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Polarization three-dimensional (3D) imaging technology has received extensive
attention in recent years because of its advantages of high accuracy, long
detection distance, simplicity, and low cost. The ambiguity in the normal
obtained by the polarization characteristics of the target’s specular or diffuse
reflected light limits the development of polarization 3D imaging technology. Over
the past few decades, many shape from polarization techniques have been
proposed to address the ambiguity issues, i.e., high-precision normal
acquisition. Meanwhile, some polarization 3D imaging techniques attempt to
extend experimental objects to complex specific targets and scenarios through
a learning-based approach. Additionally, other problems and related solutions in
polarization 3D imaging technology are also investigated. In this paper, the
fundamental principles behind these technologies will be elucidated,
experimental results will be presented to demonstrate the capabilities and
limitations of these popular technologies, and finally, our perspectives on the
remaining challenges of the polarization 3D imaging technology will be presented.
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1 Introduction

As an important approach for humans to record and perceive environmental
information, traditional optoelectronic imaging techniques are increasingly ineffective
due to the loss of high-dimensional information [1, 2]. With advancements in new
sensors, data transmission, and storage, more information about the light field such as
phase, polarization, and spectral information can be efficiently detected and recorded [3–6],
which helps to construct a functional relationship between the reflected light information
and the contour of the object surface to obtain 3D information. Currently, the 3D
reconstruction technique has drawn widespread attention and achieved great progress in
face recognition, industrial inspection, autonomous driving, and digital imaging [7–16].

Existing 3D imaging technologies can be divided into twomajor categories: active and passive
techniques [17]. Generally, these methods vary in cost, hardware configuration, stability, running
speed, and resolution. The active techniques use active illumination for 3D reconstruction such as
time-of-flight (TOF), lidar 3D imaging, and structured light 3D imaging. Specifically, the TOF
technique [18] employs an active emitter to modulate the light in the time domain and an optical
sensor to collect the light scattered back by the object, and finally, it recovers depth information by
calculating the time delay from the signal leaves the device and the signal returns to the device.
The TOF technique has been widely used in commercial products like Kinect II, but the
technology is susceptible to ambient light interference and limited by the temporal resolution of
the signal system, so the achieved depth resolution is usually not high. The lidar 3D imaging [19]
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adopts the laser ranging principle to acquire system-target micro-
surface element distance information, and then the 3D information
of the target surface is obtained by mechanical scanning or beam
deflection. Therefore, lidar 3D imaging has poor real-time performance
for 3D imaging of large targets, and it is difficult to achieve popularity
due to its complexmechanical structure, which leads to large system size
and high cost. The structured light 3D imaging technology utilizes a
projection device to actively project structured patterns. For the
structured light 3D imaging, a one-to-one correspondence is
constructed between points in the camera plane and those in the
projection plane by decoding the captured contour images [20, 21],
and camera calibration parameters are combined to obtain 3D point
cloud data. Despite the advantage of high-precision imaging, the
structured light 3D imaging technology still suffers from the
problem of poor resistance to ambient light interference and
decreasing accuracy with increasing detection distance.

The passive techniques with no active illumination for 3D
reconstruction mainly include stereo vision and light field cameras.
Specifically, the stereo-vision system [22] captures images from at least
two different viewpoints and finds corresponding points from these
images for 3D coordinate calculations based on triangulation. Because
its reconstruction accuracy is inversely proportional to the length of the
camera baseline, the stereo vision method is difficult to obtain high-
precision 3D surface information in long-distance detection. The light
field camera 3D imaging technique [23] acquires light source direction
by embedding a micro-lens array between the lens and detector, thus
obtaining 3D information under passive conditions; however, similar to
stereo vision, this technique is limited by the distance between the
micro-lens arrays, so it cannot realize long-distance 3D imaging and
suffers from a low imaging accuracy.

With the increasingly urgent demand for long-range, high-
precision, and high-dimensional target information in many
fields such as security surveillance, deep-space exploration, and
target detection, 3D imaging with higher performance through
deep mining and decoding the multi-dimensional physical
information of the optical field has become the mainstream
research direction. Since the 1970s, domestic and foreign
researchers have investigated the utilization of polarization
information for 3D shape recovery of target surfaces, and they
have developed a series of polarization 3D imaging methods
[24–27]. The core of these methods is to exploit Fresnel laws to
establish the functional relationship between reflected light
polarization characteristics and three-dimensional contour.
Benefiting from the special reconstruction mechanism,
polarization 3D imaging technology has the advantages of high
reconstruction accuracy, simple detection equipment, and non-
contact 3D reconstruction. Therefore, this paper will primarily
focus on representative Shape from Polarization (SfP) techniques.
This paper elucidates the principles of polarization 3D imaging
based on specular reflection and diffuse reflection and presents some
typical technical theories and their experimental results.

The rest of the paper is organized as follows: Section 2 introduces
the basics of polarization 3D imaging based on specular reflection
and diffuse reflection. Section 3 discusses the principles of SfP
techniques along with some experimental results to demonstrate
their performances; Section 4 presents our perspectives on the
challenges of polarization 3D imaging technology; Section 5
summarizes this paper.

