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ABSTRACT

We study the propagation effects of radio waves in a pulsar magnetosphere, composed of rela-

tivistic electron–positron pair plasmas streaming along the magnetic field lines and corotating

with the pulsar. We critically examine the various physical effects that can potentially influ-

ence the observed wave intensity and polarization, including resonant cyclotron absorption,

wave mode coupling due to pulsar rotation, wave propagation through quasi-tangential regions

(where the photon ray is nearly parallel to the magnetic field) and mode circularization due to

the difference in the electron/positron density/velocity distributions. We numerically integrate

the transfer equations for wave polarization in the rotating magnetosphere, taking account

of all the propagation effects in a self-consistent manner. For typical magnetospheric plasma

parameters produced by pair cascade, we find that the observed radio intensity and polariza-

tion profiles can be strongly modified by the propagation effects. For a relatively large impact

parameter (the minimum angle between the magnetic dipole axis and the line of sight), the

polarization angle profile is similar to the prediction from the Rotating Vector Model, except

for a phase shift and an appreciable circular polarization. For a smaller impact parameter, the

linear polarization position angle may exhibit a sudden 90◦ jump due to the quasi-tangential

propagation effect, accompanied by a complex circular polarization profile. Some applications

of our results are discussed, including the origin of non-Gaussian pulse profiles, the relation-

ship between the position angle profile and circular polarization in conal-double pulsars, and

the orthogonal polarization modes.

Key words: plasmas – polarization – waves – stars: magnetic fields – pulsars: general.

1 IN T RO D U C T I O N

Pulsar radio emission is likely generated within a few hundred kilometres from the neutron star (NS) surface (e.g. Cordes 1978; Blaskiewicz,

Cordes & Wasserman 1991; Kramer et al. 1997; Kijak & Gil 2003). A pulsar is surrounded by a magnetosphere filled with relativistic

electron–positron pair plasmas (plus possibly a small number of ions) within the light cylinder. When radio waves propagate through the

magnetosphere, the total flux, polarization state and spectrum of the emission may be modified by propagation effects. Understanding the

property of wave propagation in pulsar magnetospheres is necessary for the interpretation of various observations of pulsars.

Radio emission from pulsars shows strong linear polarization (LP). For some pulse components or even the whole pulse profiles, it

can be 100 per cent polarized (e.g. Lyne & Manchester 1988; Gould & Lyne 1998; Weisberg et al. 1999, 2004; Han et al. 2009). LP is

closely related to magnetic field lines where the emission was generated. Based on the linear polarization position angle (PA) curve of Vela

pulsar, the Rotating Vector Model (RVM) was suggested by Radhakrishnan & Cooke (1969). For some pulsars, especially the so-called

conal-double-type pulsars, RVM works very well (e.g. Mitra & Li 2004). However, the PA curves of most pulsars are much more complex

and do not follow the simple RVM. The deviation from the RVM could be caused by the intrinsic emission mechanism (e.g. Blaskiewicz

et al. 1991), which is highly uncertain (e.g. Lyubarsky 2008), and/or the propagation effect through the pulsar magnetosphere (see below).

Also, the PA curves or polarization observations of individual pulses show the orthogonal polarization mode (OPM) phenomenon, in which

the polarization position angle exhibits a sudden ∼ 90◦ jump (e.g. Manchester, Taylor & Huguenin 1975; Backer, Rankin & Campbell 1976;
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570 C. Wang, D. Lai and J. L. Han

Cordes, Rankin & Backer 1978; Stinebring et al. 1984a,b; Xilouris et al. 1995). It is not clear whether the OPM arises from the emission

process (e.g. Luo & Melrose 2004) or the propagation effect (e.g. McKinnon & Stinebring 2000).

Another important observational feature of pulsar radio emission is the circular polarization (CP; e.g. Rankin 1983; Radhakrishnan

& Rankin 1990; Han et al. 1998). Significant CPs have been observed in individual pulses of pulsars with mean values of typically

20–30 per cent. Very high degrees of CP are occasionally observed from some components of pulsar profiles (e.g. Cognard et al. 1996; Han

et al. 2009). Radhakrishnan & Rankin (1990) identified two main types of CP signature: antisymmetric type with sign reverse in the mid-pulse

and symmetric type without sign change over the whole profile. They concluded that the CP of the antisymmetric type is associated with the

core emission and strongly correlated with the sense of rotation of the linear position angle. Han et al. (1998) showed that this correlation is

not kept for a larger sample, and they found that for conal-double pulsars the sense of CP is correlated with the sense of PA curves.

The diverse behaviours of pulsar polarization (including LP and CP) may require more than one mechanism for proper explanations.

First, they may be caused by an intrinsic mechanism in the emission region and/or process. For example, Radhakrishnan & Rankin

(1990) suggested that geometrical effect on the pulsar beam from curvature radiation can naturally generate antisymmetric CP for the core

components. Gangadhara (1997) suggested that the observed CP could be caused by the coherent superposition of two orthogonal modes

emitted by positrons and electrons. Xu et al. (2000) interpreted the CP by the superposition of coherent inverse Compton scattering. Kazbegi,

Machabeli & Melikidze (1991) suggested that cyclotron instability may be responsible for the circular polarization. Also, Luo & Melrose

(2001) suggested that circular polarization can develop by cyclotron absorption when the distributions (especially the number densities) of

the magnetospheric electrons and positrons are different.

However, many observed characteristics of the pulsar radio emission are most likely dictated by the wave propagation in the magne-

tospheric plasma (see e.g. Melrose 2003; Lyubarsky 2008 for a review). A number of theoretical works have been devoted to study how

magnetosphere propagation influences pulsar polarization observations. Whatever the emission mechanism, radio wave propagates in the

plasma in the form of two orthogonally polarized normal modes. The polarization state of the wave evolves along the ray, following the

direction of the local magnetic field, a process termed ‘adiabatic walking’ (Cheng & Ruderman 1979). Cheng & Ruderman (1979) introduced

two propagation effects: the wave mode coupling effect for a pure pair plasma and the circularization effect (natural modes become circular

polarized), both of which can generate circular polarization. Melrose (1979) and Allen & Melrose (1982) suggested that the separation of

natural waves (because of different refractive indices) can cause the OPM phenomenon. Arons & Barnard (1986) studied the wave dispersion

relation and natural modes in the relativistic pair plasma. Lyubarskii & Petrova (1998) considered the natural modes in a relativistic plasma

with corotating velocity in the infinite magnetic field limit, and Petrova & Lyubarskii (2000) studied refraction and polarization transfer in

such a plasma. Luo & Melrose (2001) and Fussell, Luo & Melrose (2003) studied the cyclotron absorption of radio emission within pulsar

magnetospheres. Petrova (2006) further studied the polarization transfer in pulsar magnetosphere and considered the wave mode coupling and

cyclotron absorption effect. Johnston et al. (2005) suggested that the variation of circular polarization of PSR B1259−63 during the ellipse

with its main-sequence companion is related to the wave propagation effect in the magnetosphere of the companion star. However, none of

the previous studies has calculated the final polarization profiles with all of these propagation effects included in a self-consistent way within

a single theoretical framework. It is often unclear which of the effects are most important, and if so, under what conditions. In this paper, we

attempt to combine all the propagation effects, evaluate their relative importance and use numerical integration along the photon ray to study

the influence of propagation effects on the final polarization states.

This paper is organized as follows. In Section 2, we present the geometrical model for our calculation and the general wave evolution

equation in a magnetized plasma. In Section 3, we give the expression of the dielectric tensor of a relativistic pair plasma characterizing the

magnetosphere of a pulsar and discuss the natural wave modes and their evolution. In Section 4, we study several important propagation

effects separately: cyclotron absorption, wave mode coupling, circularization and the quasi-tangential (QT) propagation (see Wang & Lai

2009). In Section 5, we present numerical calculations of the single photon evolution and the phase profiles of pulsar emission beam. Our

results and possible applications are presented in Section 6.

