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Correlation functions related to the dynamic density response of the one-dimensional Bose gas in the model
of Lieb and Liniger are calculated. An exact Bose-Fermi mapping is used to work in a fermionic representation
with a pseudopotential Hamiltonian. The Hartree-Fock and generalized random phase approximations are
derived and the dynamic polarizability is calculated. The results are valid to first order in 1/�, where � is
Lieb-Liniger coupling parameter. Approximations for the dynamic and static structure factor at finite tempera-
ture are presented. The results preclude superfluidity at any finite temperature in the large-� regime due to the
Landau criterion. Due to the exact Bose-Fermi duality, the results apply for spinless fermions with weak
p-wave interactions as well as for strongly interacting bosons.
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I. INTRODUCTION

The one-dimensional �1D� Bose gas with point interac-
tions is an abstract and simple, yet nontrivial model of an
interacting many-body system. The recent progress in the
trapping, cooling, and manipulation of atoms have made it
possible to test theoretical predictions experimentally and
have thus led to a revival of interest in this model.

Exact solutions were described by Lieb and Liniger �1,2�,
who found that the physics of the homogeneous Bose gas is
governed by the single dimensionless parameter �
�gBm / ��2n�. Here n is the linear particle density, m is the
mass, and gB is the strength of the short-range interaction
between particles �3�. For small �, we have a gas of weakly
interacting bosons. Although there is no Bose condensation
in one dimension, even at zero temperature �4�, many prop-
erties of the gas are reminiscent of Bose-Einstein conden-
sates with Bogoliubov perturbation theory being valid and
even superfluid properties were predicted �5–7�. For large �,
however, the system crosses over into a strongly interacting
regime, and at infinite �, we obtain the Tonks-Girardeau
�TG� gas of impenetrable bosons �8�. In this regime, the
strongly repulsive short-range interaction has the same effect
as the Pauli principle for fermions. Many properties like the
excitation spectrum become that of a free Fermi gas and,
indeed, the model maps one-to-one to a gas of noninteracting
spinless fermions.

Experiments have recently probed the crossover to the
strongly correlated TG regime by increasing interactions up
to values of ��5.5 �9� and to effective values of �eff�200
in an optical lattice �10�. The momentum distribution �10�,
density profiles �9�, and low-energy compressional excitation
modes �11� have been the focus of the experimental studies.
In a recent experiment �12�, the zero momentum excitations
of a 1D Bose gas in an optical lattice have been measured by
Bragg scattering, a technique that could also be used to mea-
sure the dynamic structure factor �DSF� S�q ,��, which is
calculated in this paper �13�.

The theoretical description of the Lieb-Liniger model is
not complete. Although the exact wave functions, the excita-

tion spectrum, and the thermodynamic properties �14� are
known for arbitrary values of the coupling constant �, it is
notoriously difficult to calculate the correlation functions.
Many results in limiting cases are summarized in the book
�15�, but the full problem is not yet solved. Recently,
progress has been made on the large-distance and long-time
asymptotics of single-particle correlation functions �16,17�
and on time-independent correlation functions �18–24�. In
the general case and for time-dependent correlation func-
tions, a wealth of information is available for small �, where
Bogoliubov perturbation theory can be applied as well as for
the TG gas at �=�. However, the strongly interacting regime
with large but finite � was hardly accessible, as a systematic
expansion in �−1 was lacking.

In 1D, there is a duality between interacting Bose and
Fermi many-body systems. A couple of recent works �25–30�
already pointed out that the exact Bose-Fermi mapping that
Girardeau used to solve the case of �=� �8� can be extended
to the case of finite interaction �. Thus, a model system of
interacting fermions can be constructed for which the energy
spectrum and associated wave functions are in a one-to-one
correspondence with the Lieb-Liniger solutions. Our ap-
proach makes use of the same Bose-Fermi duality, however,
the motivation is to derive new results for the 1D Bose gas.
We can calculate correlation functions of the strongly inter-
acting Bose gas by solving the equivalent interacting Fermi
problem in the regime where its interactions are small. In our
previous paper �31�, we calculated the DSF for the Lieb-
Liniger model for large � at zero temperature and related it
to the Landau criterion of superfluidity. The DSF S�q ,��
holds information about the strength or the excitability of
excitations with momentum �q and energy �� and, thus,
may indicate decay routes of possible supercurrents. Al-
though the TG gas is not superfluid due to low-energy um-
klapp excitations near �=0 and q=2�n, a crossover to su-
perfluid behavior for finite � is possible if the umklapp
excitations are suppressed. This possibility is not precluded
by the results of Ref. �31�.

The purpose of this paper is to calculate the so-far un-
known correlation properties of the 1D Bose gas at finite

PHYSICAL REVIEW A 73, 023612 �2006�

1050-2947/2006/73�2�/023612�12�/$23.00 ©2006 The American Physical Society023612-1

http://dx.doi.org/10.1103/PhysRevA.73.023612


temperatures in the strongly interacting regime. We calculate
the dynamic density-density response, the DSF, and the static
structure factor of the Lieb-Liniger gas with the fermionic
random-phase approximation �RPA�, extending our previous
results �31� to the case of finite temperatures. Although our
calculations are nonperturbative, we obtain the first order
term in the expansion in �−1 for comparison. In particular,
we find that the 1D Bose gas at finite temperature cannot be
superfluid due to the finite probability of umklapp excita-
tions. We also present an extended discussion of the validity
of the pseudopotential approach and give a critical scrutiny
of the limits of applicability of our approach.

The structure of this paper is as follows. In Sec. II, we
consider the exact Bose-Fermi mapping for finite values of
the interaction strength and discuss the use of a fermionic
pseudopotential. In Sec. III, we derive a Hartree-Fock �HF�
approximation for the fermions. The generalized RPA is de-
rived in Sec. IV as a linearized time-dependent HF scheme.
Analytic expressions for the polarizability, the DSF, and the
static structure factor are analyzed and discussed.

