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Polarization distribution and degree of polarization for three-dimensional quantum light fields
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We introduce a probability distribution for polarization of three-dimensional quantum light fields as a
marginal of the quadratur® function for a three-mode field by removing the variables irrelevant for polar-
ization (total intensity and global phaserhe probability distribution turns out to be determined by projection
on SU3) coherent states. We introduce a degree of polarization as the distance between the polarization
distribution and the uniform distribution associated with completely unpolarized light. We study the relation
between two- and three-dimensional polarization by considering field states with a component in the vacuum
state. We apply this formalism to some relevant field states.
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I. INTRODUCTION a previous 2D approacH4]. Quantum physics impels the
S ) i ) . statistical description of polarization from the very begin-
Polarization is a fundamental ingredient of light, both in ning  The complete specification of a definite polarization
the quantum and in the classical domains. In the quantungiaie would require precise values of the Stokes variables. In

regime this. variable has been.crucial for the experimental ,antum optics they become noncommuting operators so
demonstration of fundamental issues such as entanglemeRy,; ng state can have a definite value for all of them simul-

complementarity, quantum cryptography, teleportation, Belkaneously and a probability distribution is required to de-
inequalities, and precision measuremefiite]. scribe every polarization state.

_Although the electric field is by definition a three-  ag 5 suitable probability distribution for polarization we
dimensional(3D) magnitude, most approaches to polariza-propose the marginal of the quadrat@éunction of a three-
tion assume two-dimension@2D) transverse fields. This iS  mode field obtained after removing the variables irrelevant
because most problems in optics are addressed by considegy the specification of the polarization state, i.e., the inten-
ing _plane-wave fields, where_ the Iongltudlnal componentity and a global phasec. 1) [16]. We find that the polar-
vanishes. Moreover, polarization of harmonic waves is 10yztjon distribution for 3D fields is the projection of the state
cally a two-dimensional phenomenon, since the electric fielg); e system on S(3) coherent state§17] (Sec. Il and
at each spatial point describes an ellipse contained in a p""‘”ﬁ\ppendix B. Among other properties, the $8) coherent

_Nevertheless, there are reasons justifying a threesiates are minimum uncertainty states for Stokes operators
dlmen_S|or_1aI ana_IyS|s of polarlzat_|on. For exam_ple, f_or non-(appendixes A and B[5]. This supports their use as refer-
paraxial fields without a well-defined propagation directiongnce states for the definition of a polarization distribution.
the plane of the ellipse may vary from point to point. AlSo,  Eyrthermore, we introduce a degree of polarization as the
plane-wave behavior and the vanishing of the longitudinalyistance of the polarization distribution to the uniform distri-
component are approximatiof3]. Moreover, quantum fluc- ,tion associated with completely unpolarized ligSec.
tuations affect the three field components even when they aff ). This approach goes beyond definitions based on the
in the vacuum state, so that quantum polarization is perforcgiokes parameters since the distance between distributions

a 3D phenomenof¥,5]. involves field correlations of all orders. A similar approach

Up to now 3D polarization has been addressed by a géMas peen adopted for the assessment of fringe visilply.
eralization of the Stokes parameters and Stokes operators \yie examine also the relation between the 2D and 3D

[5-13. In this regard, some previous works have discussednroaches by considering field states with a field compo-
the limitations of polarization formalisms based exclusivelynant in vacuum(Sec. V). Finally we consider some ex-

on the Stokes parametef$4]. These limitations arise be- amples of relevant field states illustrating this formalism

cause Stokes parameters are second-order field correlationgec. \J.

while hlgher-_order correlations can be qruual, espgaa}ly iN" Finally, for the sake of completeness in Appendixes A and
quantum optics. For example, polarization squeezing is de&g \ve recall some previous results concerning generalized

termined by the fluctuations of the Stokes operators rathegigkes operators for three-dimensional fields and some prop-

than by their mean valugg,15]. o erties of SW3) coherent states.
In this work we address a quantum description of 3D

polarization beyond Stokes parameters by introducing a

probability distribution for polarization as a 3D extension of !l POLARIZATION DISTRIBUTION FOR THREE-
DIMENSIONAL FIELDS

In previous works dealing with quantum 2D polarization
*Electronic address: alluis@fis.ucm.es; URL: http://www.ucm.esive have found it convenient to represent the statistical prop-
info/gioq erties of field states by means of the quadra@ré&inction,
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defined by projection of the system state on quadrature co- _ 0 .0

herent statef14]. This choice is motivated by the fact that, dr=4 S'HGCOSES'HQ'Ed@d@'quﬁ'. (2.5
in sharp contrast to other quantum distributions known in

physics, the quadratui@ function is always a true probabil- with

ity distribution and transforms properly under polarization

changing transformatior{4.6,20. Moreover, theQ function fdr = (4m)2, (2.6)
can be determined in practice by simple experimental proce-

dures whose principles of operation can be understood evel} 4 42
within a purely classical frameworf21]. To this end the
schemes determining the Wigner function are also valid sinc
Q is simply the convolution of the Wigner function with a

a=da,de;, with a;,a; being the real and imaginary
garts ofa, respectively.