2 G E O M E T RY A N D G E N E R A L WAV E E VO L U T I O N EQUAT I O N

2.1 Geometrical model

Consider a photon (radio wave) emitted at the initial position r i at time ti (corresponding to the pulsar rotation phase � i). Suppose the photon

trajectory is a straight line along k (the wave vector). In a fixed XYZ frame with Ẑ = k̂ along the line of sight and � (the pulsar spin vector) in

the XZ plane (Ẑ × �̂ = sin ζ Ŷ , where ζ is the angle between k and �; see Fig. 1), the photon position after emission and the corresponding

pulsar rotation phase are

r = r i + s Ẑ, (2.1)

� = �i + �(t − ti) = �i + s/rlc, (2.2)

where s = c(t − t i) is the distance from the emission point along the ray and r lc = c/� the radius of the light cylinder. The rotating magnetic

field is given by

B(s) = −∇(μ · r/r3) = −
μ

r3
+

3r

r5
(μ · r), (2.3)
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Polarization changes of pulsars 571

Figure 1. Three frames used in this paper as follows. (1) The fixed frame XYZ with Ẑ ‖ k̂,� in the XZ plane and k̂ × �̂ = � sin ζ Ŷ . The direction of B

in this frame is (θB, φB). (2) The instantaneous inertial frame xyz with ẑ = Ẑ, B in the xz plane and k̂ × B̂ = − sin θB ŷ. (3) The instantaneous inertial frame

x′y′z′ with ẑ′ = B̂, k in the x′z′ plane and k̂ × B̂ =− sin θB ŷ′.

with

μ(s) = μ
[

(sin ζ cos α − cos ζ sin α cos �)x̂ − sin α sin �Ŷ + (cos ζ cos α + sin ζ sin α cos �)Ẑ
]

, (2.4)

where α is the inclination angle between � and μ (see Fig. 1). Note that the impact angle χ , which is the smallest angle between k and μ, is

given by χ = ζ − α. Thus, the polar angles of μ in the XYZ frame, (θμ, φμ), are given by

cos θμ = cos ζ cos α + sin ζ sin α cos �, tan φμ =
− sin α sin �

sin ζ cos α − cos ζ sin α cos �
. (2.5)

The magnetic field at a given point along the ray is inclined at an angle θB with respect to the line of sight and make an azimuthal angle

φB in the XY plane such that

cos θB (s) =
BZ

B
, tan φB (s) =

BY

BX

. (2.6)

2.2 Wave evolution equations

The wave equation for photon propagation takes the form

∇ × (μ−1 · ∇ × E) =
ω2

c2
ǫ · E, (2.7)

where E is the electric field and ǫ and μ−1 are the dielectric and inverse permeability tensors, respectively. The inverse permeability is very

close to unity when B ≪ BQ = 4.414 × 1013 G [the critical quantum electrodynamics (QED) field strength], and we set μ to be unity in

the remainder of this paper. In practice, it is most convenient to calculate the dielectric tensor in the x ′y ′z′ frame (where the z′-axis is along

B, and k in the x ′z′ plane; see Fig. 1). Once [ǫ]x′y′z′ (the matrix representation of the dielectric tensor in the x ′y ′z′ frame) is known, we can

easily obtain [ǫ]XYZ in the fixed XYZ frame through a coordinate transformation

[ǫ]XYZ = M[ǫ]x′y′z′ MT, (2.8)

where the transformation matrix M is

M =

⎛

⎜

⎝

− cos φB sin φB 0

− sin φB − cos φB 0

0 0 1

⎞

⎟

⎠

⎛

⎜

⎝

cos θB 0 − sin θB

0 1 0

sin θB 0 cos θB

⎞

⎟

⎠
=

⎛

⎜

⎝

− cos θB cos φB sin φB sin θB cos φB

− cos θB sin φB − cos φB sin θB sin φB

sin θB 0 cos θB

⎞

⎟

⎠
(2.9)

and MT is the transpose matrix of M.

Knowing ǫ along the trajectory, we can use equation (2.7) to derive the wave amplitude evolution equation. Let E = eik0s A, where k0 =
ω/c. Assuming that |dA/ds| ≪ k0|A| (geometric optics approximation), we obtain

d

ds

(

AX

AY

)

=
ik0

2

[

σXX σXY

σYX σYY

] (

AX

AY

)

, (2.10)
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572 C. Wang, D. Lai and J. L. Han

where

σXX = ǫXX − 1,

σXY = ǫXY ,

σYX = ǫYX,

σYY = ǫYY − 1. (2.11)

The wave evolution equation (2.10) can be used to study the evolution of the electromagnetic wave amplitude across the pulsar magnetosphere.

We can also follow the evolution of the four Stokes parameters instead of the evolution of the wave amplitudes. The four Stokes

parameters are defined by (in the fixed XYZ frame)

I = AXA∗
X + AY A∗

Y ,

Q = AXA∗
X − AY A∗

Y ,

U = AXA∗
Y + AY A∗

X,

V = −i(AXA∗
Y − AY A∗

X). (2.12)

Combining with equation (2.10), we obtain the evolution equations for the Stokes parameters:

dI

ds
= −k0

σXX,i + σYY ,i

2
I − k0

σXX,i − σYY ,i

2
Q − k0

σXY,i + σYX,i

2
U − k0

σXY,r − σYX,r

2
V ,

dQ

ds
= −k0

σXX,i − σYY ,i

2
I − k0

σXX,i + σYY ,i

2
Q − k0

σXY,i − σYX,i

2
U + k0

σXY,r + σYX,r

2
V ,

dU

ds
= −k0

σXY,i + σYX,i

2
I + k0

σXY,i − σYX,i

2
Q − k0

σXX,i + σYY ,i

2
U − k0

σXX,r − σYY ,r

2
V ,

dV

ds
= k0

σXY,r − σYX,r

2
I − k0

σXY,r + σYX,r

2
Q + k0

σXX,r − σYY ,r

2
U − k0

σXX,i + σYY ,i

2
V . (2.13)

Here, the subscripts ‘i’ and ‘r’ correspond to the real and imaginary parts of each element.

If we know the dielectric tensor along the ray, we can integrate equation (2.10) from the emission point in the inner magnetosphere into

a large distance where the plasma no longer affects the radiation (both intensity and polarization). We will calculate the dielectric tensor of a

relativistic streaming pair plasma in the next section.

3 WAV E MOD ES AND PROPAG ATION IN A STREAMI NG PLASMA

The magnetospheres of pulsars consist of a relativistic electron–positron pair plasma streaming along magnetic field lines. The Lorentz factor

γ of the streaming motion and the plasma density N are uncertain. For the open field line region of radio pulsars, pair cascade simulations

generally give γ ∼ 102–104 and η ≡ N/NGJ ∼ 102–105 (e.g. Daugherty & Harding 1982; Hibschman & Arons 2001; Medin & Lai 2009),

while recent theoretical works suggest that the corona of magnetars consists of a pair plasma with γ up to 103 and η ∼ 2 × 103(R∗/r)

(where R∗ is the stellar radius; Thompson, Lyutikov & Kulkarni 2002; Beloborodov & Thompson 2007). Here NGJ = (�B)/(2πec) is the

Goldreich–Julian density. In this paper, we choose plasma density η = N/NGJ to be in the range of 100–1000 and the Lorentz factor γ of

the streaming motion to be 100–1000. We also consider a small asymmetry between positrons and electrons, i.e. �N/N �= 0 and �γ/γ �=
0, where �N and �γ are the differences in the number densities and Lorentz factors between electrons and positrons, respectively.

3.1 Dielectric tensor

The dielectric tensor ǫ in the x ′y ′z′ frame (with ẑ′ = B̂, k in the x ′z′ plane and k̂ × B̂ = − sin θB ŷ′; see Fig. 1) can be written as (see

equations 2.11–2.13 and 2.19 of Wang & Lai 2007)

[ǫ]x′y′z′ =

⎡

⎢

⎣

ǫx′x′ ǫx′y′ ǫx′z′

ǫy′x′ ǫy′y′ ǫy′z′

ǫz′x′ ǫz′y′ ǫz′z′

⎤

⎥

⎦
, (3.14)
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Polarization changes of pulsars 573

where

ǫx′x′ = 1 +
∑

s

∫

fs,11fs(γs)dγs,

ǫx′y′ = −ǫy′x′ = i
∑

s

∫

fs,12fs(γs)dγs,

ǫx′z′ = ǫz′x′ = −i
∑

s

∫

ξsfs,11fs(γs)dγs,

ǫy′z′ = ǫz′y′ =
∑

s

∫

ξsfs,12fs(γs)dγs,

ǫz′z′ = 1 +
∑

s

∫

(

fs,η + ξ 2
s fs,11

)

fs(γs)dγs. (3.15)

with

fs,11 = −
vsγ

−1
s (1 + iγrad)

(1 + iγrad)2 − usγ −2
s (1 − nβs cos θB )−2

,

fs,12 = −
sign (qs) u1/2

s vsγ
−2
s (1 − nβs cos θB )−1

(1 + iγrad)2 − usγ −2
s (1 − nβs cos θB )−2

,

fs,η = −
vs

(1 + iγrad)γ 3
s (1 − nβs cos θB )2

,

ξs =
nβs sin θB

1 − nβs cos θB

. (3.16)