2 Basics of polarization 3D imaging

2.1 Principles of the polarization 3D imaging

Since the 3D contour of the target surface can be uniquely
determined by the normal vector [28, 29], the polarization 3D
imaging technology reconstructs the target 3D contour by
obtaining the normal vector information of the surface micro-
surface element. As shown in Figure 1A, the reflected light is
detected by the detector through the polarizer when the incident
light reaches the object surface and reflects [30]. The incident light,
the object surface normal and the reflected light are in the same
plane, ϕ is the angle of polarization (AoP), the transmission
direction of the reflected light is z-axis positive direction under
the assumption of orthographic projection. The object surface
normal representation can be directly displayed in Figure 1B,
where θ is the zenith angle of the object surface normal, and φ is
the azimuth angle [31]. From the above analysis of the polarization
3D imaging process, the normal vector of the object surface based on
the polarization characteristics of reflected light is expressed as
�n � [tan θ cosφ, tan θ sinφ, 1]. In practice, the solution to the
target normal vector is obtained by calculating polarization
characteristics: the zenith angle (equal to the incident angle) θ

and the azimuth angle φ. The zenith angle θ can be estimated
from the degree of polarization (DoP) and the target surface
refractive index (n). Meanwhile, the azimuth angle φ can be
obtained from the AoP, corresponding to the polarizer rotation
angle at which the detector acquires the maximum light intensity
when rotating the polarizer. However, due to the difference between
Fresnel reflection and transmission coefficients [30], 3D imaging
based on the polarization characteristics of diffuse and specular
reflection needs to be discussed separately, which will be detailed in
Section 2.2.

2.2 Polarization 3D imaging model based on
reflected lights

According to Fresnel Laws, light reflection and refraction occur
when unpolarized light arrives at the target surface, which causes a
change in the polarization state of the incident light [32].
Polarization state changes are significantly different for reflected
and refracted light, and they are expressed as [29, 31]:

Pr �
r2p − r2s
r2p + r2s

∣∣∣∣∣∣∣∣∣
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where rs, rp, ts, and tp denote the reflection and transmission
coefficients when decomposing a plane light wave into vertical
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and parallel components, i.e., s-component and p-component,
respectively, as shown in Figure 1C. The reflection and
transmission coefficients are defined as:

rs � E0rs

E0is
� n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

rp � E0rp

E0ip
� n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

ts � E0ts

E0is
� 2n1 cos θ1
n1 cos θ1 + n2 cos θ2

tp � E0ip

E0ip
� 2n1 cos θ1
n2 cos θ1 + n1 cos θ2

(2)

Since the polarization of the light emitted from the target surface
differs in the reflected and refracted states, it is necessary to analyze
the light state when it reaches the incident interface of different
target surfaces, which provides a basis for selecting suitable
polarization 3D reconstruction methods for different object
surfaces. In 1991, Wolff provided a detailed classification and
description of the types of light emitted from the target surface
[28]. As shown in Figure 2A, Wolff classified the light into four
categories: specular reflection light, diffuse reflection light, body
reflection light (which can also be considered as special diffuse
reflection light), and diffraction light. For body reflection light and
body reflection light, they are generated with certain limitations and
cannot reveal the true relationship between the target structure and
the incident angle of the light, so the two types of light are usually not

considered in recovering the 3D contours of the target and hence the
existing polarization 3D imaging technology is mainly based on two
different polarization characteristics of reflected light, namely,
specular reflection and diffuse reflection. Specifically, as shown in
Figure 2B, for smooth surfaces such as glass and metal, the reflected
light is mainly displayed as specular reflection light with polarization
information. For Lambertian objects like plaster, walls, and wood, it
is usually assumed that the incident light enters the interior of the
object, then scattered several times into unpolarized light, and finally
transmitted into the air and received by the detector. Therefore, the
selection of polarization 3D imaging methods based on different
polarization characteristics is necessary for target surfaces of
different materials, corresponding to two major methods based
on specular reflection and diffuse reflection.

2.3 The ambiguity problem of polarization
normal vector

As illustrated in Figure 1, the normal vectors of the target surface
can be determined by the zenith angle θ and the azimuth angle φ.
Therefore, to obtain accurate normal vector information in the study
of polarization 3D imaging technology, it is necessary to accurately
acquire the above two normal vector parameters. The following will
analyze the problems of accurate normal vector acquisition based on
specular reflection and diffuse reflection polarization characteristics,
respectively.

FIGURE 1
(A) The measurement process of polarization 3D imaging. Adapted from [30], with permission from IEEE. (B) The schematic of a normal vector.
Reproduced/adapted from [31], with permission from IEEE. (C) The s- and p-components of reflected and refracted light. Reproduced from [30], with
permission from IEEE.
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Since specular and diffuse reflection light emitted from the
object surface follow the laws of reflection and transmission, the
relationship between DoP and the zenith angle is shown in Eq. 2.

Figure 3 presents the characteristic curves of polarization versus
zenith angle θ for specular and diffuse reflections, respectively. It can
be seen from Figures 3A,B that in the process of solving the zenith

FIGURE 2
(A) Different types of reflected light from surfaces. Reproduced from [33], with permission from IEEE. (B) Polarization 3D imaging of different
materials. Reproduced under CC-BY-4.0– [34] -http://journal.sitp.ac.cn/hwyhmb/hwyhmben/site/menu/20101220161647001.

FIGURE 3
(A) The relationship between the degree of polarization and the incident angle with different refractive indices in polarization 3D imaging based on
specular reflection. (B) The relationship between the degree of polarization and the incident angle with different refractive indices in polarization 3D
imaging based on diffuse reflection. (C) The variation of light intensity information with the rotation angle of the polarizer. (A–C) Reproduced from [30],
with permission from IEEE.
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angle based on specular reflection, a degree of polarization
corresponds to two zenith angles θ, which are on both sides of
the Brewster angle, causing the ambiguity of the zenith angle. In
contrast, for the acquisition of the zenith angle based on diffuse
reflection, the degree of polarization varies monotonically in the
range of θ = [0°, 90°], indicating that the degree of polarization has a
one-to-one correspondence with the zenith angle. Therefore, the
solution to the zenith angle is a major challenge in polarization 3D
imaging technology based on specular reflection.