II. FERMIONIC PSEUDOPOTENTIAL

We consider the system of N interacting bosons of mass m
in 1D described by the Hamiltonian

ĤB = �
i=1

N �−
�2

2m

�2

�xi
2 + Vext�xi�	 + gB�

i�j

��xi − xj� . �1�

This model extends the Lieb-Liniger model �1,2� to include
an external potential Vext�x�. In contrast to the Bethe ansatz
solutions of Refs. �1,2�, our approach developed below al-
lows us to treat the effects of external potentials, which are
important in the context of experimental realizations.

We will now map the model �1� onto an equivalent Fermi
system and discuss the appropriate pseudopotentials. As de-
scribed in detail in Ref. �1�, the �-function point interaction
in the Hamiltonian �1� can be represented as a boundary
condition for the wave function in coordinate space at the
points where two particles meet at the same position. For
simplicity, we will first discuss the case of two particles and
introduce center-of-mass R= �x1+x2� /2 and relative x=x2

−x1 coordinates. The bosonic wave function has the �even�
symmetry �B�x ,R�=�B�−x ,R�. Due to this symmetry, the
effect of the � interaction on �B�x ,R� can be formulated as a
single boundary condition for x→ +0

lim
x→+0

�x��x,R� = lim
x→+0

gBm

2�2 ��x,R� , �2�

with ��x ,R�=�B�x ,R�. The exact Bose-Fermi mapping now
takes advantage of this boundary condition being formulated
for x	0, where �B�x ,R� solves the Schrödinger equation. A
fermionic model is defined by the same boundary condition
�2� and the same Schrödinger equation for x�0 but requiring
fermionic �odd� symmetry. We thus find fermionic solutions
�F with

�F�x,R� = 
− �B�x,R� , x 	 0,

− �B�x,R� , x � 0.
�3�

The fermionic symmetry, together with the boundary condi-
tions �2�, requires a discontinuity in the wave function
�F�x ,R� at x=0 inducing a jump of 4�2 / �gBm��x�

F�x
=0,R� in the wave function and a continuous first derivative,
whereas the bosonic wave function �B�x ,R� is continuous
but has a discontinuous first derivative. In the simple limiting
case of gB→�, we obtain the TG gas, and �F is continuous.

This generalized Bose-Fermi mapping was introduced by
Cheon and Shigehara �25�, who also discussed the straight-
forward generalization to the N-particle problem of Eq. �1�.
The mapping as described above is exact and one-to-one for
particles confined by an external potential Vext. If periodic
boundary conditions are imposed upon the Bose system, they
translate in the Fermi system into periodic boundary for odd
N and antiperiodic boundary for even N (see Eq. �37� of Ref.
�25�). Antiperiodic boundaries mean that the fermionic wave
function changes by a factor of −1 whenever a particle is
translated by the length of the periodic box L. The differ-
ences between periodic and antiperiodic boundaries are,
however, minute for large systems and vanish in the thermo-
dynamic limit. For this reason, we only consider explicitly
the case of periodic boundary conditions for the fermionic
wave functions below.

As a result of the Bose-Fermi mapping, the energy spec-
trum of the Bose and corresponding Fermi system are iden-
tical. Furthermore, all observables that are functions of the
local density operators are identical in both systems because
they involve absolute values of the wave functions only and
sign changes, as in Eq. �3�, do not matter. In particular, this
includes the dynamical density-density correlation functions
and derived quantities like the dynamic and static structure
factors. By contrast, the off-diagonal parts of the one-body
density matrix and, consequently, the momentum distribution
show distinct differences in both systems �32�.

For our purposes, it is desirable to represent the interac-
tion in the fermionic model as an operator. In fact, it has
been shown by Šeba that the discontinuity-introducing
boundary condition �2� for fermionic symmetry defines a
self-adjoint operator on Hilbert space �33�. Šeba also gave an
explicit construction by the zero-range limit of a renormal-
ized separable operator of finite range. As a result, one can
represent the fermionic interaction in terms of an integral
kernel �28,31,33�

VF�x1,x2;x2�,x1�� = − 2gF�� x1 + x2 − x1� − x2�

2
�


���x1 − x2����x1� − x2�� , �4�

where the coupling constant in the fermionic representation
is defined as

gF = 2�4/�m2gB� . �5�

Due to the gap in the fermionic wave functions �3�, we
should be very careful defining the matrix element of the
pseudopotential �4� for two arbitrary fermionic two-particle
wave functions
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�F�V̂F��F� = − 2gF� dR��x�
F�x,R��*�x�

F�x,R��x→±0,

�6�

where due to the fermionic symmetry the right and left limits
of the first derivatives limx→±0 �x�

F�x ,R� coincide, even if
the wave functions are discontinuous at x=0. Representa-
tions similar to Eqs. �4� and �6� have also been given in Refs.

�28–30�. The fermionic Hamiltonian ĤF takes the form of
Eq. �1� but with the interaction term �i�jVF�xi ,xj ;xj� ,xi�� in-
stead of the bosonic �-function interactions. If the bosonic

wave function �n
B is an eigenfunction of the Hamiltonian ĤB

of Eq. �1� with eigenvalue En
B, then the fermionic wave func-

tion �n
F of Eq. �3� is also an eigenfunction of the fermionic

Hamiltonian with interaction VF of Eq. �4� corresponding to
the same eigenvalue En

F=En
B. This can be verified easily for

two particles by substituting �n
F into the Schrödinger equa-

tion. We thus conclude that the fermionic representation with
interactions �4� is exact for all values of the coupling con-
stant gF.

In addition to the formal considerations above, we now
give another, somewhat heuristic justification for the pseudo-
potential �4� following Sen’s argument �34� based on the
Hellmann-Feynman theorem. Let us suppose that we know

the exact eigenvalue En
B of ĤB together with the correspond-

ing bosonic wave function �n
B. Then it follows from the

Hellmann-Feynman theorem that:

�En
B

�gB
=��B� �ĤB

�gB
��B�

=� dR��B�x = ± 0,R��2

=� dR
4�4

m2gB
2 ��x�

F�x = ± 0,R��2, �7�

where Eqs. �2� and �3� were used to derive the last equality.
With the help of Eqs. �5� and �6�, we find �En

B/�gF=

−2�F ��V̂F /�gF ��F� and finally �En
B/�gF=�En

F /�gF by the

Hellmann-Feynman theorem for the eigenvalue En
F of ĤF.

