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Nowadays, hybrid QM/MM approaches are widely used to study (supra)molecular systems embedded

in complex biological matrices. However, in their common formulation, mutual interactions between

the quantum and classical parts are neglected. To go beyond such a picture, a polarizable embedding

can be used. In this perspective, we focus on the induced point dipoles formulation of polarizable

QM/MM approaches and we show how efficient and linear scaling implementations have allowed their

application to the modeling of complex biosystems. In particular, we discuss their use in the prediction

of spectroscopies and in molecular dynamics simulations, including Born-Oppenheimer dynamics,

enhanced sampling techniques and nonadiabatic descriptions. We finally suggest the theoretical and

computational developments that still need to be achieved to overcome the limitations which have

prevented so far a larger diffusion of these methods.

1 Introduction

Hybrid approaches which integrate quantum chemistry and
molecular mechanics (MM) have an almost 45 year-long his-
tory being their first formulation published by Warshel and Levitt
in 1976.1 During the years many important developments have
been proposed. The main ones concern the accuracy and com-
pleteness of the coupling between the quantum and the classi-
cal subsystem, and the extension to describe properties and pro-
cesses beyond the energy of a ground state system. In parallel,
the same approaches have been largely reformulated in their nu-
merical and computational aspects so to achieve robust and high-
performing implementations. All these improvements have al-
lowed QM/MM methods to become one of the most successful
and popular strategies to describe complex systems especially of
biological interest. The latter in fact represent an optimal field
of study for a QM/MM formulation. In enzymatic reactivity or in
the many examples of light-activated biological functions, in fact,
the process of interest can be clearly localized in a limited part
of the whole system while the rest mostly acts as a perturbation
through both short-range and specific effects (mostly H-bonds)
and longer range electrostatic interactions. As a matter of fact,
enzymes and their catalytic activity have been the very first and
the most frequent application of QM/MM methods.1–6 Another
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important field where QM/MM methods have reported important
successes is the interpretation and the simulation of spectroscopic
experiments in a variety of complex environments.7,8 In particu-
lar, in recent years QM/MM methods have been successfully ap-
plied to the simulation of electronic spectroscopies of biological
systems.9–12 This has been made possible mostly thanks to the
extension of QM/MM to the Time Dependent Density Functional
Theory (TDDFT) description of excitation processes. The compu-
tational efficiency of TDDFT in describing electronic transitions
in medium-to-large molecular systems has in fact allowed to sim-
ulate the chromophoric unit present in photoresponsive proteins
without the need of introducing approximated model systems. Fi-
nally, QM/MM methods have been extended to molecular dynam-
ics (MD) simulations either using an adiabatic or a nonadiabatic
formulation.13

This brief summary clearly shows that QM/MM methods rep-
resent an extremely powerful strategy which has permeated all
the main fields of application of quantum chemistry and, at the
same time, has largely extended the borders of its applicabil-
ity towards more and more complex systems. Once recognized
that, however, we have to add that most of the applications ap-
peared so far are based on a purely electrostatic formulation of
the QM-MM coupling. When we say QM/MM, in fact, we usually
indicate the so-called electrostatic embedding (EE) formulation
of the model. Namely, the QM subsystem "sees" the MM one as
a set of fixed point charges (or a fixed multipolar expansion).
Within this formulation any mutual polarization effects and/or
any nonelectrostatic interactions between the QM and MM sub-
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systems is completely neglected. In the case of nonelectrostatic
interactions (e.g. dispersion and repulsion), their effects on the
energy can be recovered in an uncoupled way by converting the
QM system into a set of MM parameters and calculating these in-
teractions through the common classical potentials used in MM
force fields. Due to the generally weaker effect of these interac-
tions when compared to electrostatics, this uncoupled formula-
tion is the standard in QM/MM descriptions and only very few
attempts to go beyond that have been proposed for water as sol-
vent,14 and for more complex environments including biological
systems.15–17 On the contrary, various methods have been pre-
sented so far to include mutual polarization effects. A strategy is
to introduce the effect of polarization using “ab initio” FFs which
are fully built on first principles and require no fitted parameters.
Very popular examples of this type are the Effective Fragment Po-
tential (EFP) method18 and the X-Pol strategy.19 An alternative
approach is to use MM but polarizable FFs20–23 based either on
Drude oscillators,24–29 fluctuating charges30–34 or induced point
dipoles (IPD).1,35–42 We recall that within the latter framework,
the MM subsystem is represented via a set of fixed point charges,
and possibly higher order multipoles, and by endowing polariz-
able sites with atomic polarizabilities.

In this perspective, we will focus on the IPD formulation of po-
larizable embedding for different reasons. The first is that IPD
polarizable FFs have shown to be extremely accurate not only for
describing standard solvents but also for biomacromolecules such
as proteins.43,44 Secondly, the use of atomic induced dipoles al-
lows a clearer interpretation of the response of a biological envi-
ronment with respect to other types of polarizable FFs. Finally,
IPD polarizable FFs are a very active research field especially
within the group associated to the development of AMOEBA,45,46

which represents one of the most sophisticated polarizable FFs.
In the presentation, we start from the state of the art of the IPD
QM/MM formulation, outlining its main theoretical aspects and
how they have been translated into efficient and linear scaling
implementations for ground state and excited systems. Then we
proceed illustrating applications to spectroscopies and dynamic
processes thanks to their extension to molecular dynamics tech-
niques. Starting from a Born-Oppenheimer description, we will
show that polarizable QM/MM can be combined with enhanced
sampling techniques and reformulated for nonadiabatic dynam-
ics. We finally note that both the presentation of the method-
ological and computational aspects and the selection of possible
applications will be biased towards biosystems. Different types of
complex embedding have in fact different specificities which in
many cases require different solutions.47,48

2 An induced point dipole formulation of polariz-

able embedding

In this section, we provide an overview of the IPD polarizable
QM/MM model for the description of molecular systems in their
ground and excited states. We then describe how the approach
can be used to perform Born-Oppenheimer (BO) molecular dy-
namics (MD) simulations, with particular emphasis on the com-
putational aspects of such simulations. All formal and mathemati-

cal details are kept to a minimum. We refer the reader to the sup-
porting information and to previous work38,39,49–52 for a more
comprehensive description of the theory and implementation.