Here the subscript ‘s’ specifies different species (‘e’ is for electron and ‘p’ for positron) and βs, γ s and f s(γ s) are the velocity (divided by c),

Lorentz factor and its distribution function, respectively. The dimensionless parameters us and vs are

u =
ω2

c

ω2
, us = u, (3.17)

v =
ω2

pl

ω2
, vs =

Ns

N
v. (3.18)

Here Ns is the number density of particles, N = N p + N e, and ωc and ωpl are the cyclotron and plasma frequencies, respectively, which are

given by

νc =
ωc

2π

=
1

2π

eB

mec
= 2.795 × 109 B12 GHz (3.19)

νpl =
ωpl

2π

=
1

2π

√

4πNe2

me

= 8.960 × 103N 1/2 Hz = 2.370 η1/2B
1/2
12 P

−1/2
1s GHz, (3.20)

where the magnetic field B12 = B/(1012 G), the pulsar spin period P 1s = P/(1 s) and the dimensionless density η = N/NGJ is measured in

units of the Goldreich–Julian density, NGJ = �B/(2π ec) ≃ 7.0 × 1010 B12P 1s cm−3. The refractive index, n = ck/ω, is generally very close

to unity, so we can simply set n ≃ 1 in equation (3.16) which does not affect the calculation. The radiative damping

γrad =
4e2ωc

3mc3
(3.21)

is important only near the cyclotron resonance [where γ sω (1 − nβ cos θB) ≃ ωc] and can be neglected at other places. The function sign

(qs) is equal to −1 for electrons and 1 for positrons.

In this paper we focus on cold streaming plasmas, which means that both electrons and positrons in the streaming plasma have single γ s

or f s(γ s) = δ(γ s − γ s,0). Thus, we need not integrate across γ s when calculating each element of the dielectric tensor in equation (3.15).

When we consider the region r ≪ rcyc (the cyclotron resonance radius), we can take the infinite magnetic field limit, and the damping

term can be neglected. In this case, the dielectric tensor becomes very simple (e.g. Arons & Barnard 1986):

[ǫ]x′y′z′ =

⎡

⎢

⎣

1 0 0

0 1 0

0 0 1 + fη

⎤

⎥

⎦
, (3.22)

with f η = −vγ −3 (1 − β cos θB)−2.

3.2 Wave evolution equation for a single γ plasma

In this subsection we consider the polarization evolution equation for a single γ plasma, i.e. all electrons (positrons) have the same γ e(γ p).

We assume that there is a small asymmetry between electrons and positrons in Ns or γ s : �N/N ≪ 1, where N = N p + N e, �N = N p − N e
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574 C. Wang, D. Lai and J. L. Han

(usually �N/N is the reciprocal of the multiplicity of the cascade), and/or �γ/γ ≪ 1 [where γ = (γ p + γ e)/2, �γ = γ p − γ e]. In this

case, the final matrix elements in the wave evolution equation (2.10) are

σXX = F11(1 + fθ cos2 φB ) + Fη sin2 θB cos2 φB ≃ F11 + Fη sin2 θB cos2 φB ,

σXY = F11fθ + Fη sin2 θB sin φB cos φB − iF12 ≃ Fη sin2 θB sin φB cos φB − iF12,

σYX = F11fθ + Fη sin2 θB sin φB cos φB + iF12 ≃ Fη sin2 θB sin φB cos φB + iF12,

σYY = F11(1 + fθ sin2 φB ) + Fη sin2 θB sin2 φB ≃ F11 + Fη sin2 θB sin2 φB , (3.23)

with

F11 =
∑

s

fs,11 ≃ −
vγ −1

1 + 2iγrad − uγ −2(1 − β cos θB )−2
= F11,r + iF11,i,

F12 =
∑

s

fs,12 = −
∑

s

sign(qs)vsγ
−
s u1/2

s γ −
s (1 − βs cos θB )−1

1 + 2iγrad − usγ −2
s (1 − βs cos θB )−2

= F12,r + iF12,i,

Fη =
∑

s

fs,η ≃ −vγ −3(1 − β cos θB )−2,

fθ = (cos θB − ξ sin θB )2 − 1 ≃ −
4θ 2

Bγ 2

(1 + θ 2
Bγ 2)2

. (3.24)

In the derivation of equation (3.23), we have assumed θBγ ≫ 1 (which is valid for most places) so that f θ ≃ 0.

Using equations (2.13) and (3.23), we can write the evolution equation of the four Stokes parameters as

dI

ds
= −k0F11,iI − k0F12,iV ,

dQ

ds
= −k0F11,iQ + k0F12,rU +

k0

2
Fη sin2 θB sin 2φBV ,

dU

ds
= −k0F12,rQ − k0F11,iU −

k0

2
Fη sin2 θB cos 2φBV ,

dV

ds
= −k0F12,iI −

k0

2
Fη sin2 θB (Q sin 2φB − U cos 2φB ) − k0F11,iV . (3.25)

Here k0 = c/ω and the subscripts ‘r’ and ‘i’ specify the real and imaginary parts, respectively. Equation (3.25) is useful for understanding the

different kinds of propagation effects on the polarization evolution (see Section 4).

3.3 Wave modes

Using the electric displacement D = ǫ · E in the Maxwell equations, we obtain the equation for plane waves with E ∝ ei(k·r−ωt):

[ǫij + n2(k̂i k̂j − δij )]Ej = 0, (3.26)

where n = ck/ω is the refractive index and k̂ = k/k. In the coordinate system xyz with k along the z-axis and B in the xz plane (see Fig. 1),

we project the above equation in the xy plane and obtain
(

ηxx − n2 ηxy

ηyx ηyy − n2

) (

Ex

Ey

)

= 0, (3.27)

where

ηxx = ǫxx − ǫxzǫzx/ǫzz,

ηxy = ǫxy − ǫxzǫzy/ǫzz,

ηyx = ǫyx − ǫyzǫzx/ǫzz,

ηyy = ǫyy − ǫyzǫzy/ǫzz. (3.28)

From equation (3.27), we obtain two eigenmodes, to be labelled as the plus (+) mode and minus (−) mode, respectively. The refractive

indices of the two modes are given by

n2
± =

(ηxx + ηyy) ±
√

(ηxx − ηyy)2 + 4ηxyηyx

2
. (3.29)

We write the mode polarization vector as E± = E±T + E±z ẑ in the xyz frame, with the transverse part given by

E±T =
1

(1 + K2
±)1/2

(K±, 1), (3.30)
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Polarization changes of pulsars 575

where

K± =
(

Ex

Ey

)

±
= −

ηyy − n2
±

ηyx

=
(ηxx − ηyy) ±

√

(ηxx − ηyy)2 + 4ηxyηyx

2ηyx

(3.31)

describes the polarization state of the two eigenmodes.

From the dielectric tensor of the relativistic streaming pair plasma given by equations (3.14)–(3.16), we obtain the tensor components

in the xyz coordinate system:

ǫxx = ǫx′x′ cos2 θB + ǫz′z′ sin2 θB − (ǫx′z′ + ǫz′x′ ) sin θB cos θB ,

ǫyy = ǫy′y′ ,

ǫzz = ǫx′x′ sin2 θB + ǫz′z′ cos2 θB + (ǫx′z′ + ǫz′x′ ) sin θB cos θB ,

ǫxy = −ǫyx = ǫx′y′ cos θB − ǫz′y′ sin θB ,

ǫxz = ǫzx = (ǫx′x′ − ǫz′z′ ) sin θB cos θB + ǫx′z′ )(cos2 θB − sin2 θB ),

ǫyz = −ǫzy = ǫy′x′ sin θB + ǫy′z′ cos θB .

(3.32)

Combining the above equations with equation (3.27), we find that ηxy = −ηyx, and ηyx is almost purely imaginary (except very close to

cyclotron resonance). We define the polarization parameter, βpol, as

βpol = −i
ηxx − ηyy

2ηyx

≃ −i
ǫy′y′ − ǫx′x′ cos2 θB − ǫz′z′ sin2 θB + (ǫx′z′ + ǫz′x′ ) sin θB cos θB

2(ǫy′x′ cos θB − ǫy′z′ sin θB )
(3.33)

Then equation (3.31) can be written as

iK± = βpol ∓ sign(ηyx,i)

√

β2
pol + 1. (3.34)

Here sign(ηyx,i) means the sign of the imaginary part of ηyx. Obviously, when |βpol| ≫ 1, the two eigenmodes are linear polarized, while for

|βpol | = 0 the two modes are circular polarized.