Meanwhile, according to Malus laws [35], the relationship
between the light intensity and the polarizer rotation angle can
be represented as:

I � I max + I min

2
+ I max − I min

2
cos 2θpol − 2ϕ( ) (3)

where Imax and Imin denote the maximum and minimum light
intensity received by the detector during rotation, respectively,
θpol denotes the rotation angle of the polarizer, and ϕ denotes the
polarization angle. Figure 3C shows the actual measured variation
curve of diffuse light intensity based on the change in the polarizer
rotation angle [30], and combined with Eq. 3, it can be seen that the
light intensity I reaches the maximum value when the polarizer
rotation angle is equal to ϕ or ϕ+180°. In addition, since the curve
fitting approach requires large numbers of polarization images,
which is complex and need intensive calculations, Wolff used
Stokes vectors to obtain the angle of polarization, which requires
only three images with polarization direction at 0o, 45o, and 90o. Due
to no one-to-one correspondence between Imax and the angle of
polarization ϕ, there is a multi-valued problem of φ = ϕ or φ = ϕ±π in
the solution of the azimuth angle, which leads to ambiguity in the
normal vector information obtained from polarization. Meanwhile,
the ambiguity problem of the azimuth angle still exists in the
polarization 3D imaging technology based on specular reflection,
which can be expressed as φ = ϕ ± π/2.

Solving the ambiguity problem of the zenith angle θ and azimuth
angle φ is the major focus and difficulty for researchers to develop
polarization 3D imaging technology. Meanwhile, other problems in
polarization 3D imaging, such as the inability to obtain absolute
depth information and the difficulty of specular-diffuse reflection
separation, need to be solved. For different types of reflected light,
various methods have been proposed to solve these problems. In this
paper, typical techniques andmethods for addressing the ambiguous
normal vector and other challenges will be reviewed from the
perspectives of polarization 3D imaging technology based on
specular reflection and diffuse reflection. Here, the techniques for
eliminating the ambiguous normal vector and their characteristics
are outlined in Table 1 to help readers better grasp the core of this
paper.

3 Polarization 3D imaging technology

3.1 Polarization 3D imaging based on
specular reflection

Fresnel Laws indicate that the polarization characteristics of
specular reflection light are easier to detect and more distinct than
that of diffuse reflection light. Thus, researchers initially mainly used

polarization characteristics of specular reflection information for 3D
imaging of smooth surface materials like metals, transparent glass,
and other specular targets. Many polarization 3D imaging
techniques based on specular reflection have been proposed to
solve the ambiguity problem of zenith and azimuth angles.

3.1.1 Rotational measurement method
Miyazaki et al. [31] developed a method to solve the ambiguity

problem of the zenith angle by rotating the object. By assuming that
the target surface is smooth, closed, and non-shaded, they divided
the target surface into the Brewster-Equatorial region (B-E), the
Brewster-South Pole region (B-N), and the Brewster-Brewster
regions (B-B) based on different values of polarization, as shown
in Figures 4B,C. It was assumed that the B-E region contained a
region that obscures the boundary so that a boundary point zenith
angle θ = 90° existed in this region, and the zenith angle is
determined by constraining the range of zenith angles of the
points in the region θB<θ < 90°. For the B-N region containing a
region of pixel points with a zenith angle θ = 0°, the constraint on the
zenith angle of the region is 0° < θ < θB. For the solution to the
ambiguity problem in the B-B region, polarization images of the
target before and after rotation are obtained, as shown in Figure 4A.
Based on the relationship between the difference in the DoP of the
corresponding point before and after rotation, the first-order
derivative of the DoP and the rotation angle, i.e., ρ(θ+Δθ)-
ρ(θ)≈ρʹ(θ)Δθ, as well as the positive or negative sign of ρʹ(θ) can
determine whether the zenith angle θ of the pixel points in the B-B
region belong to 0° < θ < θB or θB < θ < 90°, as shown in Figures 4D,E.

Since the rotational measurement method does not need to
obtain the specific value of the rotation angle, calibration of the
imaging system can be avoided. Even if there is an error in the
reflected light polarization value, it does not affect the judgment of
the Brewster angle in the first-order derivative of DoP, so the
method has high robustness. However, multi-angle information
acquisition and multiple measurements increase the complexity
of the imaging system. Meanwhile, the existence of internal
mutual reflection of transparent objects will result in a large
error and poor reconstruction accuracy. Additionally, the method
cannot image the moving target.

3.1.2 Polarization 3D imaging techniques with
multi-spectrum

In 1995, Partridge et al. [36] analyzed the difference in DoP
between reflected and transmitted light, and it was found that when
the light was transmitted from the interior of the object, i.e., the
emitted light was diffuse reflection light, its DoP corresponded to the
zenith angle uniquely. Therefore, based on the target infrared
radiation characteristics, Partridge adopted a far-infrared band
detector for imaging to solve the zenith angle uniquely. However,
random and systematic errors in the infrared detection system have
a large impact on the imaging results.

Later, Miyazaki et al. [37] combined visible imaging with far-
infrared imaging to obtain a unique solution of the zenith angle. To
effectively detect the infrared information of the target, they used a
hair dryer to heat the target surface and collected 36 infrared
polarization images at different polarization angles by rotating
the infrared polarizer to obtain the DoP of the target in the far-
infrared band. By exploiting the unique correspondence between the
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DoP and the zenith angle in the far-infrared band, they avoided the
ambiguity problem of the zenith angle in visible imaging. However,
due to different types of visible and infrared imaging, the imaging
system of the method is complex and costly, and there are problems
in practical applications such as the need to match between images
of different wavelengths, increasing the complexity of the
application.