2.1 The theory

In a polarizable embedding model, each MM atom is endowed
with a point charge and a polarizability. In more sophisticated
polarizable force fields (FF), such as AMOEBA,45,46 higher order
multipoles are considered as well. As such a generalization does
not alter the substance of the discussion while requiring a much
more complex and cumbersome notation, we limit our discussion
to point charges. A more general formalism and discussion can
be found in the Supporting Information. The polarizability allows
the MM atoms to respond to an electric field, generated by the
charges on the classical atoms and by the QM density, by creating
an induced dipole. The QM/MM electrostatic and polarization
interaction energy can be written as follows38,49,53
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In eq. 1, the first term is the interaction among the MM charges,
where V MM

i is the potential generated by all other charges at site
i, the second term is the interaction between the MM charges and
the QM density, V

QM
i being the QM potential at site i. These two

terms are common to standard EE QM/MM. The third and fourth
terms are the self-interaction of the induced dipoles, which can
be understood as the work needed to induce the dipole itself,
and the repulsion between all induced dipoles, where Ti j is the
dipole-dipole interaction tensor. Finally, the last two terms are
the interaction energy of the induced dipoles with the electric
fields produced by the MM charges and QM density, respectively.
The last four terms do not appear in EE QM/MM and are char-
acteristic of polarizable embedding models. The energy in eq.
1 is a variational functional53–55 of the induced dipoles them-
selves. The minimum of the energy corresponds to the situation
where the IPDs maximize the favorable interaction energy with
the MM charges and QM density, while at the same time minimiz-
ing the repulsion among themselves. The equations for the in-
duced dipoles are obtained by differentiating eq. 1 and read38,39

α−1
i µi +∑

j 6=i

Ti jµ j = EMM
i +E

QM
i . (2)

where Ti j is the effective dipole-field tensor that includes a damp-
ing function, namely:56
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where I is the unit matrix and fe and ft are distance dependent
screening functions originally introduced by Thole57 to avoid the
so-called "polarization catastrophe", e.g. the divergence of the
Coulomb interaction between two point dipoles when they get
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Fig. 1 Schematic representation of the coupling between the SCF algo-

rithm and a polarizable embedding.

too close.
Equations 1 and 2 are the main constituents of a polarizable

QM/MM implementation. Assuming the QM subsystem is de-
scribed at a Self-Consistent Field (SCF) level of theory, such as
Hartree-Fock (HF) or Kohn-Sham (KS) Density Functional The-
ory (DFT), the polarizable QM/MM energy can be computed by
assembling the energy in eq. 1 and adding to the Fock or KS ma-
trix the additional contributions, that are the derivatives of eq. 1
with respect to the density matrix. In the atomic orbitals (AO)
basis:38,39,49
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The first term in eq. 4 is independent of the QM charge density
and can be summed with the one-electron Hamiltonian, as it is
commonly done in EE QM/MM. The second term, on the other
hand, represents at the same time the main advantage and the
main complication introduced by a polarizable model. The IPDs,
that are computed by solving the linear system 2, depend on the
QM density, as the QM electric field appears in the right-hand
side. Therefore, the Fock matrix contribution that stems from
the induced dipoles is density dependent. This reflects the fact
that the QM density and the IPDs are mutually polarized, i.e.,
the classical environment is able to adapt to changes in the QM
density, which is the main strength of polarizable models. On the
other hand, this mutual polarization introduces a non-linearity
in the QM/MM interaction, which means that the QM and IPD
equations need to be solved iteratively. This is, in practice, not a
problem for SCF-based levels of theory, as the SCF procedure is
iterative itself. At each SCF iteration, given the density matrix,
the QM field has to be assembled. Then, eq. 2 is solved and the
dipoles are used to update the Fock or KS matrix. The coupled
procedure is schematized in figure 1.

A specific note concerns the integration of a polarizable em-
bedding within a post-HF description for the QM subsystem. The
non-linear term introduced by the coupling in the Hamiltonian
poses in fact a problem. Mutuating the terminology from Contin-
uum Solvation models, three different coupling schemes are pos-
sible.58–65 The first, called PTE (perturbation to the energy), uses
the QM/MM HF orbitals to compute the amplitudes and correla-
tion energy, decoupling therefore correlation from the response
of the environment. The second, called PTD (perturbation to the
density), computes a correlated relaxed density matrix without
contributions from the environment and then uses it to compute

the IPD. The last, called PTED59–61,64,66,67 (perturbation to the
energy and density), is the synthesis of PTE and PTD: a correlated
density is computed starting from the PTE amplitudes and used
to update the response of the environment; the procedure is then
iterated until self-consistency of the relaxed density is reached.
The PTE scheme has been proven to be consistent with second-
order perturbation theory61 and, given its simplicity, is the most
commonly employed strategy68–70, even though PTED implemen-
tations have been presented.62,63,68,69

2.2 The implementation

Once presented the main theoretical aspects of the model, some
considerations of computational nature are mandatory. The vari-
ous operations required to perform a polarizable QM/MM calcu-
lation can be grouped into three categories: i) computing various
one-electron integrals, ii) computing the interaction between the
classical electrostatic distributions (charges and dipoles), and iii)
solving the polarization equations. Operations in the first group
can be performed at a cost that scales as O(NQMNMM), where
NQM and NMM are the number of QM and MM atoms, respectively.
This is in general not a source of major overheads and the differ-
ence between electrostatic and polarizable embeddings is simply
that field integrals are also required. Therefore, neither major
implementation complications nor computational bottlenecks are
introduced in this respect. The operations in groups ii) and iii)
are, on the other hand, much more delicate from a computational
point of view, as they exhibit a formal scaling of O(N2

MM), or even
of O(N3

MM) if the linear system in eq. 2 is solved using stan-
dard dense linear-algebra methods. While this burden is shared
with EE QM/MM, in the latter case only charge-charge interac-
tion need to be computed. In IPD embeddings, besides having
to compute charge-dipole and dipole-dipole interactions, the po-
larization equations 2 need to be solved at each SCF iteration,
severely aggravating the overall computation. Here, it should be
mentioned that using an advanced polarizable force field such as
AMOEBA45,71 introduces further complications due to the pres-
ence of higher order multipoles (up to quadrupoles) and two sets
of induced dipoles. Without going into detail, it suffices to say
that a QM/AMOEBA calculation is about twice as expensive as a
charge and dipoles polarizable embedding one.