Consider a cold pair plasma with �N = N p − N e ≪ N and �γ = γ p − γ e ≪ γ . When the Lorentz-shifted frequency, γω (1 − β cos θB ),

is much less than the cyclotron frequency ωc, i.e. for r ≪ rcyc or λ = ωc/[γω (1 − β cos θB )] = u1/2γ −1 (1 − β cos θB )−1 ≫ 1, we have

βpol ≃
−λθ 2

Bγ 2(1 + θ 2
Bγ 2)−1

(1 − θ 2
Bγ 2)�N/N − �γ/γ

. (3.35)

Here we assume θB ≪ 1 so that λ ≃ 4u1/2 γ (1 + θ2
Bγ 2)−1. After the photon passes through the cyclotron resonance, r ≫ rcyc or λ ≪ 1, the

polarization parameter is given by

βpol ≃
λθ 2

Bγ 2

θ 2
Bγ 2(3 − θ 2

Bγ 2)�γ/γ − (1 − θ 4
Bγ 4)�N/N

. (3.36)

These expressions are useful for understanding the effect of mode circularization (Section 4.3).

3.4 Evolution of the mode amplitude

In the xyz frame [with ẑ = k̂, B̂ = (− sin θB , 0, cos θB ) in this frame], we know that there are two wave modes: ‘+’ mode and ‘−’ mode. It

is convenient to introduce a mixing angle, θm, via tan θm = 1/(iK+), so that

tan 2θm = β−1
pol . (3.37)

In the xyz frame, the transverse components of the mode eigenvectors are

E+ =

(

i cos θm

sin θm

)

, E− =

(

−i sin θm

cos θm

)

, (3.38)

In the fixed XYZ frame (see Fig. 1), they become

E+ =

(

i cos θm cos φB − sin θm sin φB

i cos θm sin φB + sin θm cos φB

)

, E− =

(

−i sin θm cos φB − cos θm sin φB

−i sin θm sin φB + cos θm cos φB

)

. (3.39)

The general wave amplitude can be written as
(

AX

AY

)

= A+ E+ + A− E−. (3.40)

Substitute this into the wave equation, we obtain the mode amplitude evolution equation:

i
d

ds

(

A+

A−

)

=

[

−�k/2 + φ′
B sin 2θm iθ ′

m + φ′
B cos 2θm

−iθ ′
m + φ′

B cos 2θm �k/2 − φ′
B sin 2θm

] (

A+

A−

)

, (3.41)

where the superscript (′) specifies d/d s, �k = k+ − k− = �nω/c, and we have subtracted a non-essential unity matrix from the above. This

equation generalizes the special cases (where only θm or φB varies) studied in Lai & Ho (2002, 2003) and van Adelsberg & Lai (2006), and

it is useful for understanding the effect of mode coupling (Section 4.2).
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576 C. Wang, D. Lai and J. L. Han

4 SO M E IM P O RTA N T P RO PAG AT I O N EF F E C T S

With the equations derived in previous sections, we can now identify several key physical effects relevant for the evolution of wave polarization.

We consider the ‘weak dispersion’ region where the wave frequency is much larger than the plasma frequency in the plasma rest frame and

the refractive indices of the two natural wave modes are very close to unity. So we do not discuss the refraction effect here. The detailed

discussion about refraction effect can be found in Barnard & Arons (1986).

4.1 Cyclotron resonance/absorption

Cyclotron resonance occurs when the wave frequency in the electron/positron rest frame is close to the cyclotron frequency:

ω̃ = γω(1 − β cos θB ) = ωc =
eB

mc
. (4.42)

The eigenmodes at the cyclotron resonance point are always two circular polarized modes (marked as ‘+’ for the left-handed circular polarized

mode and ‘−’ for the right-handed one). Since the electrons and positrons have different directions of gyration (one is right-handed and the

other one is left-handed), the right-handed circular polarized mode is absorbed by electrons while the left-handed circular polarized mode is

absorbed by positrons. For a right-handed circular polarized mode, the scattering cross-section by electrons in the electron rest frame (the

physical quantities in the rest frame are marked by ‘∼’) is

σ̃− ≃ (2π)2 e2

mc
δ(ω̃ − ωc). (4.43)

The optical depth of this mode in the rest frame is

τ̃− =
∫

Ñeσ̃ds̃. (4.44)

Since the optical depth is Lorentz invariant, and

Ñe = γ −1Ne, ds̃ = γe(1 − βe cos θB )ds, (4.45)

the optical depth in the ‘lab’ frame is

τ− = τ̃− =
∫

Neσ̃ (1 − βe cos θB )ds. (4.46)

For a simple model, we set

B(r) ≃ B∗

(

R∗

r

)3

, Ne(r) ≃ ηe

�B(r)

2πec
(4.47)

with B∗ being the surface magnetic field. Thus, the optical depth is given by (e.g. Rafikov & Goldreich 2005)

τ− ≃
2π

3
ηe(1 − βe cos θB )

re,cyc

c/�
≃ 0.62ηB

1/3
∗12γ

−1/3
e ν

−1/3
9 P −1

1s (1 − βe cos θB )2/3 (4.48)

with B∗12 = B∗/(1012 G) and ν9 = ν/(109 Hz). From equation (4.42), we can find the resonance radius of the electron

re,cyc/R∗ = 1.8 × 103B
1/3
∗12ν

−1/3
9 γ −1/3

e θ
−2/3
B . (4.49)

Here θB is the k–B angle at the resonance radius.

The optical depth of the left-handed circular polarized mode caused by the scattering of positrons is similarly given by

τ+ ≃
2π

3
ηp(1 − βp cos θB )

rp,cyc

c/�
(4.50)

with ηp = N p/NGJ, and rp,cyc is defined by equation (4.49) using γ p instead of γ e.

When there is an asymmetry between electrons and positrons (different density and/or different γ ), the optical depths of the two modes

are different:

�τ = τ+ − τ− = 2τ

(

�N

N
−

�γ

6γ

)

, (4.51)

with τ ≃ τ+ ≃ τ−. Now consider a linear-polarized photon propagating through the cyclotron resonance region. The mode evolution is

non-adiabatic (which is always the case since the resonance happens after the polarization limiting radius; see Section 4.2). Before the

resonance, the total intensity is

Ii = Ii,+ + Ii,−, with Ii,+ = Ii,−, (4.52)

which means that the intensities of the two circular-polarized modes are the same. The wave intensity after the cyclotron absorption is

If = If,+ + If,− = Ii,+e−τ+ + Ii,−e−τ− . (4.53)

Because of the difference between τ+ and τ−, the final intensities of the two circular-polarized modes are different. Thus, CP can be generated:

Vf = If,+ − If,− = Ii,+e−τ+ − Ii,−e−τ− . (4.54)
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Polarization changes of pulsars 577

Vf

If

=
e−τ+ − e−τ−

e−τ+ + e−τ−
. (4.55)

When τ± ≪ 1, Vf/If = −�τ/2 = τ
(

�γ

6γ
− �N

N

)

.

We can also obtain the same result formally by using the Stokes parameters’ evolution equation (3.25). Since electrons and positrons

have slightly different γ , the cyclotron absorptions caused by electrons and positrons occur at different radii. We analyse them separately.