Taking into account that ĤB and ĤF have the same eigen-
value spectrum in the TG limit of gF→0, we conclude that
both Hamiltonians have the same spectrum also for arbitrary
values of gF.

A useful approximate representation as a pairwise pseudo-
potential was suggested by Sen �34�

VSen�x1,x2� = − gF���x1 − x2� , �8�

where ���x� denotes the second derivative of the delta func-
tion. In contrast to the integral kernel �4�, Sen’s pseudopo-
tential takes the form of a local operator, which yields a
simplification when performing analytical calculations. This
pseudopotential, however, is applicable only for variational
calculations in a variational space of continuous fermionic
functions that vanish whenever two particle coordinates co-
incide. This is the case for Slater determinants that may be

used to derive the Hartree-Fock �HF� and random-phase ap-
proximations �RPA� but not for the exact fermionic wave
functions like �3�. One can justify Sen’s pseudopotential �8�
up to first order in �−1 in the same manner as in the previous
paragraph. For higher orders, VSen is not correct, because its
matrix elements contain not only the correct term, as in the
right-hand side �rhs� of Eq. �6�, but an additional term dis-
appearing only at �−1=0.

The fermionic Hamiltonian can now be rewritten in terms

of Fermi field operators �̂�x� and �̂†�x�

ĤF =� dx
�x�̂

†�x��x�̂�x�
2m

+� dxVext�x��̂†�x��̂�x�

+
1

2
� dx1dx2dx1�dx2�VF�x1,x2;x2�,x1��


 �̂†�x1��̂†�x2��̂�x2���̂�x1�� , �9�

where VF is given by Eq. �4�. Alternatively, the approximate
pseudopotential VSen can be employed �35�.

In the remainder of this paper, we will study the fermionic
model �9� in the HF approximation and the RPA.

III. THE HARTREE-FOCK OPERATOR

The HF approximation for the fermionic system �9� is
derived in the standard way by variation over Slater determi-
nants. We thus expect Sen’s pseudopotential �8� to be valid.
Indeed, we find that the interactions �8� and �4� yield identi-
cal results on the HF level.

When working at finite temperatures, it is convenient to
introduce the HF operator as the single-particle operator

Ĥ0 =� dxdx�F�x,x���̂†�x��̂�x�� �10�

that minimizes the Gibbs-Bogoliubov inequality �36� with
respect to F�x ,x��

 � 0 + ĤF − Ĥ0�0.

Here =−�1/�� ln Z is the grand thermodynamic potential

with the partition function Z�Tr exp�−��ĤF−�N̂�� corre-

sponding to the Hamiltonian ĤF. The inverse temperature
�=1/T is introduced here, and we use the units kB=1 in this

paper. Accordingly, 0 is associated with Ĥ0, and ¯�0

��1/Z0� Tr�¯exp�−��Ĥ0−�N̂���. The variational proce-
dure yields

F�y,z� = ��y − z��−
�2

2m

�2

�z2 + Vext�z,t�	
+� dxdx� �V�y,x;x�,z� − V�y,x;z,x�����1��x,x�� ,

�11�

with the one-body density matrix ��1��x� ,x�
��̂†�x���̂�x��0, which should be determined in a self-
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consistent manner. The simplest way to do this is to work in
the diagonal representation of the HF kernel F�x ,x��
=� j� j� j

*�x��� j�x�. The single-particle functions � j�x� are
called Hartree-Fock orbitals. This representation allows us to
rewrite the HF Hamiltonian �10� in terms of the creation and

destruction operators âj
†��dx�̂†�x�� j�x� and âj

��dx�̂�x�� j
*�x�, respectively. It takes the form Ĥ0

=� j� jâj
†âj, which leads to

âi
†âj�0 = nj�ij , �12�

where

nj =
1

exp���� j − ��� + 1
�13�

is the Fermi distribution of occupation numbers, and �ij is
the Kroneker symbol. At zero temperature, nj defines the

Fermi step function. By using the representation �̂�x�
=� jâj� j�x� and Eq. �12�, we derive

��1��x,x�� = �
j

nj� j
*�x�� j�x�� . �14�

By substituting Eq. �14� and either one of the pseudopo-
tentials �8� or �4� into Eq. �11�, we come to the same local
form of the HF kernel

F̂ = −
�2

2m

�2

�x2 + Vext�x� + gF�n�x�
�2

�x2 + 2P�x�i
�

�x
− T�x�	 ,

�15�

which is defined as F̂��x���dx�F�x ,x����x��. The first two
terms on the right-hand side come from the single-particle
part of the Hamiltonian �9�. The mean-field parts in the
square bracket involve the local density n�x�=��1��x ,x�
=� jnj� j

*�x�� j�x� and the derivative densities P�x��
−i� jnj�

*
j��x�� j�x� and T�x��� jnj�� j

*�x�� j��x�
+2�*

j��x�� j��x��. Here, we define ���d� /dx. The quantities
P�x� and T�x� are reminiscent of momentum and energy den-
sities, respectively. We find a purely local Fock operator,
contrary to the case of Coulomb interactions where the Fock

operator F̂ is nonlocal with a local Hartree and a nonlocal
exchange term.