In order to use polarizable QM/MM for large systems, an ef-
ficient implementation is therefore of paramount importance.
First, the polarization linear system is symmetric and positive def-
inite and can therefore be efficiently solved iteratively using the
preconditioned conjugate gradient method.53 The preconditioner
proposed by Wang and Skeel72 is particularly effective in reduc-
ing the number of iterations, which, in our experience, is usually
as little as 10-12. Second, one can easily realize that the matrix-
vector products needed to solve such a linear system can be re-
cast as the computation of the electric field generated by the in-
duced dipoles, making the distinction between groups ii) and iii)
inessential. Electrostatic properties can be computed at a compu-
tational cost that scales linearly with the number of MM atoms
by using a suitable fast summation technique, such as the Fast
Multipole Method (FMM).73 Recently, we have presented a gen-
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eral, FMM based implementation for polarizable QM/MM50,52

that allows one to compute the interaction between multipoles
of, in principle, arbitrary order. Thanks to this implementation,
all the computations required by the polarizable model can be
performed at a cost that scales as O(NMM). In reference 52, we
showed that systems comprising as many as one million polar-
izable atoms can be easily treated on standard computer nodes
with minimal computational overhead. The same machinery can
be extended to the complex electrostatics present in the AMOEBA
force field, so that also QM/AMOEBA calculations can be per-
formed efficiently.46,52,53,72

To summarize, polarizable QM/MM computations can be af-
fordably performed also for very large systems. However, there
is a price to pay. Their implementations are complex and cum-
bersome and require substantial modifications of a QM code.
Furthermore, in order to get a substantial improvement of the
performance, the use of complex fast summation techniques is
mandatory, further adding to the complexity of the implemen-
tation. For our implementation, which aims at maximizing effi-
ciency, we therefore choose a fully integrated approach, using the
Gaussian 16 electronic structure program.74,75 The implementa-
tion is entangled with Gaussian both in terms of I/O and memory
management, and in terms of code structure. It also makes use of
Gaussian’s internal FMM library.

At the the cost of reducing to some extent the efficiency, it
is possible to achieve a code-independent, modular implemen-
tation. The strategies proposed so far can be grouped into two
main approaches. The first one resembles as much as possible
a fully integrated implementation, but reduces the modifications
that one needs to implement in the QM software by creating an
external library that performs all the calculations implied by a
polarizable scheme. Such a library consists of all the MM spe-
cific routines, that deal with input processing, computing MM in-
teractions and inducing fields, solving the polarization equations
and handling the contractions between MM quantities and QM
integrals. In order to couple such a library to an existing QM
package, the user needs to take care of high-level driver routines,
that handle the interface between the QM package, mainly call-
ing its internal integrals routines, and the library itself, updating
then the energy, the Fock matrix, or other QM quantities for cou-
pling with post-SCF treatments. This strategy is implemented in
the CPPE library76 and is very promising, as it allows one to add
the capability to treat a polarizable embedding to any QM soft-
ware without the need to deal with the cumbersome details of
the electrostatics involved. Moreover, the open source nature of
the project makes this interface very appealing and could actually
help to make polarizable QM/MM much more broadly available
in QM software packages. Furthermore, an external library can
in principle achieve an efficient implementation and full mutual
polarization with a non trivial, but minimal implementation.

A second option is to write software that exploits existing fea-
tures of QM and MM programs without modifying them, but im-
plementing the QM/MM coupling externally. This is in princi-
ple very appealing, however, it implies certain approximations.
In particular, the solution to the QM and polarization equations
is uncoupled, and therefore no fully self-consistent mutual po-

larization can be achieved, if not at the price of performing the
SCF calculation many times. In this framework, the coupling is
handled relying on the fact that most QM package offer electro-
static embedding capabilities based on point charges. The elec-
trostatic field obtained from the MM engine, which can include
contributions from both static and induced multipoles, is applied
to the QM density by approximating all the MM sources as point
charges, the values and coordinates of which are then provided to
the QM software for the electrostatic embedding. This is a second
approximation introduced by the scheme. For polarizable em-
bedding, a correction to the polarization and interaction energy
can be further applied using the field generated by the converged
SCF density to recompute the polarization degrees of freedom.
The approximations introduced by such a coupling schemes are
counterbalanced by a substantially reduced computational cost.
The Lichem77 and Chem Shell78 implementations of polarizable
embedding are representative of this second philosophy.

2.3 The extension to excited states

One of the most attractive features of polarizable QM/MM models
is that they are particularly suited for the description of electronic
excitations. This can be explained in two equivalent ways. From
a physical point of view, an excitation process causes a sizeable
rearrangement of the electronic density, which in turn modifies
the interaction between the excited molecule and the environ-
ment. Polarizable embeddings have the flexibility to respond to
such a change, which is lacking in EE schemes. Equivalently, the
non-linearity introduced by the former in the Hamiltonian im-
plies an explicit contribution to the electric response function of
the molecule, which is absent in EE schemes. In the framework
of SCF-based linear response (LR) theory, excitation energies ω

and transition densities X , Y are obtained by solving the so called
time-dependent SCF equations, given here in Casida’s formula-
tion:79

(

A B

B∗ A∗

)(
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Y

)

= ω
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1 0

0 −1

)(

X

Y

)

(5)

where the A and B matrices are given by

Aia, jb = δi jδab(εa − εi)+(ia| jb)− cx(ab|i j)+ cl f xc
aib j +V

env
ia jb

Bia, jb = (ia| jb)− cx(a j|ib)+ cl f xc
aib j +V

env
ia jb (6)

where i, j are the indices of occupied molecular orbitals, and a,
b of virtual molecular orbitals, εi are the molecular orbital ener-
gies, (ai|b j) is a bielectronic integral in the Mulliken notation, and
f xc
aib j is the exchange–correlation kernel. The coefficients cx and

cl control the amount of exact exchange for hybrid functionals
by interpolating between HF (cx = 1, cl = 0) and pure functionals
(cx = 0, cl = 1). The last term is the response of the polarizable
embedding,10,38,39,80

V
env

ia jb =−∑
k

Eia,kµ jb,k (7)

µ jb,k is the induced dipole at site k created by the field arising
from orbitals φ jφb, and Eia,k is the field computed at the k-th site
arising from φiφa.
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Polarizable models are naturally adapted to the LR treatment
of excitation and response processes, however, a LR description
might not be enough to fully account for the interaction of an
excited system with the environment. The LR response, in fact,
can be interpreted as the instantaneous response of the MM po-
larizable sites to the transition density of the electronic excita-
tion. What instead is missing in this formulation is the effect
due to the (instantaneous) polarization of the environment to the
different electronic charge densities of the ground and excited
states. Analogously to what is observed with Continuum Solva-
tion Models,81,82 this poses the problem of how to introduce a
state-specific (SS) polarizable QM/MM response.