Inspired by the above methods, in 2012, Stolz et al. [38]
proposed a method based on multi-spectral polarization
processing to solve the ambiguity problem of the zenith angle
and the problem of complex and expensive detection systems

when obtaining information from multi-band systems. According
to Cauchy’s dispersion formula, the refractive index decreases with
the increase in the incident light wavelength in the visible
wavelength [53]. Combining with Eq. 1 and Figure 3A, it can be
seen that the refractive index is a parameter of the DoP and when the
incident light wavelength increases, the corresponding zenith angle-
polarization curve will also shift to the right, i.e., the Brewster angle
shifts to a larger coordinate direction. By analyzing the variation
curve of polarization with the zenith angle at different incident light
wavelengths, the zenith angle ambiguity problem can be eliminated.
Figure 5A illustrates the variation curves of DoP at different

TABLE 1 Overview of SfP for eliminating the ambiguous normal vector.

Techniques Problem solved Illumination Waveband Objects Complexity

Miyazaki et al. [31] Zenith angle Passive Visible Specular High

Partridge et al. [36] Zenith angle Passive Far-infrared Specular Middle

Miyazaki et al. [37] Zenith angle Passive Visible and far-infrared Specular High

Stolz et al. [38] Zenith angle Passive Multiple Specular Middle

Hao et al. [39, 40] Zenith angle and refractive index Passive Multiple Specular Low

Morel et al. [41–43] Azimuth angle Active Visible Specular High

Cui et al[33] Azimuth angle Passive Visible Specular or complex Less high

Miyazaki et al. [44] Normal vector Passive Visible Black and specular Less high

Atkinson et al. [45] Azimuth angle Active Visible Complex High

Mahmoud et al. [46] Azimuth angle Passive Visible Diffuse Low

Kadambi et al. [47]. Azimuth angle Passive Visible Complex Less high

Tian et al. [48] Azimuth angle Passive Visible Complex Less high

Liu et al. [49] Normal vector Active Visible Complex Less high

Deschaintre et al. [50] Normal vector Active and flash Visible Dielectric Less high

Lei et al. [51] Normal vector Passive Visible Wild Middle

Shao et al. [52] Azimuth angle Passive Visible Human face Middle

FIGURE 4
Schematic diagram of Miyazaki’s experiment. Reproduced from [31], with permission from IEEE. (A) The target information acquisition process with
the target rotating at a small angle. (B) Polarization degree. (C) Areas divided by Brewster’s corner. (D) The relation curve between the polarization degree
and the incident angle. (E) The derivative of polarization degree.
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wavelengths, and the difference is exploited to solve the ambiguity of
the zenith angle as follows: 1) Calculate the DoP at two different
wavelengths (refractive index) pλ1 and pλ2 (λ1 > λ2), respectively; 2)
Estimate the variability of polarization at different wavelengths Δp =
pλ2-pλ1. 3) If Δp is larger than zero, the zenith angle θ = θ1; otherwise,
θ = θ2. As shown in Figures 5B–D, Stolz et al. performed an
experimental validation, and the result demonstrated that the
method could realize undistorted 3D reconstruction of
transparent targets. Additionally, the method can achieve
accurate reconstruction acquisition for targets with local gradient
mutations, providing an important reference for studying
polarization 3D imaging techniques for complex target surfaces.
However, because of the acquisition of intensity information in
multiple bands, this method requires active illumination and cannot
image in real time.

Hao and Zhao et al. [41, 39] also conducted an in-depth study on
multi-spectral polarization information, and they proposed a
method for solving the incidence angle and refractive index
simultaneously by using multi-spectral polarization characteristics
of the target, which realized polarization 3D reconstruction of highly
reflective non-textured nonmetallic targets. Besides, they added
wavelength information to the relationship between the zenith
angle and DoP by using Cauchy’s dispersion formula, so the
problem of solving the zenith angle was transformed into a
nonlinear least-squares problem. The utilization of spectral and
polarization information effectively separates and suppresses stray
light on the target surface, further improving the accuracy of target
3D reconstruction. The reconstruction results are illustrated in
Figure 6.

In the study of polarization 3D imaging based on specular
reflection light, the above-mentioned solutions to the ambiguity

zenith angle problem have been introduced. After the accurate
normal zenith angle θ is obtained, the last “obstacle” to realizing
polarization 3D imaging based on specular reflection is to
eliminate the ambiguity of the normal azimuth angle φ. In
the early period of polarization 3D imaging, utilizing the
ranking technique was the main method to solve the
azimuthal ambiguity problem. This method determines the
azimuth angle direction by assuming that the surface normal
vector at the target boundary is perpendicular to the points at
the boundary and there is no obvious “mutation” region on the
target surface. Then, it eliminates surface azimuthal ambiguity
by propagating the azimuth angle determined at the boundary to
the interior of the target surface [31]. Later, Atkinson et al.
conducted a related study on the ranking technique [30], but this
method has weak applicability in complex target surfaces, and it
requires high accuracy for the propagation algorithm,
increasing the complexity of the polarization 3D imaging
algorithm. Therefore, researchers have started to eliminate
azimuthal angle ambiguity by changing the illumination
conditions and combining priori information. Two
representative types of azimuthal ambiguity elimination
techniques are reviewed below.

3.1.3 Active illumination method
French scientists Morel et al. [41–43] proposed a method using

active illumination to eliminate the ambiguity of azimuth angle.
They constructed hemispherical diffuse dome light consisting of
four mutual symmetric 1/8 spherical subsystems, as shown in
Figure 7A. The system independently controlled four sub-
sources to illuminate the target from different directions (east,
south, west, and north) for four target hemisphere images, as

FIGURE 5
3D reconstruction of transparent targets with a partial high slope. Reproduced under CC-BY-4.0- [38] - https://opg.optica.org/ol/fulltext.cfm?uri=
ol-37-20-4218&id=243204. (A) The DoP curve at different incident light wavelengths. (B) Intensity image. (C) Polarization degree. (D) 3D reconstruction
result.
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shown in Figure 7B. The binary image Ibin1 that distinguishes
between east and west directions was achieved by comparing the
intensity images after illumination from the east and west
directions. Similarly, the binary image Ibin2, which can
distinguish between south and north directions, was obtained.
The detailed procedures for solving the azimuthal ambiguity
problem are: 1) φ (azimuthal angle) = ϕ (polarization angle) -
π/2; 2) Iquad = 2Ibin1 + Ibin2; 3) If [(Iquad = 0) ∧ (ϕ ≤ 0)] ∨ (Iquad = 1)
∨ (Iquad = 3) ∧ (ϕ ≥ 0), φ = ϕ + π.