For the homogeneous gas �Vext=0�, the quantum number j
can be associated with the particle. HF orbitals are plane
waves �q�x�=exp�ixq� /�L with energy and effective mass

�q =
�2q2

2m* − gFnq2� , �16�

m* �
m

1 − 2gFmn/�2 =
m

1 − 4�−1 , �17�

respectively, where we have introduced the average square
momentum

q2� �
1

N
�

q

nqq2 �18�

over the Fermi distribution nq of Eq. �13�. Here, the sum over
q runs over values q=2�l /L, l=0, ±1, ±2, . . . in accordance
with periodic boundary conditions. The chemical potential
and the density cannot be independent quantities; they are
related through

n =
1

L
�

q

nq. �19�

In the thermodynamic limit n=N /L=const, L→� all the
sums over momentum become integrals: �1/L��q

→ �2��−1�dq¯. In the canonical ensemble, only two ther-
modynamic parameters are independent, the density and
temperature. Thus, we can use � and � as input parameters
and determine the chemical potential � in a self-consistent
manner from Eqs. �16�–�19�.

At zero temperature, the HF scheme admits the analytical
solutions q2�=kF

2 /3, �=�kF
=�F�1−16/ �3���, where kF=�n

and energy �F=�2kF
2 / �2m� are Fermi wave number and en-

ergy of the TG gas, respectively. The HF approximation for
the ground-state energy yields

EHF � ĤF�0 = N
�2�2n2

6m
�1 − 8�−1� . �20�

It coincides with the first two terms of the large-� expansion
of the exact ground-state energy in the Lieb-Liniger model

�1�. Note that EHF� Ĥ0�0=�p�p, as it should be in the HF
scheme (see, e.g., Ref. �38�).

We now briefly discuss the stability of the HF solution.
Stability of the HF solution implies positivity of the isother-
mal compressibility of the medium ��n /���T /n. The latter
relates directly to the isothermal speed of sound

vT =� n

m
� ��

�n
�

T

, �21�

shown in Fig. 1 for various temperatures. The HF result at
T=0

vT =
��n

m
�1 − 8�−1 =

��n

m
�1 − 4�−1 + O��−2�� �22�

yields the correct first order expansion of Lieb’s exact result
�2�. We see in Fig. 1 that the stability condition vT

2 	0 is
broken below some critical value of the coupling constant �,
depending on temperature. From Eqs. �16�–�19�, one can
show that the critical value lies between �=8 at zero tem-
perature and �=4�3/ �1−�3��9.464 at large temperatures.
Thus, the developed HF scheme �and, hence, the RPA dis-
cussed below� is applicable only for values of the Lieb-
Liniger coupling constant of the order ��10.

IV. THE RANDOM-PHASE APPROXIMATION

A. Response function

The HF approximation permits us to calculate the linear
response of time-dependent HF. Approximations of the linear
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response functions on this level are known as RPA with ex-
change or generalized RPA �38,39�. In this section, we will
calculate the density-density response function ��q ,z� also
known as dynamic polarizability. It is intimately related to
the DSF and the time-dependent density-density correlation
function �38–40�. In order to define ��q ,z�, we consider the
linear response of the density

n�x,t� − n = �̂†�x,t��̂�x,t�� − n =
1

L
�

q

eiqx�n�q,t�

to an infinitesimal time-dependent external potential

�Vext�x,t� = �
q
� �

d�

2�
eiqxe−i�te�t�Vext�q,�� .

Here we choose �→ +0 to provide the boundary condition
Vext�x , t�→0 when t→−�. For q�0, we have

�n�q,t� = �
k

âk−q/2
† �t�âk+q/2�t�� =� �

d�

2�
e−i�te�t�n�q,�� .

�23�

The dynamic polarizability is now defined by

��q,� + i�� � − �n�q,��/�Vext�q,�� �24�

and obviously determines the linear density response to an
external field.

The polarizability can be obtained directly from the lin-
earized equation of motion of the density operator in the
time-dependent HF approximation in the standard way as
summarized below.

�i� With the help of the HF Hamiltonian �10�, we write the

equation of motion i���̂�1� /�t= ��̂�1� , Ĥ0� for the operator

�̂�1���̂†�y , t��̂�z , t� and take its average. We thus derive

i �
���1��y,z,t�

�t
=� dx�F�z,x���1��y,x,t� − F�x,y���1��x,z,t��

�25�

with the HF kernel F of Eq. �11�.
�ii� We substitute ��1��y ,z , t�=�0

�1��y−z�+���1��y ,z , t� into
Eq. �25� and linearize it with respect to ���1� and �Vext. Here,
we introduce the equilibrium value of the one-body density
matrix �0

�1��y−z�= �1/L��knk exp�ik�y−z�� in the HF ap-
proximation with the HF occupation numbers nk of Eq. �13�.

�iii� In the Fourier representation of momentum and fre-
quency, the obtained linearized equation becomes algebraic
and takes the form

��̃�1��k,q,��� 1

L
�

p

np�V�k − p − q/2� − V�k − p + q/2��

+
�2kq

m
− � � − i��

= ��Vext�q,�� +
1

L
�

p

�V�q� − V�p − k����̃�1��p,q,���

�nk+q/2 − nk−q/2� . �26�

Here, V�q�=gFq2 stands for the Fourier transform of the po-
tential �8� and ��̃�1� is defined by the relation
âk−q/2

† �t�âk+q/2�t��= �� /2���d�e−i�te�t��̃�1��k ,q ,�� for q
�0. We are interested in the density response �n�q ,��,
which is directly connected to ��̃�1� by

�n�q,�� = �
k

��̃�1��k,q,�� . �27�

FIG. 1. �Color online� �a� The isothermal speed of sound vT of
Eq. �21� versus the inverse coupling constant �−1 in the HF approxi-
mation for different temperatures. The quantity v0� ��n /m is the
speed of sound of the TG gas at zero temperature. The speed of
sound becomes zero at some critical value of �, below which the
HF solution becomes unstable �see discussion in Sec. III.� �b� The
solid �black� line shows the speed of sound in the HF approxima-
tion at T=0 given by Eq. �22�, and the dashed �violet� line shows
the exact speed of sound in the Lieb-Liniger model �2� for
comparison.
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Because V�q� is a polynomial in q, we can obtain an ana-
lytical expression for the polarizability �24� from Eqs. �26�
and �27�. After somewhat lengthy but straightforward calcu-
lations, we find