Consider the cyclotron absorption caused by electrons first. Near the resonance, with

x =
r − re,cyc

re,cyc

, |x| ≪ 1, (4.56)

we have

uγ −2
e (1 − β cos θB )−2 ≃

(

r

re,cyc

)−6

= (1 − x)6 ≃ 1 − 6x, (4.57)

where we have assumed B ∝ r−3. The imaginary parts of F11 and F12 in equation (3.25) are

F11,i = fe,11,i = Im(fe,11) ≃ Im

(

−
veγ

−1

2iγrad + 6x

)

=
veγ

−1

2γrad

1

1 + (3x/γrad)2
, (4.58)

F12,i = fe,12,i = Im(fe,12) ≃ Im
[

−fe,11(1 + x)3
]

≃ −fe,11,i. (4.59)

Also |F η| ≪ |f e,11,i| near the resonance, so we neglect it. Thus, the evolution equation for I and V in equation (3.25) are simplified to

dI/dr = −k0fe,11,iI + k0fe,11,iV ,

dV /dr = k0fe,11,iI − k0fe,11,iV . (4.60)

Then we have

dI+/dr = 0,

dI−/dr = −2k0fe,11,iI−, (4.61)

with I+ = (I + V )/2 being the intensity of the left circular-polarized mode and I− = (I − V )/2 of the right one. The solution to these

equations is

If = Ii,+ + Ii,−e−τ−

Vf = Ii,+ + Ii,−e−τ− , (4.62)

where I i,+, I i,− are the circular-polarized mode intensities before the resonance, and

τ− =
∫

acrossCR

2k0fe,11,idr =
2π

3
ηe(1 − βe cos θB )

re,cyc

c/�
, (4.63)

in agreement with equation (4.48). For the cyclotron absorption by positrons, the analysis is exactly the same, except f p,12 = f p,11(1 + x)3 ≃
f p,11. The intensities’ evolution equations are

dI+/dr = −2k0fp,11,iI+,

dI−/dr = 0.
(4.64)

Including both cyclotron absorption by electrons and positrons, the intensity and Stokes V parameters after the resonance are

If = Ii,+e−τ+ + Ii,−e−τ−

Vf = Ii,+e−τ+ − Ii,−e−τ−
(4.65)

with

τ+ =
∫

acrossCR

2k0fp,11,idr =
2π

3
ηp(1 − βp cos θB )

rp,cyc

rlc

. (4.66)

Thus, our evolution equations for the mode and Stokes parameters derived in Section 3 automatically include the correct physics of cyclotron

absorption by electrons and positrons.

4.2 Wave mode coupling

Wave mode coupling happens near the ‘polarization limiting radius’, rpl, where the mode evolution changes from adiabatic to non-adiabatic,

i.e. from Ŵad(r < rpl) > 1 to Ŵad(r > rpl) < 1.1 Generally, this is caused by the rotation of the pulsar. Obviously, the concept of wave mode

1 Some previous papers (e.g. Barnard 1986) define the ‘polarization limiting radius’ rpl as the cyclotron resonance radius since near rcyc, the adiabaticity

parameter becomes larger than unity and then immediately drops below unity (see e.g. Fig. 4). However, note that for a quasi-symmetric pair plasma (which

means that the electrons and positrons have almost same number densities and velocities) of interest in our paper, the cyclotron absorption almost does not

affect the polarization state (Q/I , U/I , V /I ). Also, even for an asymmetric plasma, the cyclotron resonance occurs over a rather small distance, and its effect

can be treated accurately using the equations described in Section 4.1. Therefore, we will just define the rpl as the boundary of adiabatic mode evolution away

from the cyclotron resonance (i.e. regardless where the cyclotron absorption occurs).
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578 C. Wang, D. Lai and J. L. Han

coupling is relevant for determining the observed polarization only when the wave mode is linear polarized, i.e. rpl < rcir (see Section 4.3).

In the process of wave mode coupling, the CP will be generated. For r < rcir (so that θm = 0 or π/2), the mode amplitude evolution

equation (3.41) simplifies to

i
d

ds

(

A+

A−

)

=

(

−�k/2 iφ′
B

−iφ′
B �k/2

) (

A+

A−

)

, (4.67)

with �k = �nω/c. The adiabatic parameter is defined as

Ŵad =
∣

∣

∣

∣

�nω

2cφ′
B

∣

∣

∣

∣

, (4.68)

where

�n =
1

2
{fη sin θ2

B − f11[1 − (cos θB − ξ sin θB )2]}. (4.69)

When r < rcyc, �n ≃ 1/2f η sin2θB ≃ −2vθ−2
B γ −3, so we have

Ŵad = 5.6 × 109ηB12ν
−1
9 θ−2

B γ −3|Fφ |−1, (4.70)

where we have used φ′
B = F φ/r lc, r lc = c/�, and

Fφ =
sin2 α cos ζ − sin α cos α sin ζ cos ψ

1 − (cos α cos ζ + sin ζ sin α cos ψ)2
. (4.71)

Obviously, Ŵad ≫ 1 means adiabatic mode evolution while Ŵad ≪ 1 means non-adiabatic. The condition Ŵad(r = rpl) = 1 then gives the

polarization limiting radius

rpl/R = 1.8 × 103η1/3B
1/3
∗12ν

−1/3
9 θ

−2/3
B γ −1|Fφ |−1/3. (4.72)

Here θB is the k–B angle at r = rpl. Comparing rpl with rcyc (see equation 4.49), we have

rpl/rcyc = η1/3γ −2/3

(

θB,pl

θB,cyc

)−2/3

|Fφ |−1/3 = 0.215η
1/3
2 γ

−2/3
2

(

θB,pl

θB,cyc

)−2/3

|Fφ |−1/3 � 1. (4.73)

So in the typical parameter region (η = 100, γ = 100, |F φ |= a few), wave mode coupling always occurs before cyclotron absorption.

To understand the wave mode coupling around rpl, we write

Ŵad = x−n, (4.74)

with x = r/rpl. According to equation (4.70), the power-law index n ∼ 3 (not exactly 3 because θB also varies as r changes). Then

equation (4.67) can be simplified to

i
d

dx

(

A+

A−

)

= |�|

(

x−n sign(φ′
B )i

−sign(φ′
B )i −x−n

) (

A+

A−

)

, (4.75)

where

� ≡ rplφ
′
B = 0.38sign(φ′

B )η1/3B
1/3
∗12ν

−1/3
9 θ

−2/3
B γ −1P −1

1 |Fφ |2/3. (4.76)

A similar equation is given by van Adelsberg & Lai (2006), except that in their paper the dispersion relation of X-ray is dominated by QED

effect so that �n > 0, while in our case plasma effect dominates the radio wave propagation with �n < 0. Fig. 2 shows two examples of

mode evolution with � = 0.1 and � = 1.0, both for n = 3. The photon is 100 per cent linear polarized before the wave mode coupling (here

we set it to be O mode initially). After the wave mode coupling (x ≫ 1), the polarization states are frozen. In this process, CP is produced. It

is obvious that the larger the � is, the more CP will be generated. Fig. 3 shows how the value of � affects the final CP |V |/I when the power

index n = 3. For n = 3 and � < 0.1, the final CP is given by the expression

V /I = 2.2sign(φ′
B )|�|3/2. (4.77)

For � � 1, the CP |V |/I is close to 1. Equation (4.77) also shows the relationship between the sign of the CP and φ′
B. An increasing φB (or

φ′
B > 0) corresponds to positive CP while decreasing φB to the negative one.

4.3 Circularization

Circularization happens when |βpol | ∼ 1, and we can define the radius of circularization rcir by |βpol(r = rcir)| = 1. For r ≫ rcir, the normal

modes become circular polarized.

According to equation (3.35), if rcir ≪ rcyc (or λ ≫ 1, before cyclotron resonance) and θBγ ≫ 1, the polarization parameter

|βpol| ≃
λ

θ 2
Bγ 2�N/N − �γ/γ

≫ 1, (4.78)

which means that the two wave modes are always linear polarized. However, if rcir ≪ rcyc and θBγ ≪ 1,

|βpol| ≃
λθ 2

Bγ 2

�N/N − �γ/γ
, (4.79)
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Polarization changes of pulsars 579

Figure 2. Evolution of the radiation mode amplitudes (top panel) and Stokes parameters (bottom three panels) with power-law index n = 3 (see equation 4.74).

The solid lines are for � = 1.0 and the dashed lines for � = 0.1. The polarization limiting radius is at x = 1. The initial values (at a small x = xi) are A+ =
1, A− = 0, Q = I = 1, U = 0 and V = 0. When x � 0.5, the modes evolve adiabatically. At r ∼ rpl (or x = 1) the modes begin to couple, generating CP.

At x ≫ 1, the Stokes parameters are ‘frozen’.

Figure 3. The final CP fraction |V |/I after wave mode coupling as a function of � with the power-law index n = 3. The LP fraction before wave mode

coupling is assumed to be 100 per cent. The dashed line depicts the fitting formula (equation 4.77) for � < 0.1.

so circularization could happen when

θBγ =
√

(�N/N − �γ/γ )/λ, (4.80)

which implies a very small θB. This condition could be satisfied when the photon ray is nearly aligned with the magnetic field or when the

photon is generated inside the 1/γ cone of the radiation beam.
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580 C. Wang, D. Lai and J. L. Han

If the circularization happens after the cyclotron resonance (rcir ≫ rcyc or λ ≪ 1), according to equation (3.36), the radius of circularization

is given by

rcir/R∗ = 2.2 × 103B
1/3
∗12ν

−1/3
9 θ

−4/3
B γ −1/3(�N/N − �γ/γ )−1/3. (4.81)

Here we used B ≃ B∗(r/R∗)−3 and assumed θBγ ≫ 1. The ratio of rcir to the cyclotron resonance radius (see equation 4.49)) is

rcir/rcyc = 1.2

(

θ 2
B,cir

θB,cyc

)−2/3

(�N/N − �γ/γ )−1/3 ≫ 1. (4.82)

Obviously, in the parameter regions we interested in, the circularization radius is typically larger than the cyclotron resonance radius and the

polarization limiting radius. Thus, this effect does not change the photon polarization state at all.