However, in actual operations, the method requires multiple
LED light sources and needs to regulate the light sources in
different directions separately to solve the ambiguity of the
azimuth angle, so it is complex and cannot be applied to

moving targets. Meanwhile, it is difficult to implement in
outdoor scenes.

3.1.4 Multi-view fusion method
In 2017 Cui et al. [33] provided a multi-view polarization 3D

imaging technique for reconstructing smooth target surfaces
and successfully realized complex target surface 3D
reconstruction based on the study of the target local
reflectivity. They obtained target intensity and polarization
information from at least three viewpoints by setting up
multiple polarization cameras at different spatial locations
and recovered the camera position as well as an initial 3D
shape through the methods of classical motion structure [54]

FIGURE 6
Surface reconstruction of the objects. Reproduced under CC-BY-4.0- [39] -http://xb.chinasmp.com/CN/10.11947/j.AGCS.2018.20170624. (A)
Intensity images. (B) Results after removing the highlight. (C) Reconstruction results by stereo vision. (D) Reconstruction results by multi-spectral
polarization.

FIGURE 7
(A) The experimental diagram. (B) The acquisition principle of the segmented image. (A,B) Reproduced from [43], with permission from IEEE.
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and multi-view stereo [47, 55]. Then, the ambiguity zenith angle
of complex object surfaces in high-frequency regions could be
corrected by the acquired priori initial 3D shape information, as
shown in Figure 8A. Additionally, drawing on the iso-depth
contour tracking method [59] in photometric stereo, Cui et al.
spreaded the azimuth angle information obtained from the
recovery of high-frequency regions to low-frequency regions
to eliminate the ambiguity azimuth angle in low-frequency
regions. They compared the results with those of some other
polarization 3D imaging methods [50, 57], as shown in
Figure 8B, which illustrated the accuracy of the proposed
method and the 3D imaging feasibility of target surfaces with
different reflectivity. However, this method requires several
standard points with reliable depth as the “seed” for depth
propagation in the tracking process, so it cannot effectively
eliminate the ambiguous azimuth angle problem when the
feature of the target surface is not sufficient to provide
multiple reliable depth reference points. Besides, the method
cannot be applied to transparent objects for 3D reconstruction
at present.

In the same year, Miyazaki et al. [44] also proposed a
polarization 3D imaging technique based on the multi-view
stereo to achieve 3D contours of black specular targets. They
combined polarization 3D imaging with the space-carving
technique. The corresponding points of each view angle
image calculated from the camera pose obtained by camera
calibration and the 3D shape obtained by spatial sculpting
were exploited to analyze the phase angles at the same
surface point. In this way, they acquired the surface normal
of the entire object surface using the azimuth angle obtained
from multiple viewpoints. The addition of polarization
information compensates for the defects of the space carving

technique in the 3D reconstruction such as the lack of detail
texture.

3.2 Polarization 3D imaging based on diffuse
reflection

Polarized 3D imaging based on specular reflection is sensitive to the
direction of the light source when reconstructing metallic and
transparent objects. However, it is not ideal for information
extraction and 3D reconstruction of most targets in nature and needs
to solve the zenith angle ambiguity problem. With the research and
development in the field of materials science and new detectors, the
ability to detect and analyze polarization information is improved,
especially for the weak polarization properties in the optical field
[60–62]. Therefore, an increasing number of researchers focus on the
study of polarization 3D imaging based on diffuse reflection and have
proposed many classical solutions to the azimuthal ambiguity problem.

3.2.1 Combined photometric stereo vision
technique

Atkinson et al. [45] developed a SfP technique based on
diffuse reflection light in 2007. They used photometric stereo
vision with the illumination of multiple light sources to
eliminate the azimuthal ambiguity in polarization 3D
imaging, and their imaging system is shown in Figure 9A.
They set up three light sources with fixed positions to collect
target intensity images under different illumination conditions
as shown in Figure 9A1 and then achieved the elimination of the
ambiguity azimuth angle problem by comparing changes in light
source intensity information received from different directions
on different target areas. Figure 9A2 shows the schematic

FIGURE 8
(A) The flowchart of the polarimetricmulti-view stereo algorithm. (B)Comparison of depth estimation results of Cui [33], Polarized3D [57], and Smith
[58]. (A,B) Reproduced from [33], with permission from IEEE.
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diagram of the imaging system and the unique azimuth angle
value is determined as follows:

if ϕk < 45+ then αk � ϕk if I
2( )
k > I 1( )

k

ϕk + 180+ otherwise
{

if 45+#ϕk < 135+ then αk �
ϕk if I

3( )
k > I 1( )

k

ϕk + 180+ otherwise
{

if 135+#ϕk then αk �
ϕk if I

3( )
k > I 2( )

k

ϕk + 180+ otherwise
{

(4)

The reconstruction results of the method are presented in
Figure 9B, which demonstrates that the 3D reconstruction of
contour information can be achieved for targets with different
surface materials. However, this technique is sensitive to the angle
between multiple active light sources and the distance between the
light sources and the target, which cannot be implemented easily in
actual experiments. Meanwhile, the reconstructed 3D contours are
smoother than the ground truth due to the unknown roughness,
mutual reflection, and refractive index.