��q,z� =
��0��q,z�

�1 − 4�−1��B + D�q,z���0��q,z��
�28�

with z��+ i� and �→ +0. Here, we denote

B � 1 − 4�3� − 16�/�� − 4�3,

D�q,z� �
4�F

N

�

�� − 4�2�q2

kF
2

2� − 9

2�
−

6

�

q2�
kF

2

− ��zkF

�Fq
�2 3� − 16

2�� − 4�2	 ,

and the polarizability ��0� of the ideal 1D Fermi gas with
renormalized mass is given by the relation

��0��q,z� = �
k

nk+q/2 − nk−q/2

�z − �2kq/m* . �29�

In the thermodynamic limit, we find the real and imagi-
nary parts of ��0��q ,�+ i��=�1

�0��q ,��+ i�2
�0��q ,�� using the

relation 1/ �x+ i��= P�1/x�− i���x�,

�1
�0��q,�� =

Nm*

2�2qkF
P� dk

nk+q−
− nk+q+

k
, �30�

�2
�0��q,�� =

Nm*

2�2qkF
��nq−

− nq+
� , �31�

where P means the Cauchy principal value, and we defined

q± �
�m*

�q
±

q

2
. �32�

At zero temperature, the occupation numbers nk define the
Fermi step function, and we arrive at the simple analytic
expressions

�1
�0��q,�� =

Nm*

2�2qkF
ln��+

2�q� − �2

�−
2�q� − �2� , �33�

�2
�0��q,�� =

N�m*

2�2qkF

±1, �− � ± � � �+,

0, otherwise.

�34�

The dispersion relations

�±�q� � � �2kFq ± q2�/�2m*� �35�

border the continuum part of the accessible excitation spec-
trum made up from HF quasiparticle-quasihole excitations
�16�, as shown in Fig. 2. The two branches �±�q� thus ap-
proximate the two branches of elementary excitations intro-
duced by Lieb �2� as type I and type II excitations, respec-
tively.

In accordance with the exact results, both branches share
the same slope at the origin and give rise to a single speed of

sound at zero temperature given by vT=d�± /dk= �kF�1
−4�−1� /m. This value is the correct first order expansion �2�
of vT for large �, consistent with Eq. �22�. Note that the
usual Bogoliubov perturbation theory �41� for weakly inter-
acting bosons gives a similar expansion of vT for small � and
the type I excitation branch. Type II excitations are not de-
scribed with Bogoliubov theory. The dispersion curves �±�q�
of Eq. �35� differ from the free Fermi gas �TG gas� values
only by the renormalization of the mass, which already takes
place in the HF single-particle energies.

B. Dynamic structure factor

The DSF S�q ,�� is the Fourier transform of the density-
density correlation function �38–40� and expresses the prob-
ability to excite a particular excited state through a density
perturbation

FIG. 2. �Color online� The excitation spectrum and the DSF at
�=13 for various temperatures. The upper and lower thin �blue�
lines show the dispersions �+�q� and �−�q� of Eq. �35�, respec-
tively, limiting the elementary excitations of the Lieb-Liniger model
at T=0. The dimensionless value of the rescaled DSF
S�q ,��q�F / �kFN� from Eqs. �40� and �43� is shown in shades of
gray between zero �white� and 1.0 �black�. Here kF=�n and �F

=�2kF
2 / �2m�. The dotted �red� line indicates a �-function contribu-

tion at �0�q�. At nonzero temperatures, the �-function contribution
washes out and becomes a part of the continuum.
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S�q,�� = Z−1�
n,m

e−�Em�m��̂q�n��2���� − En + Em� , �36�

where �̂q=�i exp�−iqxi� is the Fourier component of the den-
sity operator, Z=�n exp�−�En� is the partition function.

The DSF is related to the dynamic polarizability by

��q,� + i�� = �
−�

+�

d��
2��S�q,���

��2 − �� + i��2 �37�

or, equivalently �40�, by

S�q,�� =
Im ��q,� + i��

��1 − exp�− � � ���
, �38�

which gives at zero temperature

S�q,�� = 
Im ��q,� + i��/� , � 	 0,

0, � � 0.
�39�

1. Zero temperature

The DSF at zero temperature can be obtained from Eqs.
�28� and �39�, which result in

S�q,�� =
�2

�0��q,��B
��1 − 4�−1���B + D�1

�0��2 + �D�2
�0��2�

+ ��� − �0�q��A�q�/� , �40�

with �1,2
�0� given by the zero temperature expressions �33� and

�34�. A gray scale plot of this result is shown in Fig. 2. The
DSF of Eq. �40� has two contributions. The first part is con-
tinuous and takes nonzero �and positive� values only for
�−����+, which is also the region where particle-hole
excitations on the HF level are present. The second part is a
discrete branch with strength A�q� and located at �=�0�q�,
outside the region of the discrete contribution. As we will
discuss in detail below, the discrete part is exponentially sup-
pressed for small �−1 and should be understood as an artifact
of RPA.

Due to a logarithmic singularity in �1
�0�, the DSF vanishes

on the dispersion curves �±�q�. For the TG gas at �→�, the
value of the DSF within these limits is independent of � and
takes the value of Nm / �2��2qn�. The energy dependence in
the RPA for finite �−1 is shown in Figs. 2 and 3. In particular,
we see that the umklapp excitations at q=2kF and small �,
which prohibit superfluidity of the TG gas, are suppressed

FIG. 3. �Color online� The
DSF S�q ,���F /N at interaction
strength �=13.33 as a function of
� at q=0.4kF and q=2kF for vari-
ous temperatures. The solid
�black� line shows the RPA result
�40� or �43�, the dashed �red� line
shows the first order expansion in
�−1 �41� or �44�, and the dotted
�blue� line shows the DSF of the
TG limit ��= � � for comparison.
The circular �violet� dots on the x
axis denote �±. The first order ex-
pansion always has a divergence
to ±� near �± at T=0, respec-
tively, and the maximum is shifted
to �+ at finite T. The RPA result,
however, shows an enhancement
of low-energy excitation near �−

at small q. Note the unphysical
negative values of the DSF in the
first order expansion near �−, in
particular for the umklapp excita-
tions at q=2kF and � close to
zero.
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for finite �. We find that S�2kF ,�� in the RPA approaches
zero as 1/ ln2��� /�F�, in contrast to the results of Refs.
�42,43�, which predict a power-law dependence on � for
finite � based on a pseudoparticle-operator approach.