Unfortunately, there is no unique way to introduce SS couplings
or corrections within a LR theory, nor strong theoretical argument
to choose among different schemes. If one is interested in correct-
ing the transition energy for a particular excitation, an approach
based on first-order perturbation theory, known as corrected LR
(cLR), can be effectively used. This was originally formulated
for Continuum Solvation Models83 but later it has been extended
to polarizable QM/MM models.39,84 However, this does not cor-
rect the state’s density, in some analogy with what done by PTE
scheme to the correlation amplitudes. A possible solution is to
iterate the cLR procedure, i.e., recompute the LR amplitude in
the presence of a field produced by the environment polarized
by the excited-state density, iterating the procedure until self-
consistency is reached, in close analogy to what is done in PTED
schemes. Such a procedure has been proposed for continuum sol-
vation models85,86 but it is very expensive from a computational
point of view, and introduces terms in the excitation energy that
are not consistent with a first-order, LR approach. Even if a state-
specific QM method is used, for instance CASSCF, the introduc-
tion of a state-specific response term is problematic, especially
if state-average formulations have to be used to get reliable re-
sults.87–89

From this discussion it should come out clearly that the exten-
sion of polarizable QM/MM approaches to excitation processes
remain challenging and no definitive theoretical solution has been
found for the problem. What is clear is that LR and SS responses
correspond to different physical contributions to the excited-state
energy, and, in principle, both have to be taken into account. On
a positive note, we can say that the use of a LR response when
combined with cLR corrections is usually more than adequate to
correctly predict the excitation energies. In more difficult cases
where this strategy is not enough because of the intrinsic limits of
the LR QM description in accurately describing the change in the
state density, an integration of LR and SS QM methods (mostly
CASSCF) has been proposed and successfully applied to various
photoresponsive proteins.90,91

To conclude the extension of polarizable QM/MM approaches
to excitation processes, it is worth recalling a particular class of
complex systems that have largely benefited from such a multi-
scale description, namely multichromophoric systems, in which
an electronic excitation can be delocalized over several chro-
mophoric units. A very important example of these systems are
the pigment-protein complexes (also called antenna complexes)
used in photosynthetic organisms to harvest light and transfer the

excitation energy to the reaction centers for further transforma-
tion. In this kind of systems, the usual partitioning into a QM
and a MM part is not necessarily an optimal choice, as a correct
description of the excited state requires extending the QM part
to multiple molecules. In order to overcome this limitation, the
multichromophoric excited states can be described on the basis of
the single chromophores’ excited states, in the so-called Frenkel
exciton model. In this model, the excited states (excitons) are
obtained by diagonalization of the exciton matrix, whose diag-
onal elements are the excitation energies of the noninteracting
chromophores (site energies), whereas the off-diagonal elements,
the exciton couplings, represent the interaction between excita-
tions in different chromophores. This model can be coupled to
an ab initio description of both the site energies and the cou-
plings.12,92,93 The environment plays a major role in determining
the nature and the behavior of excitonic systems: this is particu-
larly true for the antenna complexes where the protein embed-
ding the multichromophoric aggregate is not only necessary to
keep the different chromophores in "optimal" relative positions
but also to tune the energy and the nature of the excitons. This
"tuning" is mainly realized through electrostatic and polarization
effects of the protein residues which can significantly affect both
site energies and exciton couplings.94–96 For such complexes, but
also for other types of excitonic systems, combining a Frenkel ex-
citon model with a polarizable embedding is a very effective strat-
egy. This combination has been developed and implemented by
our group in collaboration with Dr. C. Curutchet in Barcelona us-
ing the IPD formulation of the polarizable embedding.38 In par-
ticular, within such a formulation, a new term appears in the
exciton coupling definition, which represents the Coulomb in-
teraction between chromophores mediated by the environment
polarization. This term generalizes a concept originally intro-
duced within continuum solvation models97–99 to atomistic mod-
els thus allowing a more accurate description for heterogeneous
and anisotropic environments like a protein matrix.100

3 Molecular dynamics

When the interest is mainly on the simulation of complex biolog-
ical systems, any model, even if very accurate, is not sufficient if
it cannot be extended to describe dynamics. While such an ex-
tension is now almost routine for the EE QM/MM approach, only
few examples have been proposed so far for polarizable embed-
dings. The main reasons are two: the extension of polarizable
QM/MM methods to the analytical derivatives needed for molec-
ular dynamics simulations is neither automatic nor straightfor-
ward, and the computational cost is generally much higher than
for the electrostatic embedding counterpart. This latter limitation
is being overcome, as we have described in the previous section,
and, if the implementations will become available in more and
more computational codes, polarizable QM/MM MD simulations
will rapidly spread. In this section, we present what is already
possible within a Born-Oppenheimer approximation eventually in
combination with enhanced sampling techniques.
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3.1 Born-Oppenheimer Molecular dynamics

Polarizable QM/MM Born-Oppenheimer molecular dynamics
(BOMD) implementations have been presented both within the
Drude oscillator28 and the IPD formulations of the polarizable
embedding.51,101,102 Here we focus on the implementation that
our group has done in collaboration with the group of J.-P. Pique-
mal in Paris,51,103 coupling the Gaussian implementation of the
IPD QM/MM described in the previous section and the Tinker
software.104,105 The latter handles the propagation of the tra-
jectory, as well as the computation of all the contributions to
the energy and forces that do not involve the QM density, the
electrostatic distribution and the polarization. In particular, Tin-
ker computes all the Van der Waals interactions, including the
QM/MM ones, and all the bonded interactions among MM atoms
and, if present, across links between the MM and QM subsystems,
that can be handled either using pseudo-bonds103 or link atoms.
Gaussian, instead, deals with the QM subsystem and computes all
the electrostatic and polarization contributions to the energy and
forces, including both QM/MM and purely MM ones. This allows
us to exploit the very efficient FMM-based machinery described in
section 2.2, so that we can achieve linear scaling in computational
cost with respect to the number of MM atoms. A representation
of the steps required to perform BOMD is provided in figure 2.

The IPD QM/MM gradients can be obtained by differentiating
eq. 1 with respect to the coordinates and their implementation
has been already extensively presented for both ground and ex-
cited states51,52,106,107 and are derived in more detail in the Sup-
porting Information. Here, it suffices to say that they can be as-
sembled by computing contributions of the same kinds discussed
for energy computations, namely, electrostatic properties due to
the MM charges and dipoles and one-electron integrals, again,
at a cost that scales linearly with respect to the number of MM
atoms.52 The latter aspect is of fundamental importance if one
wants to use polarizable QM/MM BOMD simulations for model-
ing all but the smallest systems, as due to the very large number
of energy and forces evaluations needed to compute a sufficiently
long trajectory, it is paramount that each single force computation
is performed in the most efficient way possible.