4.4 Quasi-tangential propagation effect

In their study of the X-ray polarization signals from magnetized NSs, Wang & Lai (2009) found that as the X-ray photon travels through

the magnetosphere, it may cross the region where its wave vector is aligned or nearly aligned with the magnetic field (i.e. θB is zero or

small). In such a QT region, the azimuthal angle of the magnetic field φB changes quickly, the two photon modes (‖ and ⊥ modes) become

(nearly) identical and mode coupling may occur, thereby affecting the polarization alignment. This QT effect generally happens at a few R∗

for surface X-ray emission. The physical mechanism is similar to the wave mode coupling effect discussed in Section 4.2 (see the mode

evolution equation 2.11 in Wang & Lai 2009), except that the magnetic field plays an important role.

In the radio case, we assume that the photon is emitted in the tangential direction of the magnetic field line at the emission point

(∼50R∗). If the NS is non-rotating, then the k–B angle θB(= 0 at the emission point) will increase monotonically and no QT effect will

occur. However, when we consider the rotation of the NS, for some special photons (e.g. those with a small impact angle χ and special � i) θB

could attain its minimum value at a large radius. As an example, the bottom two panels of Figs 6 and 7 (to be discussed in detail in Section 5)

show the evolution of θB and φB along the ray for χ = 0.◦5. We see that θB reaches its minimum value at about s = 700R∗ away from the

emission point. The azimuthal angle φB changes very quickly at this radius. The two linear modes strongly couple with each other. The final

polarization state after crossing this QT region is complicated: φPA can be modified significantly and a different sign of CP can be generated

for different geometry, which is different from the wave mode coupling effect discussed in Section 4.2. In general, the QT effect strongly

influences the polarization phase profiles when the impact angle is very small (see Section 5.3). In our case, the QT effect is always coupled

with the wave mode coupling effect (occurring at almost the same place), and the numerical ray integration is necessary to account for these

effects accurately (see Section 5).

5 N U M E R I C A L R E S U LTS

In Section 4, we have discussed various key physical effects related to wave propagation through the magnetosphere. However, in many cases

these different effects are coupled and not easy to separate. Thus, to produced the observed polarization profiles, it is necessary to use the

numerical ray integrations to calculate the final wave polarization states.

5.1 Single ray evolution

It is generally accepted that pulsar radio emission is emitted from the open field line region at a few to tens of NS radii (e.g. Cordes 1978;

Blaskiewicz et al. 1991; Kramer et al. 1997; Kijak & Gil 2003). In this paper, we choose the emission height rem = 50R∗ and assume that at

the emission point, the photon is polarized in the k–B plane (or the O mode, as in the case of curvature radiation) and propagates along the

tangential direction of the local magnetic field line (here we do not consider the emission cone of angle 1/γ ). For a given emission height

rem, the pulsar rotation phase � i, the direction of line of sight ζ (which is the k–� angle), the surface magnetic field B∗ and the plasma

properties (plasma density parameter η, Lorentz factor of the streaming plasma γ ), we can calculate the dielectric tensor at each point along

the photon ray and integrate the wave evolution equation (2.10) from the emission point to a large radius (generally, we choose r lc/2), beyond

the polarization limiting radius rpl and cyclotron resonance radius rcyc, to determine the final polarization state of the photon.

5.1.1 Symmetric pair plasma

We first consider the case of symmetric pair plasmas, i.e. the electrons and positrons have the same Lorentz factors (γ p = γ e or �γ/γ = 0)

and densities (�N/N = 0). In this case, the eigenmodes are always linear polarized (mixing angle θm = 0◦ or 90◦). Fig. 4 shows an example

of the photon polarization evolution along its trajectory. We can clearly find that the wave mode coupling effect (at rpl ∼ 800 R∗) occurs

before the cyclotron absorption effect (at rcyc ∼ 1700R∗). According to equation (4.73), for typical plasma parameters: η = 100, γ = 100,

the polarization limiting radius is always smaller than the cyclotron resonance radius. The final polarization PA, φPA, is determined by φB(rpl)

(see equation 5.87). It is obvious that near the polarization limiting radius, Ŵad ∝ (r/rpl)
−n and n ∼ 3, so that as discussed in Section 4.2, the

final CP is determined by the value of � (see equation 4.77). Since we are dealing with a symmetric pair plasma here, cyclotron absorptions

do not change the polarization state (but decrease the total intensity).
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Polarization changes of pulsars 581

Figure 4. A typical single photon evolution across the magnetosphere. The horizontal axis s/R∗ is the photon distance away from the emission point. On

the left-hand panels, θm is the mode mixing angle defined by equation (3.37), Ŵad is the adiabatic parameter defined by equation (4.70) (the dashed line is the

power-law fit of Ŵad around rpl, which is Ŵad ∝ s−2.39), and AX and AY are the wave amplitudes in the fixed XYZ frame. A+ and A− are the mode amplitudes

and θB is the angle between k and B. On the right-hand panels, I , Q, U , V are the Stokes parameters, φPA = 0.5 tan−1 (U/Q) is the LP PA (solid line) and

φB is the azimuthal angle of the B field (dashed line). The initial polarization is assumed to be in the ordinary mode, with A+ = 1, A− = 0. For this example,

the parameters are the surface magnetic field B∗ = 1012 G, NS spin period P = 1 s, wave frequency ν = 1 GHz, plasma density parameter η = N/NGJ = 400

(N = N e + Np and N e = Np), Lorentz factor γ = 100 (with �γ/γ ≃ 0), inclination angle α = 30◦, impact angle χ = 2◦, initial rotation phase � i = 0◦ and

emission height rem = 50R∗.

Fig. 5 gives some other examples of the evolution of Stokes parameters with different plasma density η and Lorentz factor γ . Different

η and γ correspond to different rpl (according to equation 4.72, lower η and higher γ correspond to a smaller rpl) so that the final φPA is

different too. In all the above cases, the final polarization state changes significantly not only the linear PA but also the CP as compared to the

original state.

At the special parameter region of the initial rotation phase � i, the QT effect (see Section 4.4) can strongly affect the final polarization

state. Fig. 6 shows the photon evolution for � i = −9◦ (the other parameters are the same as in Fig. 4, e.g. the impact angle χ = 2◦). Note that

in contrast to Fig. 4, here the k–B angle θB does not vary monotonically along the ray. There exists a QT region around s ∼ 700R∗, where θB

is the minimum and φB is changing very quickly. As discussed in Section 4.4, the final φPA and CP are different from the prediction of pure

wave mode coupling effect (which is the case in Fig. 4 where the QT effect does not occur). For the photon evolution with a smaller photon

impact angle χ = 0.◦5 (but the initial rotation phase and other parameters are the same as in Fig. 6), the QT effect is stronger, as shown in

Fig. 7. Note that even the sign of the final CP in this figure is positive, as a result of the strong QT effect.

5.1.2 Asymmetric pair plasma

If the electrons and positrons of the magnetospheric plasma have different velocities and/or densities, the wave eigenmodes cannot always

be linearly polarized. As discussed in Section 4.3, before cyclotron resonance the natural modes are linearly polarized (see equation 4.78)

for θBγ ≫ 1. After the cyclotron resonance, the natural modes become elliptical polarized. In Section 4.3, we have defined a circularization

radius rcir where the polarization parameter |βpol| = 1 (see equations 4.81 and 4.82). For r ≫ rcir, the natural modes become circular polarized.