In the RPA, the enhancement of Bogoliubov-like excita-
tions is seen as a strong and narrow peak of the DSF in the
RPA near �+ at large momenta in Fig. 3. At finite gamma and
for small momenta q��n /2, however, the RPA predicts a
peak near �−, in contrast to the first order result. Whether
this effect is real or an artifact of the RPA is not obvious and
may be decided by more accurate calculations or experi-
ments. Spurious higher order terms in the RPA and an im-
proved approximation scheme have been discussed in Ref.
�44�. On the other hand, Roth and Burnett have recently
observed a qualitatively similar effect in numerical calcula-
tions of the DSF of the Bose-Hubbard model �45�.

The RPA result may be expanded in 1/�, which is con-
sistent with direct perturbation theory up to first order. This
yields for �−����+

S�q,��
�F

N
= kF

1 + 8�−1

4q
+

ln f�q,��
2�

+ O��−2� �41�

with f�q ,������2−�−
2� / ��+

2 −�2��. However, this first order
expansion can assume negative values as seen in Fig. 3, al-
though the DSF, given by Eq. �36�, should be strictly non-
negative, a property that our RPA result �40� fulfills. Close to
�+, the first order expansion has a logarithmic singularity
tending to +�, which may be a precursor of the dominance
of Bogoliubov-like excitations in the DSF at small �. In the
TG limit �−1=0, the DSF becomes discontinuous with re-
spect to � at �± because the DSF of the TG gas is a step
function �see Eq. �34��. As a consequence, the first order
approximation �41� cannot be good for arbitrary values of q
and � but diverges in the vicinity of �± due to the slow
convergence of perturbation theory close to the point of dis-
continuity. There is no formal problem here since the expres-
sion �41� remains positive if for any given finite value of q
and ���−, a large enough value of gamma is chosen.

Finally, we discuss the �-function part of the DSF �40�.
This contribution relating to discrete excitations of collective
character in the time-dependent HF scheme lies outside of
the continuum part and comes from possible zeros in the
denominator of ��q ,�+ i��. It is determined by the solution
�0�q� of the transcendental equation B=−D�q ,���1

�0��q ,��
in conjunction with �2

�0��q ,��=0. We have solved this equa-
tion in various limits and found that at most, one solution for
�0�q� exists. The strength A�q� is given by the residue of the
polarizability at the pole z0=�0�q�. After small algebra, we
derive from Eq. �28�

A�q� = N
�� − 4�3

4�3� − 4�
�F

��0�q�
�2

1 + 16�2h0
, �42�

where ��q /kF and

h0 �
��� − 6�2

3� − 4

�ln�� − �� − 2�2� − ln�� − �� + 2�2��−1

�� − �� − 2�2��� − �� + 2�2�

with �����0�q� /�F�2�2 / ����−4��2.

Numerical values for A�q��0�q� are shown at finite � in
Fig. 4. For small q, we find a �-function contribution at
�0�q���−, whereas for large q, there is a discrete contribu-
tion at �0�q�	�+ �see Fig. 2�a��. In the limit q→� at finite
�, the � part completely determines the DSF as the con-
tinuum part vanishes; asymptotically A�N, and �0
� �q2 / �2m� becomes the free particle dispersion, reminis-
cent of the DSF for the weakly interacting Bose gas at large
momentum in Bogoliubov theory �41�.

For small �−1, the strength A�q��2N� exp�−�q /kF� is ex-
ponentially suppressed and possible solutions are close to the
dispersion branches �± with ��0−�± ��exp�−�q /kF�. Due to
this proximity of the discrete and continuous parts and the
expected smearing of discrete contributions by interactions
beyond the RPA, we may conjecture that the � function
should be seen as part of the continuum, enhancing contri-
butions near the border. Moreover, at finite temperatures,
there is no �-function contribution even within the RPA, as
we discuss in Sec. IV B 2 below. Indeed, we know from the
exact solutions �2� that the energy spectrum is continuous.

The RPA polarizability �28� is a retarded Green’s function
and thus has to be analytic in the upper half complex plane
�38,39�. At zero temperature, the analyticity breaks down
above the dashed �green� line in Fig. 4. The instability of the
RPA results from the instability of the HF approximation
�46� and arises exactly at the critical value of � when the
isothermal speed of sound equals to zero, see Fig. 1.

2. Finite temperatures

At finite temperatures, we obtain the DSF by means of
Eqs. �28� and �38�

S�q,�� =
�2

�0��q,��B�1 − exp�− � � ���−1

��1 − 4�−1���B + D�1
�0��2 + �D�2

�0��2�
, �43�

where the real and imaginary parts of the polarizability �1,2
�0�

are given by Eqs. �30� and �31�, respectively. The DSF is
shown in Figs. 2 and 3. The main effect of finite temperature

FIG. 4. �Color online� Contour plot of A�q�2m�0�q� / ��Nq2�,
which shows the importance of the �-function contribution. Values
are given in 10 contours between 0 �white� and 1 �black�. Between
the thick �red� lines there is no discrete contribution because �
given by Eq. �28� has no poles. Left of this region, there is a dis-
crete part with �0��− and right of it there is one with �0	�+.
Above the dashed �green� line the RPA breaks down due to an
instability of the HF ground state as discussed in Sec. III.
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is a smoothing of the zero-temperature features. The
�-function contribution to the DSF disappears, since �2

�0�

�0 and thus the denominator of Eq. �43� does not vanish for
��0. It is absorbed by the continuum part of the DSF.