In our implementation, even for very large systems, the cost
is completely dominated by the cost of the QM calculation alone,
with the PE part causing overall only a very small increase in com-
putational cost - in the order of a few percents. To give an idea of
the efficiency achieved with the herein presented implementation
we recall two cases. All the timings were obtained using a single

cluster node equipped with two Intel Xeon Gold 5120 processors
(28 cores) and 128 GB of memory. The two systems are reported
in fig. 3 (i) the BOMD of a small molecule (28 atoms) in an ex-
plicit solvent box (13500 atoms). We performed both ground and
excited state MD simulation still using AMOEBA as polarizable FF
in combination with DFT for the ground and TDDFT for the ex-
cited state (ωB97X-D/6-31+G(d), 194 basis functions). With this
setup we were able to perform about 2250 steps of MD per day on
the ground state and about 500 steps per day on the excited state.
(ii) an excited state BOMD simulation of a large chromophore
(94 atoms) in an fully polarizable solvated protein environment
(5900 atoms). Again, we employed AMOEBA as polarizable FF
and TDDFT (CAM-B3LYP/6-31G(d), 734 basis functions) for the
QM region. For this system, we were able to perform about 200
steps of MD per day. Considering that 0.5 fs integration step is
normally used in these simulations, several ps of trajectory can
be easily obtained in both ground and excited states.

A final important note about MD simulations is the definition
of boundary conditions. Due to the great efficiency of fast sum-
mation techniques, in MM MD this is normally done through pe-
riodic boundary conditions (PBC). When using QM methods that
exploit atom-centered basis functions, the application of such a
strategy is not convenient due to the local character of the wave-
function and alternative approaches have to be devised, which
fall in the family of non periodic boundary conditions. Non peri-
odic boundary conditions must provide a mechanical embedding
potential to prevent the "evaporation" of the MM molecules, and
possibly an electrostatic embedding to reproduce the bulk prop-
erties. If only a mechanical embedding is employed, there should
be enough MM molecules such that the QM molecule is prop-
erly solvated, i.e. its properties should correspond to the ones
calculated in bulk. This can be a harder requirement if the QM
molecule is charged. An overview of different approaches involv-
ing non periodic boundary conditions as well as a historical per-
spective is given in ref. 108. Among the approaches presented,
two are particularly suited for QM/MM MD, and involve the use
of an external potential or of a layer of frozen solvent molecules.
The frozen layer is a simple solution, available in most MD codes,
but it can create some bias at the interface, thus requiring more
MM molecules. On the other hand, external potentials provide
more reliable boundary conditions, and attractive-repulsive po-
tentials have been used in combination with a spherical cavity.109

Mechanical embedding potentials have been used in combina-
tion with a polarizable continuum model to provide non periodic
boundary conditions for EE QM/MM MD.110–112 The extension
of this approach to polarizable MM requires all the components
of the system to be mutually polarized which clearly introduces
additional computational cost.24,32,49,50,113

3.2 Enhanced sampling and free energy methods

When dealing with complex chemical and biological systems, en-
semble sampling with MD is slowed down by the presence of high
free energy barriers. As such, obtaining a correct sampling with
conventional MD (cMD) requires to simulate the system for very
long time (up to ms), which is only affordable with specific hard-
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Fig. 3 Examples of systems studied with polarizable QM/MM BOMD. Panel (a) shows shows a QM molecule of 3-hydroxiflavone in MM acetonitrile

(drawn in blue). The outcome of the excited state BOMD is an excited state proton transfer, which is highlighted by the white arrow. Panel (b)

shows the orange carotenoid protein: the QM part is the carotenoid, the MM part comprises the protein and the solvent molecules (water), which are

not drawn for clarity.

ware and with fully classical potentials.114,115 Numerous meth-
ods, called enhanced sampling techniques, have been developed
in order to face these problems at a much lower computational
cost.116 These methods can be divided into two subcategories:
unconstrained methods and collective variable ones.

Among unconstrained methods, replica exchange MD (REMD)
exploits simultaneous simulations at different temperatures, or
with parametrically scaled Hamiltonians, to cross the high energy
barriers of the system.117 The most widely used formulations al-
low to preserve the correct canonical sampling of the system in
each replica. The main advantage is that no a priori knowledge
of the free energy surface is needed, and that the massively par-
allel infrastructures of super-computing centers can be exploited
in their full potential. On the other hand, these are rather expen-
sive methods for systems that have a large number of degrees of
freedom. Another unconstrained enhanced sampling technique is
accelerated MD (aMD),118,119 and the closely related Gaussian
accelerated MD (GaMD).120 In these techniques the potential is
modified in such a way that the barriers are lowered, while con-
serving the most significant features of the free energy surface
(FES). Then, a single MD trajectory is propagated with the new
Hamiltonian, and the resulting ensemble is reweighted to match
the one that is obtained in the canonical sampling of the original
FES.119

Collective variable (CV) methods, such as umbrella sampling
(US), (well-tempered) metadynamics ((wt-)MetaD),121–123 and
temperature accelerated MD (TAMD)124 can be considered as a
combination of dimensionality reduction techniques with acceler-
ated MD. They leverage an a priori knowledge of the free energy
landscape through the definition of a CV, a function of the coor-
dinates of the system that can be interpreted as an approximation
of a reaction coordinate, and should ideally collect all the slow
degrees of freedom of the system. Then a bias is applied only
along the CV direction in the phase space, while all the other
degrees of freedom are unbiased and are therefore sampled in a
cMD framework. To obtain a proper sampling with these meth-
ods it is necessary to simulate the system long enough to allow
the remaining unbiased degrees of freedom to relax. When this
is achieved, the reconstruction of the free energy landscape along
the collective variable is obtained. Since the bias is only applied

in a one- (or low-) dimensional projection of the phase-space, all
these methods can conveniently be applied to highly dimensional
systems without particular disadvantages, provided that a good
CV is defined.

A detailed discussion of the theoretical aspects of enhanced
sampling methods and their applications is beyond the scope of
this perspective, and the reader should refer to specific reviews
on the topic.116,119,125 Here, instead, we focus on the extension
of enhanced sampling methods to QM/MM Hamiltonians.

As a matter of fact, QM/MM dynamics and enhanced sampling
techniques have been developed, and became widely used meth-
ods, during the first years of the new millennium. The main ob-
jective of these studies was to obtain accurate free energy esti-
mations for chemical reactions in complex environments. En-
zymatic reactions are an ideal target for this research: in the
early 2000s, QM/MM dynamics with semiempirical (or some-
times DFT) quantum methods and classical non-polarizable force
fields were used in combination with umbrella sampling126 and
thermodynamic integration techniques,127–129 to determine free
energy profiles of enzymatic reactions. Non-enzymatic reactions
such as Diels-Alder cycloadditions were also studied, but with
fewer applications.130 Moving to more sophisticated enhanced
sampling methods, it is worth mentioning the application of tran-
sition path sampling (TPS)131 to the study of lactate dehydroge-
nase enzymes.132

It should be noted that, since the propagation of a QM/MM
dynamics requires a great computational effort and only few ps
per day of MD can be produced with current methods, the interest
was mainly focused on methods, such as US or TPS, where the
sampling of the relevant part of the phase space can be performed
simultaneously, by exploiting independent trajectories. Despite
these CV methods are less flexible than other ones such as MetaD,
and a good guess of the CV is essential to obtain good results,
they are probably most suited to these studies as they can trivially
exploit massively parallel infrastructures to produce a reasonable
sampling in relatively low wall-clock time.