3.2.2 Combined shape from shading technique
In 2013, Mahmoud et al. [46] proposed a 3D imaging method

that combines the polarization 3D imaging technique with the shape
from shading (SFS) method. The 3D reconstruction results based on
the SFS were exploited as priori deep information to solve the
ambiguity problem of the azimuth angle in polarization 3D
imaging technology. Since Mahmoud’s polarization 3D imaging
technique requires only one view and one imaging band, it is
simple to operate, and the equipment required for imaging is

easy to set up. The 3D imaging results of the technique are
shown in Figure 10A. However, due to the application of the
SFS, this technique assumes that the targets are all ideal
Lambertian objects, resulting in limited applicable targets and
sensitivity to stray light.

3.2.3 Depth map fusion technique
Kadambi et al. [47] proposed a method to fuse the depth map

obtained by Kinect with polarization 3D imaging in 2017.
Compared with polarization 3D imaging technology-based
photometric stereo vision and SFS, this method avoided the
estimation and assumption of scene information such as light
sources and targets, and it extended the lighting conditions from
special light sources to natural light, realizing high-precision
polarization 3D reconstruction. The experimental setup
included a Kinect, a normal SLR, and a linear polarizer. The
“rough depth map” of the object surface with real depth
information was obtained from Kinect, but due to the low
resolution of Kinect, the details of the target surface could
not be effectively recovered when reconstructing the 3D
contour of the target. Therefore, Kadambi combined
polarization 3D imaging results containing huge texture
details of the target surface with the “rough depth map” to
achieve high-precision 3D imaging in various scenes. The 3D
imaging results and accuracy analysis for different scenes are
shown in Figure 10B. However, due to the limitation of Kinect’s
effective detection distance, the polarization 3D imaging
technique for depth map fusion cannot perform high-
precision 3D imaging of targets at a long distance. Besides, as

FIGURE 9
(A) The schematic diagram of the imaging system. Adapted from [45], with permission from Springer Nature. (A1) The geometric relationship of the
imaging system. (A2) The view of a spherical target from the camera viewpoint. (B) Surface reconstruction of the objects. Adapted from [45], with
permission from Springer Nature. (B1) The raw images of the test targets. (B2) The depth estimation of the targets.
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the “coarse depth map” is not consistent with the polarization
3D imaging in resolution and field of view, complex image
processing techniques such as image scaling and registration
are required in the actual reconstruction process.

3.2.4 Other fusion technique
Many polarization 3D imaging techniques fused with other

imaging techniques have also been developed [48, 49, 63, 64],
such as two excellent methods that have been proposed recently.
Tian et al. [48] investigated a novel 3D reconstruction method
based on the fusion of SfP and binocular stereo vision. They
corrected the azimuth angle errors based on binocular depth;
then, they proposed a joint 3D reconstruction model for depth
fusion, including a data fitting term and a robust low-rank
matrix factorization constraint, to achieve high-quality 3D
reconstruction. A series of experiments on different types of
objects were conducted to verify the efficiency of the proposed
method in comparison with state-of-the-art methods. The
reconstruction results presented in Figure 11A indicated that
the proposed method can generate accurate 3D reconstruction
results with fine texture details. However, it should be noted
that due to the combination of binocular stereo vision, the
increase of cameras, image scaling, and registration are
unavoidable, increasing the cost and complexity of the
imaging system. Liu et al. [49] proposed a 3D reconstruction
method based on the fusion of SfP and polarization-modulated
ranging (PMR), in which only a single image sensor was used to
obtain both polarization images and depth data, thus avoiding
the image registration problem. Since PMR can provide coarse
but accurate and absolute depths and SfP can retrieve inaccurate
3D contours of objects with fine textures, they proposed two

fusion models: a joint azimuth estimation model to obtain a
fused azimuth angle with π-ambiguity corrected, and a joint
zenith estimation model to estimate an accurate fused zenith
angle, thus achieving high-quality reconstruction. The specific
3D imaging results are shown in Figure 11B. However, this
technique needs further improvement in two aspects: 1) PMR
requires active illumination, which makes the proposed
technique difficult to be applied outdoors. 2) multiple images
are required (three or more polarized images for SfP and two
polarization-modulated images for PMR) and the light source
needs to be switched.

3.3 Polarization 3D imaging based on deep
learning

To overcome the limitations of scenes and objects in the
polarization 3D imaging technology based on specular reflection
or diffuse reflection, researchers have investigated polarization 3D
imaging techniques that can be applied to complex scenes and
objects. Recently, the rapid proliferation of deep learning, which has
successful applications in other fields of 3D imaging [69–73], brings
the possibility of breaking through the limitations in traditional
polarization 3D imaging techniques. An increasing number of
researchers have focused on solving the azimuthal ambiguity
problem for complex targets in polarimetric 3D imaging through
deep learning [51, 52, 74, 75]. Some successful polarization 3D
imaging techniques combined with deep learning are outlined
below.

Deschaintre et al. [75] combined polarization imaging with
deep learning to achieve a high-quality estimate of 3D object

FIGURE 10
(A) Experimental results. Adapted from [46], with permission from IEEE. (A1) Polarization angle. (A2)Diffuse polarization degree. (A3) Intensity image.
(A4) Reconstructed surface. (B) Polarization 3D imaging in various lighting conditions. Adapted from [47], with permission from Springer Nature. (B1) TOF
Kinect. (B2) Polarization enhancement indoors. (B3) Polarization enhancement under disco lighting. (B4) Polarization enhancement outdoors on a partly
sunny.

Frontiers in Physics frontiersin.org11

Li et al. 10.3389/fphy.2023.1198457

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1198457


shapes under frontal unpolarized flash illumination. To avoid
the correction of ambiguity normal vectors, they used single-
view polarization imaging to directly obtain surface normal
vectors, depth, and other information like diffuse albedo,
roughness, and specular albedo through an encoder-decoder
architecture shown in Figure 12A. They trained their network
on 512 × 512 images by using two losses: an L1 loss to regularize
the training, compute an absolute difference between the output
maps and the targets, and a novel polarized rendering loss.
Figure 12B presents the comparison of reconstruction results
with those of Li et al. [76]. It demonstrates that the technique
can recover global 3D contours and other information about the
object well. However, at present, the method can only be applied
to flash illumination dielectric objects, and the
utilization of flash illumination will bring a few specular
highlights.