At finite temperatures, the nonvanishing contributions of
the DSF spread considerably beyond the particle-hole exci-
tation spectrum limited by �− and �+ because the DSF no
longer probes the ground state but a thermal ensemble �see
Eq. �36��. For negative values of the frequency, the DSF
decays exponentially in accordance with Eq. �38�. Similar to
the case of zero temperature, the enhancement of excitations
still takes place close to �+ for q��n /2 and �− for q
��n /2 at small values of temperature T�0.5�F.

To the first order in �−1, we have

S�q,��
�F

N
=

nq−
− nq+

1 − exp�− � � ��
�kF

1 + 8�−1

4q

+
1

2�
P� dk

nk+q+
− nk+q−

k
	 + O��−2� . �44�

This linear approximation fails in the vicinity of the umklapp
excitation q=2kF and �=0, yielding unphysically negative
values of the DSF contrary to the obtained RPA expression
�43�, see Fig. 3.

3. Sum rules for the DSF

Sum rules for the DSF are an important test for checking
the validity of the obtained expressions. In particular, the
f-sum rule �38–40�

m1 � �2� �S�q,��d� = N�2q2/�2m� �45�

should be fulfilled to all orders in �−1 within the RPA �46�.
We have verified it by numerical integration and found ex-
cellent agreement at finite values of � for both the zero-
temperature DSF �40� and the finite temperature expression
�43�. The f-sum rule can also be verified analytically from
the large � asymptotics ��q ,���−2m1 / ����2 using Eqs.
�28� and �37�, assuming that � is analytic as a function of �
in the upper half complex plane.

The sum rule for the isothermal compressibility �40�

lim
q→0

P� S�q,��
�

d� =
N

2n
� �n

��
�

T

�46�

holds also to all orders in �−1, which can be checked analyti-
cally. Indeed, by comparing Eq. �28� with the HF isothermal
compressibility discussed in Sec. III, we derive

lim
q→0

��q,0 + i�� =
N

n
� �n

��
�

T

. �47�

Then Eq. �46� is a direct consequence of the dispersion rela-
tion �37� at �=0.

4. Consequences for superfluidity

As we have argued in Ref. �31�, the value of the DSF near
the umklapp excitations at �=0 and q=2kF is relevant for

the phenomenon of superfluidity according to the Landau
criterion. A finite value of S�q ,�� will prohibit persistent
currents, as spontaneous excitations initiated by infinitesimal
perturbations would be able to dissipate the translational ki-
netic energy stored in the current. Our finite temperature re-
sults clearly show that S�q=2kF ,�=0� at a given value of
T	0 will always be positive and finite for large enough � in
both the RPA expression �43� and the first order expansion
�44�. We thus conclude that there is no superfluidity in the
large-� regime at finite temperatures, in accordance with
Popov’s analysis �47� made many years ago. The question of
efficient suppression of the DSF in the vicinity of the um-
klapp excitation at T=0 cannot be fully answered within the
present approach due to the nonregularity of S�q ,�� at this
point, as discussed in Ref. �31�, and will be left to future
investigations.

C. Static structure factor and pair distribution function

The static structure factor S�q� �38–40� is a function of
momentum only and is obtained by integrating the DSF over
the frequency

S�q� �
�̂q�̂q

†�
N

=
�

N
� d�S�q,�� . �48�

The results of numerical integration of the DSF in the RPA
are plotted in Fig. 5.

The static structure factor contains information about the
static correlation properties of a system and directly relates
to the pair distribution function or the normalized density-

density correlator g�x���̂†�x��̂†�0��̂�0��̂�x�� /n2 by the
equation

g�x� = 1 +� dq

2�n
eiqx�S�q� − 1� . �49�

At small momenta S�q� can be related to the isothermal
compressibility because the main contribution into the inte-
gral �48� comes from the “classical” region ����1 �40�.
We derive from Eqs. �37�, �38�, �47�, and �48�

lim
q→0

S�q� =
T

n
� �n

��
�

T

=
T

mvT
2 . �50�

This relation of the structure factor S�q� to the speed of
sound vT at small momentum implies that S�q� in the RPA is
exact up to first order in �−1 and is overestimated at finite �
as seen from the results for vT in Fig. 1.

1. Zero temperature

We can obtain the static structure factor �48� from Eq.
�41� to the first order

S�q� = S�0��q� + �−1S1�q� + O��−2� . �51�

Here S�0� denotes the static structure factor for the ideal 1D
Fermi gas

S�0��q� = 
�q�/�2kF� , �q� � 2kF,

1, �q� � 2kF,
�52�

and the function S1�q� takes the form
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S1�q� = ����r��� − �� − 2�ln�� − 2� − �� + 2�ln�� + 2��

+ 4S�0��q� �53�

with the dimensionless wave vector ��q /kF and the func-
tion

r��� � 
4 ln 2, ��� � 2,

2���ln��� , ��� � 2.
�54�

The obtained correction S1�q� is continuous and has the
asymptotics S1�q��−8/ �3�2�+O�1/�4� when �→� and
S1�q��2 �� �−���3 /2+O��5� when �→0. The latter asymp-
totics gives us a possibility to determine the coupling con-
stant � experimentally from the phonon part of the static
structure factor �51�� for q�kF

S�q� �
�q�
2kF

�1 +
4

�
−

q2

�kF
2� . �55�

The static structure factor at small q is related to the sound
velocity �40� by S�q�� � �q � / �2mvT�. It is easily seen that
our result �55� is consistent with the sound velocity of Eq.
�22�.

Figure 5 shows the static structure factor in the full RPA
and its first order expansion �51� at �=13.3 and the TG limit
S�0� for comparison. The first order result shows a cusp which
is an artifact of the first order expansion.