To the best of our knowledge, replica exchange methods in
combination with QM/MM descriptions were only applied as a
proof of concept on model systems.133,134 The reason for this mi-
nor interest in these methods is that, despite being very general
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and powerful, when applied to large systems they require a large
number of replicas to be propagated for long time. This is often
not affordable for QM/MM Hamiltonians with the current com-
putational power; therefore, when a good CV is available, the
application of CV methods is by far more convenient. It should
be underlined that modification of the classic temperature REMD
algorithm, as solute tempering, can significantly reduce the com-
putational cost associated with these calculations as shown by
Schwörer et al., but applications to “real-life” cases are still miss-
ing.

The implementation of enhanced sampling techniques within a
polarizable QM/MM framework does not present significant the-
oretical issues, because these methods just alter the equation of
motion used to propagate the dynamics, and they are not depen-
dent on the potential used. Therefore coupling these methods
with polarizable multiscale models is generally straightforward,
and only requires the MD engine to support the specific sampling
method that one wants to apply. The ingredients needed for the
simplest methods (such as harmonic potentials to perform US)
are already implemented in almost all MD software, including
Tinker,135 and can be easily exploited to perform free energy cal-
culations. In order to use more complex and flexible CV based
methods, it is very convenient to exploit specific codes that pro-
vide a general interface to do so. In this regard we mention the
powerful Plumed library,136 which can be added as a plugin in
virtually any MD engine with little effort, and is already recog-
nized as a standard in the field. REMD based methods are im-
plemented in some MD engines, and their implementation is in
theory quite straightforward. In practice, since this approaches
require many trajectory to be propagated in parallel and com-
municate each other, for an efficient implementation a well orga-
nized parallel interface is almost mandatory, making it preferable
to exploit the already existing implementations.

Despite the apparent simplicity of integrating enhanced sam-
pling techniques and polarizable QM/MM, the applications are
still extremely scarce.134 This is most probably due to the fact
that, with inefficient implementations, the cost of polarizable MM
can be quite high. The main approach was therefore to use larger
QM regions in combination with cheap QM methods embedded
in static MM environments. Nonetheless, new inexpensive and
linear-scaling implementations of polarizable embedding for dif-
ferent QM methods as the ones described in the previous section
will make these approaches more and more appealing. In partic-
ular, the availability of very general polarizable FF, like AMOEBA,
should allow the calculation of free energy profiles with a proto-
col very similar to the ones cited above, but with a more robust
description of the environment. This could also be exploited to re-
duce the region of QM system to the few atoms actually involved
in the chemical reaction leaving everything else as a polarizable
environment without considerable loss in accuracy.

4 Simulation of spectroscopies

As already commented in the Introduction, EE QM/MM methods
are now routinely employed to study several aspects of molecule-
environment interactions and their effect on spectroscopy.7,137

As a polarizable embedding is, in principle, a more complete

approach to describe the QM-classical coupling, polarizable
QM/MM approaches are expected to represent an even better
framework to reproduce spectroscopic properties of molecules
embedded in complex environments, and, in particular biosys-
tems.8 Here we focus on two specific spectroscopies that have
been more often investigated with these hybrid methods, namely
vibrational and electronic ones.

4.1 Vibrational spectroscopy

The most common approach to vibrational spectroscopy is rep-
resented by the normal-mode analysis in the harmonic approxi-
mation. This strategy requires to compute and diagonalize the
Hessian matrix of the potential energy surface (PES) calculated
at a minimum geometry, whereas IR and Raman intensities are
obtained respectively through the derivatives of dipole moment
and polarizability. Anharmonicity can be included by computing
higher-order derivatives of the energy with respect to the atomic
positions. The normal-mode approach clearly represents a pow-
erful technique for its simplicity, and allows an easy assignment
of vibrational peaks to normal modes of the molecule. This ap-
proach has been largely used in combination with electrostatic
QM/MM approaches and more recently extended to polarizable
QM/MM for describing molecules in solution.138,139

However, in complex environments such as proteins, the PES
of the system is extremely rugged, and contains numerous local
minima. Extensive sampling of these minima might be required
in order to obtain accurate vibrational properties, and this task
is usually performed through classical MD or Monte Carlo tech-
niques, followed by partial or full optimization of the system.140

The latter task can be quite tedious given the roughness of the
PES, and the optimizations might be difficult to converge. More-
over, assembly and diagonalization of the Hessian matrix for such
large systems can be prohibitively expensive. To overcome this
problem, different techniques have been proposed such as the one
using a partial Hessian diagonalization (often for the QM region
only)141 or the one computing only modes of interest through
algorithms such as vibrational mode-tracking.142

A substantially different approach is based on autocorrelation
functions (ACFs) extracted directly from a MD simulation.143,144

It can be shown that the IR spectrum is proportional to the Fourier
transform of the dipole-dipole ACF 〈µ(t)µ(0)〉:

IR(ω) ∝ βω2
∫ ∞

0
eiωt 〈µ(t)µ(0)〉dt (8)

similarly, the Raman spectrum is proportional to the Fourier
transform of the polarizability ACF.144 A clear advantage of this
method is that it automatically includes anharmonic and finite-
temperature effects, while not requiring the identification of all
local minima and the corresponding Hessian, which makes this
approach particularly appealing for QM/MM calculations.141,145

On the other hand, assignment of vibrational modes is not
straightforward for this approach. A qualitative understanding of
vibrational modes can be obtained by computing the velocity au-
tocorrelation function for some atoms or internal coordinates.146

A more rigorous approach to extract effective normal modes is
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based on a variational principle applied to the vibrational fre-
quencies.143,145

4.2 Electronic and vibronic spectroscopies

The most common approach employed for QM/MM calculations
of electronic absorption spectra is based on the calculation of ver-
tical excitation energies, in many solute/environment configura-
tions, which are sampled by classical MD methods. This “ensem-
ble” method allows considering the effect of the inhomogeneous
environment distribution on the band broadening.147–150

This approach, however, completely neglects vibronic coupling,
which impacts substantially absorption lineshapes even when the
vibronic progression itself is hidden under inhomogeneous broad-
ening. In order to overcome this limitation, the vibronic lineshape
can be computed at an optimized geometry in implicit solvent,
and convoluted with the inhomogeneous distribution function of
the excitation energy obtained by MD sampling.151 In order to
include the coupling between the environment and the internal
degrees of freedom, this approach should be complemented by a
normal-mode calculation at each MD snapshot.152