Lei et al. [51] applied polarization 3D imaging to complex scenes
in the wild. They provided the first real-world scene-level SfP dataset
with paired input polarization images and ground-truth normal
maps to address the issue of lacking real-world SfP data in complex
scenes. In addition to the application of multi-headed self-attentive
convolutional neural networks (CNNs) for SfP, per-pixel viewing
encoding was also applied to the neural network to handle non-
orthographic projection for scene-level SfP. Then, they trained their

network on 512 × 512 images by using a cosine similarity loss [50],
and the reconstruction results are illustrated in Figure 13A, which
reveals that this approach produces accurate surface normal maps.
However, the datasets in this technique need to be collected and
trained complicatedly, and they are only applicable to specific
scenarios.

Shao et al. [52] proposed a learning-based method for passive
3D polarization face reconstruction. The method uses a CNN-based
3Dmorphable model (3DMM) to generate a rough depth map of the
face from the directly captured polarization image. Then, the
ambiguity surface normal obtained from polarization can be
eliminated from the rough depth map. The construction results
of the proposed method in both indoor and outdoor scenarios are
shown in Figure 13B. Although the 3D faces are well reconstructed,
the dataset requirements still exist in this technique.

3.4 Other polarization 3D imaging methods

The above-mentioned techniques are solutions to the major
challenge (the ambiguity problem of normal vectors) in polarimetric
3D imaging. However, many other factors still affect the
reconstruction accuracy throughout the polarization 3D imaging
process.

FIGURE 11
(A) Comparison of 3D reconstruction results on regular objects. Adapted from [48], with permission from Elsevier. (A1) RGB image. (A2) Binocular
depth. (A3) MC [65]. (A4) DES [, 63, 57]. (A5) DRLPR [30]. (A6) SP [46]. (A7) SFPIK [58]. (A8) SFPIE [67]. (A9) Tian’s method [48]. (B) Comparison of 3D
reconstruction results on standard geometric targets. Adapted from [49], with permission from Elsevier. (B1) RGB image. (B2)GT. (B3) SFP. (B4) PMR [68].
(B5) SFPKI [58]. (B6) SFPEI [67]. (B7) SFP + BSV [48]. (B8) Liu’s method [49].
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FIGURE 12
(A) Deschaintre’s network architecture based on a general U-Net. (B) A comparison of Deschaintre’s results and the results of Li et al. [76] on real
objects. (A,B) Adapted from [75], with permission from IEEE.

FIGURE 13
(A) Qualitative comparison between Lei’s approach and other polarization methods. Reproduced from [51], with permission from IEEE. (A1)
Unpolarized image input. (A2) polarization angle input. (A3) Miyazaki [77]. (A4) Smith [67]. (A5) DeepSfP [50]. (A6) Kondo [78]. (A7) Lei [51]. (A8) ground
truth. (B) Reconstructed 3D faces using CNN-based 3DMM. Reproduced under CC-BY-4.0- [52] -https://www.mdpi.com/2304-6732/9/12/924. (B1) A
plaster statue with indoor lighting. (B2-B4) three different views of the recovered 3D face of (B1). (B5) point cloud comparison between the laser
scanner and Shao’s method.
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To solve the problem of reconstruction distortion in polarization
3D imaging for non-uniform reflective targets, Li et al. [79]
presented a near-infrared (NIR) monocular 3D computational
polarization imaging method. They addressed the issue of
varying intensity between the color patches due to the
nonuniform reflectance of the colored target by using the
reflected light feature in the near-infrared band. A normalized
model of the near-infrared intensity gradient field was established
in the non-uniform reflectivity region under monocular to solve the
azimuthal ambiguity problem in polarization 3D imaging, and the
reconstruction results are shown in Figure 14A.

Similar to Li’s work, Cai et al. [80] also proposed a novel
polarization 3D imaging technique to restore the 3D contours of
multi-colored Lambertian objects, but the difference was that they
adopted the chromaticity-based color removal theory. Based on the
recovered intrinsic intensity, they solved the azimuthal ambiguity
problem in a similar approach to achieve high-precision 3D
reconstruction, and the results are shown in Figure 14B.

In addition to the influence of color, there are other interference
factors in polarization 3D imaging. However, due to the page
constraint, other problems and solutions will be briefly
introduced as follows.

• Mixture of specular reflection and diffuse reflection

Since the polarization 3D imaging technology is developed based
on the polarization characteristics of the reflected light for 3D
reconstruction, the accuracy of polarization acquisition is the
primary factor affecting the reconstruction accuracy. The mixture
of specular and diffuse reflections is the most common challenge
affecting polarization accuracy. Umeyama et al. [81] addressed the
issue of inaccurate interpretation of polarization field information
caused by the mixture of specular and diffuse reflected light. They
proposed to exploit the difference of polarization intensity between
specular reflection and diffuse reflection to analyze polariton images
in different directions through independent component analysis for
separating the diffuse and specular components of surface reflection.
Shen et al. [82] proposed a method to separate diffuse and specular
reflection components from a single image. They constructed a
pseudo-chromatic space to classify image pixels and achieved fast
and accurate specular reflection light removal without any local
operation on the specular reflection information. Wang et al. [83]
presented a global energy minimization specular reflection light
removal method based on polarization characteristics to eliminate
color distortions based on color intensity information for separating