According to equation (4.73), for typical plasma parameters of interest in this paper, η � 100 and γ � 100, wave mode coupling always

occurs before the cyclotron resonance (rpl < rcyc). Thus, circularization always happens after wave mode coupling, at which point the wave

polarization state is already frozen. Therefore, the change of the natural mode does not affect the observed polarization state. Fig. 8 shows

the photon evolution in an asymmetric pair plasma. Note that the mode mixing angle θm changes from 0◦/90◦ to 45◦ after the cyclotron

resonance, but the polarization state does not change since rcir > rpl.

von Hoensbroech et al. (1998) studied wave modes in a pure electron plasma. They assumed that the background plasma has a much

lower Lorentz factor (e.g. γ bg = 1.7) than the Lorentz factor of the radiating beam. In this case, rcir may be close to rpl and CP may be

generated around rcir. Note that they did not calculate rpl but simply assumed that the final photon polarization is determined by the normal

mode at some fixed rpl.
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582 C. Wang, D. Lai and J. L. Han

Figure 5. Same as the right-hand panels of Fig. 4, except for different plasma density η and Lorentz factor of the streaming motion γ : the solid lines are for

η = 400, γ = 100 (same as Fig. 4); the dashed lines for η = 400, γ = 300 and the dotted lines for η = 100, γ = 100. The thin line in the bottom panel is for

φB. It is obvious that for lower density and/or higher γ , the wave mode coupling occurs at smaller rpl.

Figure 6. Same as Fig. 4, except for a different initial rotation phase � i = −9◦. The impact angle is the same as in Fig. 4, χ = 2◦. Note that in contrast

to Fig. 4, here the k–B angle θB does not vary monotonically along the ray. There exists a QT region around s ∼ 700R∗, where θB is the minimum and φB

changes very quickly. Strong CP is generated here and the final PA angle φPA cannot be predicted by simply using equation (5.84).

5.2 Polarization profiles of the pulsar emission beam

Having understood the main features of polarization evolution along a single ray, we now proceed to calculate the polarization profiles of the

pulsar emission beam. To do this, one needs to know the emission height as a function of the pulsar rotation phase. For simplicity, in this

paper, we assume that all emissions are from the same height, at rem = 50R∗, and defer the results for emissions from a range of heights to a

future paper. For a given emission height rem, the pulsar rotation phase � i, the inclination angle α and the direction of line of sight ζ (which

is the k–� angle), we can find the position of the emission point r i where the tangential magnetic field line direction is along the line of sight.
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Polarization changes of pulsars 583

Figure 7. Same as Fig. 6, except for the impact angle χ = 0.◦5. The very smaller impact angle makes φB change more quickly around s ∼ 700R∗ so that the

QT effect is stronger than the case shown in Fig. 6. Note that the sign of final CP is different from the cases in Figs 4 and 6.

Figure 8. Same as Fig. 4, except for an asymmetric pair plasma with �γ/γ = 0.2, �N/N = 0. Since the Lorentz factors of electrons and positrons are

different, their cyclotron resonance occurs at different radii. Note that after the cyclotron resonance, the natural modes become circular polarized (θm = 45◦).

This emission point, r i = (rem, θ ri, φri), is given by (in the fixed XYZ frame)

θri =
θμi

2
−

1

2
sin−1

(

1

3
sin θμi

)

, φri = φμi, (5.83)

where (θμi, φμi) is the initial direction of the dipole magnetic momentum μi and can be found in equation (2.5) (with � given by � i). We

consider emissions only from the open field line region, i.e. the angle between r i and μi should be less than
√

rem/rlc.

For given rem, α, ζ , � i and initial polarization state (ordinary mode), we determine r i and calculate the final observed Stokes parameters

by integrating along the ray. When the phase � i varies due to NS rotation, we can observe photons from different emission points and the
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584 C. Wang, D. Lai and J. L. Han

(a) χ = 5o (b) χ = 2o

Figure 9. The intensity and polarization profiles computed by ray integrations. We use two different impact angles: (a) χ = 5◦ on the left-hand panels

and (b) χ = 2◦ on the right-hand panels. The solid lines are for the plasma density parameter η = 10, the dashed lines for η = 100 and the dot–dashed

line for η = 400. The top panels show the total intensity profiles, where we have adopted (for an illustrative purpose) a Gaussian initial intensity profile

I0(�i) = exp(−4
√

ln 2�2
i /�2

max) (this initial profile is shown as dotted lines, almost coincident with the solid lines). The second panels from the top show the

modification factor I/I 0 due to propagation effects. The bottom three panels show the LP fraction L/I, CP V/I and the PA of the LP, φPA. In the bottom panels,

the dotted lines (almost coincident with the solid line on the left-hand panel) show the prediction from the RVM: φPA = φμi ≃ φBi. In these calculations,

the initial polarization states are all of an ordinary mode and the other parameters are the surface magnetic field B∗ = 1012 G, NS spin period P = 1 s, wave

frequency ν = 1 GHz, Lorentz factor γ = 100 (with �γ/γ ≃ 0), inclination angle α = 30◦ and emission height rem = 50R∗.

final observed Stokes parameters will change with the rotation phase – this is the pulsar polarization profile. If we neglect the propagation

effect, the observed PA, φPA, can be described by the RVM (see Radhakrishnan & Cooke 1969) as

φPA = φμi = φμ(�i) = tan−1 − sin α sin �i

sin ζ cos α − cos ζ sin α cos �i

. (5.84)

The basic assumption of the RVM is that the radiation is emitted with polarization in the plane of the field line curvature (i.e. the k–B

plane) and this polarization direction is unchanged during the propagation. However, as seen in Section 5.1, the final polarization state can

be modified compared to the initial one because of the propagation effect in the magnetosphere so that the final PA profile can deviate

significantly from the RVM.

Fig. 9 shows a typical example of the phase evolution of the intensity and polarization, taking into account all the propagation effects.

The total intensity is only affected by cyclotron absorption, and a higher plasma density leads to stronger absorption. We see that the relative

intensity I/I 0 varies with the rotation phase � i, simply because the wave passes through different paths in the magnetosphere for different

� i. For illustrative purpose, we consider the initial intensity profile I0, given by a Gaussian centred at � i = 0:

I0(�i) = exp(−4
√

ln 2�2
i /(�2

max)). (5.85)

Here �max is the initial phase of the photon from the edge of the open field region and is given by

cos �max =
cos θopen − cos ζ cos α

sin ζ sin α
, (5.86)

where θopen ≃
√

rem/rlc is the half-cone angle of the open field region at emission height rem (here we simply assume that the open field

region is always the same as the μφ ‖� case). Since I/I 0 depends asymmetrically on � i, the observed intensity I is no longer a Gaussian.

Non-Gaussian profiles have been observed in many pulsars, and the phase-dependent cyclotron absorption illustrated here is a possible

explanation.

The final polarization profiles are also strongly affected by the propagation effects. When the plasma density is not so high and/or the

impact angle χ is not so small (compared to the half-cone angle of the emission beam from the open field region θ beam; e.g. in Fig. 9a, χ =
5◦ while θbeam ≃ 1.5θopen = 8.◦8), the wave mode coupling effect is not strong and the final CP is not very high. In this case, the final LP PA

is determined by the azimuthal angle of the B field at the polarization limiting radius φB(rpl):

φPA ≃ φB (rpl) ≃ π + φμ(rpl) = π + φμ(�i + rpl/rlc). (5.87)
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Polarization changes of pulsars 585

Figure 10. Two-dimensional polarization map of the pulsar emission beam. The four panels correspond to the four Stokes parameters I , Q/I , U/I , V /I .

The filled region is the emission beam from the open field region. The values of the four Stokes parameters are shown with different colours (with red for a

positive value while blue for negative). The map is obtained by computing the observed wave polarization for different impact angles χ (which varies from

−θbeam to θbeam; here θbeam ≃ 8.◦8) and the rotation phase � i. The other (fixed) parameters are the surface magnetic field B∗ = 1012 G, NS period P = 1 s,

wave frequency ν = 1 GHz, plasma density η = N/NGJ = 400 (N = N e + Np and N e = Np), Lorentz factor γ = 100 (with �γ/γ ≃ 0), inclination angle

α = 30◦ and emission height rem = 50R∗.

Here we have used the approximation of B(r) = −μ/r3 since rpl ≫ R∗. In general, the polarization limiting radius, rpl, does not vary

significantly with different rotation phases � i. Thus, the final PA profile just shifts by the amount

rpl/rlc ≃ 0.04
( η

102

)1/3
(

B

1012 G

)1/3
( ν

1 GHz

)−1/3 ( γ

102

)−1
(

θB

0.1

)−2/3 (

P

1 s

)−1 (

Fφ

10

)−1/3

(5.88)

compared to the RVM. The final CP is always a single sign in this case. We can easily find the relationship between φPA and the sign of CP.