Using Eq. �49� in conjunction with relations �51�–�54�, we
can represent our result for the pair distribution function in
the form

g�x� = 1 −
sin2 z

z2 −
2�

�

�

�z

sin2 z

z2 −
4

�

sin2 z

z2

+
2

�

�

�z� sin z

z
�

−1

1

d� sin��z�ln
1 + �

1 − �	 + O��−2� ,

�56�

where z=kFx=�nx. It follows from this equation that g�x
=0� vanishes not only in the TG limit but also in first order
of �−1, which is consistent with the results of Refs. �1,18�
and the HF expression �60� below, indicating once more the
validity of our results. The physically correct limit g�x�→1
for x→� is fulfilled due to Eq. �49�. A similar expression for
g�x� was derived in Ref. �15� for the large distance asymp-
totics. To our knowledge, Eq. �56� shows for the first time
the full x dependence of g�x� up to first order in �−1.

2. Finite temperatures

The first order approximation for the static structure factor
at finite temperatures is obtained by using Eqs. �44� and �48�.
The result takes the form of Eq. �51� but with the TG, or free
Fermi, static structure factor

S�0��q� =
m

2 � kFq
� d�

nq−
− nq+

1 − exp�− � � ��
�57�

and with the function S1�q�

FIG. 5. �Color online� The static structure factor S�q� as a func-
tion of momentum for �=13.3 and various temperatures. The solid
�black� line shows the RPA result obtained by numerical integration
from Eqs. �40� or �43�. The dashed �red� line shows the first order
expansion �51� in �−1 with Eqs. �52� and �53� at zero temperature or
Eqs. �57� and �58� at nonzero temperatures. The dotted �blue� line
shows the static structure factor in the TG limit ��= � � �52� or �57�
for comparison. Note the unphysical cusp at q=2kF in the first order
expansion of the static structure factor at zero temperature and some
traces of it at small temperature.
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S1�q� =
m

�kF
2 � d�

nq−
− nq+

1 − exp�− � � ��
P� dk

nk+q+
− nk+q−

k

+ 4S�0��q� , �58�

where q± is given by Eq. �32� at �−1=0. The finite tempera-
ture results are plotted in Fig. 5. One can see an unphysical
behavior of the first order approximation near q=2kF, in con-
trast to the full RPA result. The small momentum limits for
S�q� are determined by the speed of sound vT through Eq.
�50�. In the plot on the right-hand side, the RPA overesti-
mates S�q� at small q as a result of the deviations of the
speed of sound as seen in Fig. 1.

3. Limits of validity

When the interaction is proportional to a small parameter,
the RPA method is applicable and yields correct values of the
DSF at least up to the first order in this parameter �37–39�.
This implies the validity of the obtained expressions for the
polarizability, the dynamic and static structure factors, and
the pair distribution function up to the first order in �−1.
Smallness of the inverse coupling constant means, in particu-
lar, small values of the pair distribution function in the con-
tact point: g�x=0��1, which is the TG regime by definition.

A classification of different regimes in the 1D Bose gas
for arbitrary temperatures was given in Ref. �20�. As it was
mentioned above, it is possible to obtain the values of g�x� at
x=0 from the exact solution of the Lieb-Liniger model with
the help of the Hellmann-Feynman theorem. The TG regime
is realized �20� when

� � max�1,�T/�F� , �59�

which gives also the criterion of validity of the RPA results.
We can derive this criterion within the HF approach of Sec.
III. Indeed, we obtain the following result for the pair distri-
bution function by applying the Hellmann-Feynman theorem
to the HF grand potential :

g�x = 0� =
4�2

�2

k2�
kF

2 . �60�

Using the low-temperature expansion of the average momen-
tum �18� k2�= �kF

2 /3��1+�2T2 / �4�F
2�+ ¯ � and the high-

temperature expansion k2�=kF
2T / �2�F�1−4�−1��+¯, we ar-

rive at the above mentioned restriction on �.
The validity of the RPA requires, in particular, the stabil-

ity of the HF solutions �46�. Thus our results are applicable
in practice for ��10, see discussion in Sec. III.

Note that the HF expression �60� yields the correct value
of the pair distribution function only at x=0 but up to the
second order in �−1. This is due to validity of the HF ap-

proximation in the first order in 1/�; hence, the derivative
with respect to � of the first order correction for the grand
potential gives the correct value of g�x=0�, proportional to
1/�2. By contrast, the RPA expression �56� and its finite
temperature generalization yield the values of g�x� for arbi-
trary x but guarantee validity only up to the first order. For
this reason, the numerical values of g�x=0� obtained with
Eqs. �43�, �48�, and �49� differ from those of Eq. �60�.

V. CONCLUSION

We have derived variational approximations for the dy-
namic polarizability and related two-particle correlation
functions of the one-dimensional Bose gas, extending our
previous results �31� to finite temperatures. The approxima-
tions are good for strong interactions and yield expansions
valid to first order in 1/�, which had not been available
previously. We have carefully checked the consistency with
known limits and sum rules and analyzed the limits of valid-
ity of the derived equations. Due to the Bose-Fermi duality,
our results are equally applicable for strongly interacting
bosons as well as for weakly interacting spinless fermions.
Our result for the DSF indicates a dramatic departure from
the TG limit already for very small values of 1 /� by enhanc-
ing Bogoliubov-like excitations and by suppressing umklapp
excitation, which are the main obstacle, to observing super-
fluidlike response in the 1D Bose gas. However, we find that
superfluidity at finite temperatures is strictly prohibited in the
large-� regime as umklapp excitations are always associated
with a finite probability. Finite temperature effects generally
are found to smear out the sharp features of the zero tem-
perature correlation functions. Nevertheless, at a level of
10% of the Fermi temperature �F, the main effects should be
well observable in experiments.

Our results also establish the usefulness and validity of
the fermionic pseudopotentials �8� and �4� and the variational
Hartree-Fock approximation and RPA. The method can eas-
ily be extended to further studies in the large-� regime by
including the effects of harmonic or periodic external poten-
tials or by studying nonlinear response properties. Further-
more, the acquired knowledge of the dynamic density corre-
lations will be useful for constructing an accurate time-
dependent density-functional theory, extending the approach
of Ref. �48�.
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