/PhysRevB.93.155102
https://doi.org/10.1103/PhysRevLett.122.063603
https://doi.org/10.1103/PhysRevLett.122.063603
https://doi.org/10.1103/PhysRevLett.122.063603
https://doi.org/10.1103/PhysRevLett.122.063603
https://doi.org/10.1103/PhysRevLett.121.253001
https://doi.org/10.1103/PhysRevLett.121.253001
https://doi.org/10.1103/PhysRevLett.121.253001
https://doi.org/10.1103/PhysRevLett.121.253001
https://doi.org/10.1103/PhysRevLett.121.113002
https://doi.org/10.1103/PhysRevLett.121.113002
https://doi.org/10.1103/PhysRevLett.121.113002
https://doi.org/10.1103/PhysRevLett.121.113002
https://doi.org/10.1103/PhysRevLett.122.193603
https://doi.org/10.1103/PhysRevLett.122.193603
https://doi.org/10.1103/PhysRevLett.122.193603
https://doi.org/10.1103/PhysRevLett.122.193603
https://doi.org/10.1103/PhysRevLett.121.227401
https://doi.org/10.1103/PhysRevLett.121.227401
https://doi.org/10.1103/PhysRevLett.121.227401
https://doi.org/10.1103/PhysRevLett.121.227401
https://doi.org/10.1103/PhysRevA.90.012508
https://doi.org/10.1103/PhysRevA.90.012508
https://doi.org/10.1103/PhysRevA.90.012508
https://doi.org/10.1103/PhysRevA.90.012508
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1021/acsphotonics.9b00768
https://doi.org/10.1021/acsphotonics.9b00768
https://doi.org/10.1021/acsphotonics.9b00768
https://doi.org/10.1021/acsphotonics.9b00768
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1002/qua.560050402
https://doi.org/10.1002/qua.560050402
https://doi.org/10.1002/qua.560050402
https://doi.org/10.1002/qua.560050402
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1002/9780470125915.ch2
https://doi.org/10.1002/9780470125915.ch2
https://doi.org/10.1002/9780470125915.ch2
https://doi.org/10.1002/9780470125915.ch2
https://doi.org/10.1063/1.4773581
https://doi.org/10.1063/1.4773581
https://doi.org/10.1063/1.4773581
https://doi.org/10.1063/1.4773581
https://doi.org/10.1063/1.1637579
https://doi.org/10.1063/1.1637579
https://doi.org/10.1063/1.1637579
https://doi.org/10.1063/1.1637579
https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1103/PhysRevA.93.043843
https://doi.org/10.1103/PhysRevA.93.043843
https://doi.org/10.1103/PhysRevA.93.043843
https://doi.org/10.1103/PhysRevA.93.043843
https://doi.org/10.1103/PhysRevA.99.013807
https://doi.org/10.1103/PhysRevA.99.013807
https://doi.org/10.1103/PhysRevA.99.013807
https://doi.org/10.1103/PhysRevA.99.013807
https://doi.org/10.1103/PhysRevA.98.053819
https://doi.org/10.1103/PhysRevA.98.053819
https://doi.org/10.1103/PhysRevA.98.053819
https://doi.org/10.1103/PhysRevA.98.053819
https://doi.org/10.1038/s41567-019-0534-4
https://doi.org/10.1038/s41567-019-0534-4
https://doi.org/10.1038/s41567-019-0534-4
https://doi.org/10.1038/s41567-019-0534-4
https://doi.org/10.1088/1367-2630/aa8f09
https://doi.org/10.1088/1367-2630/aa8f09
https://doi.org/10.1088/1367-2630/aa8f09
https://doi.org/10.1088/1367-2630/aa8f09
https://doi.org/10.1103/PhysRevA.98.043801
https://doi.org/10.1103/PhysRevA.98.043801
https://doi.org/10.1103/PhysRevA.98.043801
https://doi.org/10.1103/PhysRevA.98.043801
https://doi.org/10.1103/PhysRevA.12.522
https://doi.org/10.1103/PhysRevA.12.522
https://doi.org/10.1103/PhysRevA.12.522
https://doi.org/10.1103/PhysRevA.12.522
https://doi.org/10.1016/0009-2614(89)85202-9
https://doi.org/10.1016/0009-2614(89)85202-9
https://doi.org/10.1016/0009-2614(89)85202-9
https://doi.org/10.1016/0009-2614(89)85202-9
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.464746
https://doi.org/10.1063/1.466321
https://doi.org/10.1063/1.466321
https://doi.org/10.1063/1.466321
https://doi.org/10.1063/1.466321
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1063/1.2755681
https://doi.org/10.1063/1.2755681
https://doi.org/10.1063/1.2755681
https://doi.org/10.1063/1.2755681
https://doi.org/10.1063/1.3245400
https://doi.org/10.1063/1.3245400
https://doi.org/10.1063/1.3245400
https://doi.org/10.1063/1.3245400
https://doi.org/10.1002/qua.22884
https://doi.org/10.1002/qua.22884
https://doi.org/10.1002/qua.22884
https://doi.org/10.1002/qua.22884
https://doi.org/10.1080/00268970110117106
https://doi.org/10.1080/00268970110117106
https://doi.org/10.1080/00268970110117106
https://doi.org/10.1080/00268970110117106