According to equation (5.87), the monotonicity of the final PA, φPA(� i), is given by

dφPA

d�i

=
dφB (rpl)

d�

d�

d�i

=
dφB (rpl)

d�
. (5.89)

Here � = � i + s/r lc (see equation 2.2) so that d�/d� i = 1. The sign of the final CP (generated by the wave mode coupling effect) is

determined by dφB(rpl)/ds (φ′
B in equation 4.77), and

dφB (rpl)

ds
=

dφB (rpl)

d�

d�

ds
=

dφB (rpl)

d�

1

rlc

(5.90)

so that dφPA/d� i always has the same sign as dφB(rpl)/ds. According to equations (4.77) and (5.90), we can find that because of the wave

mode coupling effect, a monotonically increasing φPA leads to a positive V while a monotonically decreasing φPA gives a negative V . This

relationship has been observed in some conal-double-type pulsars (see Section 5.3).

The polarization profiles can also be quite different from the RVM prediction, especially in the case of low impact angle and/or high

plasma density. Fig. 9(b) give some examples for the impact angle χ = 2◦. For the low density case of η = 10, the final PA profile can still

be approximated by a simple shift from the RVM. However, for higher density (η = 200, 400), the final PA profile is not just a simple shift

compared with the RVM. For example, the PA profile of the η = 400 case has a 90◦ jump within 1◦ around � i ≃ −9◦, where the LP L/I is

close to 0 while the CP |V |/I reaches almost 100 per cent. In this region, the QT effect (discussed in Section 4.4) plays an important role in

determining the final polarization state (see Fig. 6).

5.3 Two-dimensional polarization maps of the pulsar emission beam

For a given pulsar, observation at a different line of sight (i.e. different ζ or impact angle χ ) would obviously result in different intensity

and polarization profiles. Fig. 10 gives an example of the two-dimensional polarization map of the observed Stokes parameters, produced

by varying χ and � i, while keeping all other parameters fixed. As discussed before, the final total intensity I is only affected by cyclotron

absorption, while the linear and CPs are modified by wave mode coupling effect and QT effect, and can deviate significantly from the

prediction of the RVM. Fig. 11 shows four profiles with four different impact angles χ , corresponding to four sections of Fig. 10. These four

sections represent the following three typical final polarization states produced by the propagation effects.

(i) For a relatively large impact angle |χ |, the final PA profile can be obtained by a small shift from the RVM profile, of the amount rpl/r lc

(see equations 5.87 and 5.88). Fig. 9 and the χ = −5◦ column of Fig. 11 depict some examples. The final CP is always of a single sign: a

monotonically increasing φPA leads to a positive V while a monotonically decreasing φPA gives a negative V (see equations 4.77 and 5.90).

This behaviour is consistent with observations of the double cone emission of some pulsars (‘conal-double-type pulsars’), where a correlation

between the sense of CP and the sense of PA variation was found (see Han et al. 1998).

(ii) For a relatively small impact angle, the final PA profile is very different from the RVM prediction – the middle two columns (χ = −1.◦9

and χ = −1◦) of Fig. 11 give some examples. It is clear that there always exists a special line of sight (χ = χ jump), for which the PA profile

has a 90◦ jump [where Q = 0 while U changes signs (see the χ = −1.◦9 column of Fig. 11)]. The large jumps in V/I and φPA are caused by

the QT effect. For |χ | < χ jump, the PA is not necessarily a monotonic function of � i. Nevertheless, the final CP retains a single sign, which

is the same as the case with large |χ |.
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586 C. Wang, D. Lai and J. L. Han

Figure 11. Intensity and polarization profiles of the pulsar emission beam. The four columns correspond to four fixed impact angles χ = −5◦, −1.◦9, −1◦ and

−0.◦5, respectively, which are four sections in Fig. 10. In each column, we plot the Stokes parameters I/I 0 (top panel), L/I (second panel), V/I (third panel),

φPA and φBi (bottom panel; the solid line is for φPA and the dashed line for φBi). Note that there exists a 90◦ jump of φPA near � i = −9◦ in the bottom panel

of the χ = −1.◦9 column. The other parameters are the same as in Fig. 10.

(iii) For a very small impact angle (|χ | ≪ χ jump), the QT effect is much stronger so that the final PA profile is very different from the

prediction of the RVM and even the CP does not stay at a single sign (see the rightmost column of Fig. 11).

The above three types of polarization behaviours always exist for different pulsar and plasma parameters (e.g. B∗, P 0, ν, η, γ , α and

rem). Different parameters just modify the position of χ jump and the initial rotation phase where the 90◦ jump in PA occurs, while the basic

morphology of the emission beam does not change.

6 C ONCLU SION AND DISCUSSION

We have studied the evolution of radio emission polarization in a rotating pulsar magnetosphere filled with a relativistic streaming pair plasma.

We quantify and compare the relative importance of several key propagation effects that can influence the observed radio polarization signals,

including wave mode coupling, cyclotron absorption, propagation through the QT region and mode circularization (due to asymmetric

distributions of electrons and positrons). We use numerical integration of the photon polarization along the ray to incorporate all these

propagation effects self-consistently within a single framework. We find that, for typical parameters of the magnetospheric plasma produced

by pair cascade, and for an initially 100 per cent linear-polarized radio wave, the final intensity and polarization PA are modified by the

propagation effects, and significant CP can be generated.

We find that the most important propagation effects are cyclotron absorption, wave mode coupling and QT effect. Generally, cyclotron

absorption occurs after the wave mode coupling (rcyc > rpl; see equation 4.73). Thus, it only changes the total wave intensity and does not

modify the wave polarization (φPA, V /I ). For a large impact angle |χ | and/or relatively low plasma density, the final wave polarization angle

φPA is determined by the azimuthal angle of the B field at the polarization limiting radius rpl, and the observed CP is determined by the value

of � = rpl φ′
B at r = rpl (see equations 4.76 and 4.77). In this case, the observed φPA profile is similar to the prediction of the RVM, except

for a phase shift by the amount rpl/r lc (see equation 5.88); the CP has a single sign across the emission beam (see Fig. 9). For a small impact

angle and/or high plasma density, the QT effect becomes important; the final polarization profiles are more irregular: a 90◦ sudden jump in

PA may occur at a certain phase, accompanied by large CP. For very small |χ |, the CP may change signs at different phases (see the rightmost

column of Fig. 11).

In this paper, we have adopted the simplest (and minimum) assumptions about the property of the magnetospheric plasma and the

intrinsic radio emission mechanism (see below). Nevertheless, our results already show great promise in explaining a number of otherwise

puzzling observations as follows.

(i) It has been observed that in some single-pulse pulsars, the intensity profile deviates from the single Gaussian shape. One possible

reason is that cyclotron absorption depends on the rotation phase (because the ray passes through different regions of the magnetosphere),

as discussed in Section 5.2. Thus, even when the initial intensity profile from the emission beam is a Gaussian, the observed profile can be

non-Gaussian.

(ii) For the so-called conal-double-type pulsars, which in our model corresponds to a large impact angle χ , the relationship between the

single sign of the CP and the derivation of φPA (see Han et al. 1998) can be easily understood by the wave mode coupling effect. According to
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Figure 12. Intensity and polarization profiles of PSR J1920+2650. In the lower panel, the upper thick line is the total intensity (I), the dash–dot–dashed line

is the linearly polarized intensity L and the thin line is the circularly polarized intensity V . This pulsar shows extremely strong CP with V /I ≃ 64 per cent in

its first major component.

equations (4.77) and (5.90), an increasing φPA corresponds to the right-hand CP (V > 0) while a decreasing φPA corresponds to the left-hand

(V < 0) one.2

(iii) According to our calculation, there exists a special impact angle χ jump, where the observed φPA profile has a 90◦ jump (OPM) and this

is accompanied by the maximum CP. This feature may be helpful to explain the polarization profile of PSR J1920+2650 (Fig. 12; see Han

et al. 2009).

(iv) For a very small impact angle, which corresponds to the core emission, the QT effect can cause the sign reversal of CP, which is

observed in the core components of many pulsars (e.g. Radhakrishnan & Rankin 1990; Han et al. 1998; You & Han 2006).

Our calculations in this paper have relied on several simplifying assumptions. For example, we have assumed that the radio emission

is from the same height for different rotation phases, that the density parameter (η = N/NGJ) of the magnetospheric plasma is constant

everywhere in the emission cone and along the photon trajectory, and that the plasma electrons and positrons are the same for bulk Lorentz

factors. In future works, we plan to consider models with varying emission heights as well as non-trivial electron/positron spatial and velocity

distributions. We did not include the small but finite emission cone (angle 1/γ ) in our model and assumed that the initial polarization of a

photon is always O mode for different rotation phases. However, different emission mechanisms could give different initial polarization states.

We will also be interested in studying the propagation effects on the individual/subpulse emissions, since they may more directly reflect the

underlying radio emission processes.
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