In principle, all the information on the coupling between an
electronic excitation g → e and the nuclear degrees of freedom
of a molecule could be obtained knowing how the excitation en-
ergy ∆E changes along the ground-state PES. If the ground-state
wavepacket trajectory of the nuclei was known, all the informa-
tion on vibronic coupling could be determined by the time de-
pendence of ∆E. Based on a ground-state trajectory it is thus
possible to compute vibronic properties, such as absorption line-
shapes and Resonance Raman scattering, beyond the harmonic
approximation, automatically including the effect of the envi-
ronment. The approach we review here is based on expressing
the vibronic coupling in terms of a “spectral density” function
(SD), which describes the frequency-dependent linear coupling
between the electronic excitation and the nuclear degrees of free-
dom.153–156 The electronic lineshapes can be expressed in a time-
domain approach within the second-order cumulant expansion
formalism.153

From a Born-Oppenheimer ground-state trajectory, the SD can
be obtained from the Fourier transform of the ACF of the exci-
tation energy fluctuations, i.e., Ccl(t) = 〈U(t)U(0)〉, where U(t) =

∆E(t)−〈∆E〉.

J(ω) =
βω

2π

∫ ∞

−∞
eiωtCcl(t)dt (9)

Here, β = 1/kBT is the inverse temperature along the Born-
Oppenheimer trajectory. The subscript “cl” specifies that the tra-
jectory of the nuclei is classical, and obtained through Newton’s
equations of motion. The temperature-dependent prefactor in
eq. (9) allows reconstructing the spectral density for a quantum
trajectory of the nuclei, based on the classical trajectory ACF.154

In practice, the time-series of the excitation energy is calculated
with an excited-state method along the ground-state trajectory.

In order to obtain the absorption lineshape, it is useful to de-
fine the lineshape function geg(t), which describes the dephasing
between the ground- and excited-state wavepacket dynamics fol-
lowing excitation.153 In the second-order cumulant expansion,

the lineshape function is given by:

g(t) =−
∫ ∞

0
dω

J(ω)

ω2

[

coth

(

β h̄ω

2

)

(

cos(ωt)−1
)

− i(sin(ωt)−ωt)

]

(10)

and the absorption (homogeneous) lineshape can be obtained as:

S(ω −ωeg) = ℜ

∫ ∞

0
dt ei(ω−ωeg)t−g(t). (11)

where ωeg is the frequency corresponding to the g → e vertical
excitation. The second-order cumulant expansion is exact only
when the ground-state PES is harmonic, and the excitation en-
ergy depends linearly on the nuclear coordinates,154,157 and ap-
proximate in the general anharmonic case. Recently, however,
it was demonstrated that the second-order cumulant expansion
gives accurate results even for anharmonic potentials.158

When considering a chromophore in a complex environment
such as a protein matrix, the spectral density has contributions
from both the internal vibrations of the chromophore and from
the motions of the environment. Generally, the former give rise
to sharp peaks in the SD, whereas the latter contribute to a low-
frequency smooth background.

The environment affects vibronic coupling in several ways. On
the one hand it affects directly the chromophore’s electronic den-
sity, and thus modifies the dependence of ∆E on the nuclear co-
ordinates. On the other hand, it can also affect the nuclear tra-
jectory on which ∆E is computed, by modifying both the equilib-
rium geometry and the vibrational frequencies. The accuracy of
the vibronic calculation is thus directly connected to the embed-
ding method used for the excitation energy calculations and to
the one used for the ground-state trajectory. Combining a polar-
izable QM/MM calculation of excitation energies with a polariz-
able QM/MM MD offers a route towards accurate prediction of
absorption lineshapes in arbitrarily complex environments. We
applied this approach to calculating the absorption lineshape for
a dye intercalated in DNA157,159 and for a keto-carotenoid in a
protein.160

5 Nonadiabatic dynamics

Modeling excited-state processes, such as photoisomerizations
and photoinduced electron and/or proton transfers, often re-
quires theory beyond the Born-Oppenheimer approximation. In
fact, when different states get closer in energy, the nonadia-
batic couplings become non negligible and the BO approxima-
tion breaks down. Among the many methods used to perform
nonadiabatic molecular dynamics, the most suited for modeling
complex chemical and biological systems are those which present
the best compromise between accuracy and computational cost.
Among them, the most popular ones are the methods in which
the nuclear degrees of freedom are classical and the electronic
ones are quantum mechanical, namely the mixed quantum clas-
sical (MQC) methods. As methods requiring a precomputed po-
tential energy surface are not readily applicable to systems with
many degrees of freedom, the most common strategy is to com-
pute the required energy and properties on the fly.161–163 The
most successful and largely used methods belonging to this family
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are the trajectory surface hopping (TSH)164–167 and the methods
based on the multiple spawning.168,169 The mean field Ehrenfest
method has been largely used170,171 as well, but it has a narrower
range of applications, since it is only viable in regions of strong
non adiabatic coupling.

Nonadiabatic MD techniques have been extended to QM/MM
approaches,13,172 initially through mechanical embedding,173

and successively through electrostatic embedding. The latter
formulation has been successfully used in combination with
TSH174,175 and multiple spawning.176,177 Different QM meth-
ods have been used in QM/MM nonadiabatic simulations, such as
semiempirical methods176,178, TDDFT179, and CASSCF/CASPT2
methods.180–185

In general, the frameworks used to perform nonadiabatic
QM/MM simulations combine different codes, specialized in dif-
ferent tasks. One possibility is to interface an existing classical
MD code to an electronic structure code, so that the first drives
the dynamics and the second performs the QM calculation and
takes care of non adiabatic effects. This choice is less general,
but presents a reduced amount of data transfer and it is easier
to implement; for such reasons it is often used in development
implementations. A second option is to use a program that per-
forms the trajectory propagation and calls the appropriate QM
and MM codes for the computation of energies and forces. Many
production codes fall in this category. COBRAMM186 has an
interface to several QM codes and uses Amber187 for the MM
part; SHARC188 and Newton-X189,190 can use a single program
to handle the whole QM/MM calculation or they can interface
Tinker104,105 with another QM method of choice.