FIGURE 14
(A) Li’s 3D reconstruction results of a colored cartoon plaster target. Reproduced under CC-BY-4.0- [79] - https://opg.optica.org/oe/fulltext.cfm?
uri=oe-29-10-15616&id=450808. (A1) Intensity image. (A2) 3D-recovered result without correction for the reflectance. (A3) 3D-recovered result with
varying reflectance. (A4) the height variations in the pixels of (A2) and(A3). (B) Experimental results of Cai et al. Reproduced under CC-BY-4.0- [80] -
https://opg.optica.org/ao/fulltext.cfm?uri=ao-61-21-6228&id=479184. (B1) The RGB polarization sub-image captured at a direction of 0°. (B2) and
(B3) ultimate results of proposed polarization 3D imaging without and with color removal theory, respectively.
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specular reflection from diffuse reflection and reducing the error in
the interpretation of polarization information. Li et al. [84] derived
an analytical expression of diffuse reflection light under mixed
optical fields and proposed a method to remove specular
reflection light based on the analysis of the intensity and
polarization field distribution characteristics, thus accurately
interpreting polarization information.

• Gradient field integration

Gradient field integration directly affects the accuracy of
reconstructing results, and it is another essential process of
reconstructing the surface from the obtained normal vector of
micro-plane elements. The Frankot-Chellappa method [85] is
commonly used in the SfP method, but it takes the finite center
difference as the differentiation operator, which has a large
truncation error and does not constrain adjacent heights, to
establish the difference-slope relationship, increasing
reconstruction errors. To improve the integration accuracy,
Ren et al. [86] proposed an improved higher-order finite-
difference least-squares product method for circular regions
and incomplete gradient data, which can handle incomplete
gradient data more directly and efficiently. Qiao et al. [87]
formulated Fourier-based exact integration square break error
to increase the height and slope of the operator for obtaining
higher 3D reconstruction accuracy. Smith et al. [88] presented
an integration method for segmental fitting of gradient data
using spline curves, which can obtain accurate integration
results at surface boundaries.

• Absolute depth recovery

According to the analysis in Section 2, the depth information
reconstructed by polarization 3D imaging is the result of
integrating normal vectors of all pixel points, so it is the
relative depth display in the pixel coordinate system. To
recover the absolute depth of the 3D contour based on the
polarization characteristics, Ping et al. [89] combined
conventional polarization 3D imaging with binocular stereo
vision. They calculated the coordinate transformation
parameters between the image pixel coordinate system and the
world coordinate system with the camera parameters obtained
from binocular stereo calibration; then, the relative depth in the
pixel coordinate system acquired by polarization was converted
to the absolute depth in the world coordinate system by using the
least-squares method. Some other methods [48, 49, 64] can also
recover the absolute depth of the object 3D contour obtained
from SfP.

4 Challenges

Although the polarization 3D imaging technology has been
further developed and many SfP techniques have been proposed,
its application to engineering, medical, industrial, and daily life
fields is still a challenge. This section lists some challenging issues
worth exploring to further advance the field of polarization 3D
imaging.

4.1 Technical researches

As introduced in Section 3, many SfP techniques have been
proposed, but there are many limitations in these techniques,
preventing widespread commercial applications of the
polarization 3D imaging technology. More challenges need to
be overcome: 1) How to perform high-precision polarization 3D
reconstruction under monocular conditions without the assistance
of other detection methods? 2) Is it possible to realize real-time
polarization 3D imaging? 3) How to apply SfP to more complex
objects and scenes like multiple discrete objects? 4) How to solve
the polarization dataset acquisition problem in deep learning? 5)
How to improve polarization detection accuracy in visible,
infrared, and other wavelengths? The above-mentioned
problems are important research directions of future
polarization 3D imaging technology, and some difficult points
need to be addressed in practical applications of polarization 3D
imaging.

4.2 Data storage

The record and storage follow the information acquisition
process. However, the sizes of conventional 3D image files
represented by OBJ, PLY, and STL are often one order of
magnitude larger than those of 2D files represented by JPG,
BMP, and TIF. How can one effectively store and deliver such a
huge amount of 3D data is a key issue to applying polarization
3D imaging technology in practice. Although some
efforts [90–94] have been made to compress 3D range
data, none of these methods is proposed for efficient 3D data
storage.

4.3 Hardware integration

Traditionally, the polarization characteristics of reflected light
are obtained by rotating a polarizer placed in front of the camera,
which is difficult to promote practically. Although some
manufacturers like Sony has manufactured integrated devices
such as polarization chips, the chips have shortcomings of weak
extinction ratio, low resolution [95–97], etc. The integration of
hardware facilities has gradually failed to keep up with the
development of polarization 3D imaging technology. Therefore,
efforts to promote hardware integration of polarization 3D
imaging systems are highly needed to advance polarization 3D
imaging technology.

4.4 Applications

The value of practical applications is a huge motivation for
technological progress. However, though many SfP techniques
have been developed, none of the existing techniques are
effectively applied in practice. So far, many other 3D imaging
techniques have been applied to practical fields. Binocular stereo
vision is commonly used in fields of robotic vision [98–100].
Deep learning and lidar 3D imaging are widely used in
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autonomous driving recently [101–105]. Structured light 3D
imaging technology is mostly used in the detection of defects
in precision industrial products because of its high accuracy
[106–108]. Therefore, the specific application fields
of polarization 3D imaging technology should be
selected according to its technical advantages. For example,
considering the long-distance detection
advantage of polarization 3D imaging technology, 3D mapping
of remote sensing may become a significant application field.

5 Summary

This paper presents a comprehensive and detailed review of the
polarization 3D imaging mechanism and some classical SfP
techniques. Especially, this paper focuses on the problems and
solutions of normal ambiguity in polarization 3D imaging
technology by explaining technical fundamentals, demonstrating
experimental results, and analyzing capabilities/limitations. Besides,
other problems and related techniques in polarization 3D imaging
are also introduced. Finally, our perspectives on some remained
challenges in polarization 3D imaging technology are summarized
to inspire the readers.
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