The extension of nonadiabatic dynamics to polarizable
QM/MM approaches is neither straightforward nor unique. The
difficulties come from the fact that a polarizable embedding re-
sponds differently to different electronic states. This delicate as-
pect has been already discussed in section 2.3, where we have in-
troduced two different cases which require different formulations
of the QM-MM coupling: LR and SS QM methods. For LR QM
methods such as TDDFT, the polarizable embedding can address
multiple states at the same time, so the extension to nonadiabatic
dynamics is straightforward. However, this approach presents
two limitations, the first is related to the response of the environ-
ment, which lacks the contribution from the relaxed density of the
excited state, as explained in section 2.3. The second is related to
LR QM methods, which often are not suited for nonadiabatic dy-
namics: for instance, modelling internal conversion to the ground
state requires multireference methods, because the ground state
has a multiconfigurational character close to the crossing seam.
In these cases, a SS QM method such as CASSCF has to be used
but its extension to polarizable QM/MM nonadiabatic dynamics
presents some specific theoretical issues which do not apply to
standard electrostatic embeddings. The SS polarizable embed-
ding in fact responds to a specific density, and as such, the correct
definition of a nonadiabatic dynamics trajectory is not uniquely
defined. Considering TSH as the nonadiabatic method, we can
formulate three different strategies for representing the response
of the polarizable embedding, which are graphically represented
in Fig. 4.

The first strategy allows the environment to respond to the
average density, in a state-average formalism. This could be a
possible solution in regions of strong coupling where different
states are close in energy and have similar characteristics, how-
ever it would not be reliable in other regions. A second type of
coupling would be describing each state separately, with the en-
vironment polarized accordingly. But in this case the computa-
tional cost would be much higher and the states would no longer
be orthogonal. A third strategy, possibly more reliable, polarizes
the environment according to the state that is used to propagate
the dynamics. This is computationally simple and retrieves ver-
tical transitions from the selected state to the others. However,
it would cause discontinuities at the hops because of the sudden
change in the description of the environment.

To conclude this section, it is worth mentioning the strategies
that can be used to model nonadiabatic dynamics in multichro-
mophoric systems. Within the formalism of the exciton model
mentioned above, it is possible to describe the excitations of a
multichromophoric system with reduced computational cost. This
has allowed the development of an exciton-model nonadiabatic
dynamics framework,191,192 in which however the exciton cou-
plings are approximated by a dipole interaction. Propagating the
dynamics of an exciton model would also require to calculate
the analytical derivatives of the exciton couplings.193 A nona-
diabatic exciton model with QM/MM description was developed
by Menger et al.,194 using electrostatic embedding QM/MM. In-
troducing a polarizable embedding in the nonadiabatic exciton
model requires overcoming all the difficulties outlined above. In
addition, as the polarizable environment introduces an additional
term in the exciton couplings, a correct description of the dynam-
ics would also require the analytical derivatives of this term.

6 Concluding remarks

In this perspective we have given an overview of the state of the
art of QM/MM approaches which use a polarizable embedding.
The focus has been mostly on the induced point dipole formula-
tion and the analysis which has been presented is mainly appli-
cable to biosystems. We have summarized the most recent devel-
opments but also underlined the still present limitations. From
a computational point of view, the main limitation lies in the in-
herent complexity and computational cost of these methods. As
discussed in section 2.1, the self-consistent treatment of polar-
ization requires one to perform several operations that are not
required for electrostatic embedding, the most expensive being
solving the polarization equations, which has to be done at each
SCF step and, for excited states and response properties, at each
step of the solution of the response equations. We believe that the
use of a linear scaling strategy is the key to address such a limita-
tion. Relying on the FMM, polarizable QM/MM calculations can
be performed at a cost that scales linearly with the size of the MM
system and that is overall small if compared to the cost of solv-
ing the QM equations. This linear scaling implementation will
thus allow the use of polarizable QM/MM methods not only for
static descriptions but also effectively extended to molecular dy-
namics simulations. In particular, the combination of enhanced
sampling techniques with polarizable QM/MM approaches can
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Fig. 4 Schematic representation of the three approaches proposed by the authors to perform non-adiabatic dynamics with PE. A simple SH trajectory

on two states (solid red and blue lines) is schematized in three different steps, with an hop occurring between step 2 and 3. The density used for

calculating the embedding response is symbolized by the color of the protein in background, while the state calculated for the QM part by the color

of the schematized molecule in foreground.

lead to very interesting applications where the PES of a complex
system, obtained with high accuracy, can be efficiently explored.
This is the most promising strategy in the field of reactive pro-
cesses in complex biosystems at a new level of accuracy without
sacrificing computational efficiency. This extension to dynamics
will also have a very important application in the simulation of
spectroscopy in complex environments. As a matter of fact, we
are confident that polarizable QM/MM might become, in the next
decade, the new golden standard for simulating condensed-phase
spectroscopy. In the same way, we believe that polarizable embed-
dings will be largely used to describe excited-state properties and
processes. Their extension to non adiabatic dynamics will then
come as a natural step for the simulation of complex photophysi-
cal processes.

All the applications that we have here presented and discussed,
however, require the fulfillment of a fundamental preliminary
condition, namely polarizable QM/MM implementations have to
be made available in robust, effective and simple-to-use software
packages. This is indeed not a simple objective due to the com-
plexity introduced by the mutual polarization between the QM
and the MM system. As we have discussed in this perspective, dif-
ferent strategies have been used so far, each with its own advan-
tages and limitations. We hope that in the near future these im-
plementations will become more numerous and higher perform-
ing, thus allowing a larger community of users to exploit the ad-
vantages of mutual polarization between the QM and the classical
subsytems in the simulation of biosystems.
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M. Vazdar, M. Eckert-Maksić and H. Lischka, J. Photochem.
Photobiol. A: Chem., 2007, 190, 228–240.

190 M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner,
G. Granucci, M. Persico and H. Lischka, Wiley Interdiscip.
Rev.: Comput. Mol. Sci., 2013, 4, 26–33.

191 A. Sisto, D. R. Glowacki and T. J. Martinez, Acc. Chem. Res.,
2014, 47, 2857–2866.

192 A. Sisto, C. Stross, M. W. van der Kamp, M. O’Connor,
S. McIntosh-Smith, G. T. Johnson, E. G. Hohenstein, F. R.
Manby, D. R. Glowacki and T. J. Martinez, Phys. Chem. Chem.
Phys., 2017, 19, 14924–14936.

193 A. F. Morrison and J. M. Herbert, J. Chem. Phys., 2017, 146,
224110.

194 M. F. S. J. Menger, F. Plasser, B. Mennucci and L. González,
J. Chem. Theory Comput., 2018, 14, 6139–6148.

1–15 | 15


	Introduction
	An induced point dipole formulation of polarizable embedding
	The theory
	The implementation
	The extension to excited states

	Molecular dynamics
	Born-Oppenheimer Molecular dynamics
	Enhanced sampling and free energy methods

	Simulation of spectroscopies
	Vibrational spectroscopy
	Electronic and vibronic spectroscopies

	Nonadiabatic dynamics
	Concluding remarks