With this change of variables, the quadrature coherent
statesla) can be expressed as

Gaussiarf16].
The 3D quadrature coherent states with ajja)=o;|a) = [ rei(e+a'i2+412) N
are lay=e72Y [,——]|N,F), (2.7
N=0 VN!
la) = o (la2+layP+agPy2 M Ny M), where|N,T’) are SU3) coherent statefl 7],
nynang=0 VN1 ! Nz ! ng! N 172 /\N-n \n
2.1) ND =D (N) (c036—> (sin6—>
' Soo\n 2 2
with |n;,n,,ng) being the number states aagl, a,, andag “ing
the projection of the complex amplitude along Cartesian €N, )1 AN - n)s, (2.8
axes. The quadratur@ function is[16] In,Q), , are SU2) coherent states in modes, a, [22],
1 n n \12 g\nm p\™
Q(a) = —tr(pla)(al), (2.2 In, QY ,= > ( ) (cos—) (sin—) e ™| m)|n - m),,
T “ o \m 2 2
wherep is the density matrix. (2.9

We can derive a probability distribution for polarization if and [N=n)s, [m);, [n-m), are number states in the corre-

we remove fromQ the degrees of freedom irrelevant for the . : : .
description of polarization. These are the total intensitySpondlng modes. In Appendix B we provide further details

. _— >"Jand properties of the stat@s,T’).
|au|*+|a|*+]al® and a global phase, since only relative in- ~"p o 0o of and 6 in Eq. (2.2) leads to theQ func-
tensities and relative phases enter on the idea of poIar|zat|0|aDn for polarization variables
After this removal we will get a distribution depending on '

four real variables. This is consistent with the fact that the 1(~ m 5
specification of a classical polarization state in a three- Q) = 3] dr| dor Q) =t pA(N)], (2.10
dimensional space requires four parameters: Two define the 0 0
plane of the ellipse, and the other two fix the ellipse. where
In order to remove the total intensity and the global phase L o
it is convenient to express in terms of phase-angular coor- A(T) = 3] drf dorsla)(of
dinates in the form 327 ) 0
00 s o (N+2)(N+1)
oy =t sin—sin_¢e(>¢'/2=412), => —————IN,T'N,T’ 2.1
1 2 2 NE:O 2(477)2 | ’ >< ’ | ( 1)

’ satisfies the resolution of the identity
ay=r sinicosgei(ﬁ“”"”‘f”z)
2 )

f dr'A(D) =1, (2.12

_ 0" i(see e wherel is the identity.
a3—rcosEe( v, (2.3 This procedure defines a legitimate probability distribu-
tion Q(I') which is nonnegativeQ(I')=0 and normalized
wherex=r=0, 7=6, §'=0, and 2r=6, ¢,¢'= 0. fdI'Q(I')=1. We can appreciate th(T") is defined by pro-
The Jacobian of the transformation leads to jection of the field state on the $8) coherent states. There
. are reasons that make this fact attractive and consistent with
2 9o o _ 15 previous results. In Ref5] it is shown that the S(B) coher-
Fardardas = 32r drdadl’, 2.4 ent stategN,T") are the minimum uncertainty states for the
Stokes operators with fixed total number of photons. More-
being over, they are also maximally polarized states when the de-

063815-2



POLARIZATION DISTRIBUTION AND DEGREE OF.. PHYSICAL REVIEW A 71, 063815(2005

gree of polarization is measured in terms of the Stokes pa-
rameters[5]. Therefore the S(B) coherent states can be Qunpolarizeér):w' (3.0
regarded as the quantum states closer to represent a definite
three-dimensional polarization state with fixed intensity.  as

The SU3) and SU2) coherent states can also be related LT
to an operational approach to quantum polarization. In prac-. _ 2 _ _ 2 2
tical terms, we may say that the output of a linear polarizer D=(4m) JdF[Q(F) (477)2} = (4m) deQ (0=1.
(all the photons in a single mode and the rest of modes in (3.2
vacuum is as much polarized as allowed by the quantum '
theory. Then we can construct any other quantum polarizett must be noticed thaD is not bounded>>D=0. If a
state by applying rotations and phase plafies., arbitrary normalized degree would be required we might consider ex-
energy-conserving linear transformatipnhis leads pre- pressions such &B/(1+D), for example.
cisely to the S(2) coherent states in a 2D approach and to  The inverse of[dl'Q?(T) is a measure of the volume of
the SU3) coherent states in a 3D approach. the polarization space occupied by the funci@rso that the

This operational perspective agrees with the scheme for @maller the volume over whick) extends, the larger the
direct determination of the polarization distributiQtl’) that  degree of polarization. A similar strategy has been adopted in
can be derived from the approaches analyzed in [R&f.in different area$18,26,21.
the context of spin systems. The idea is to measure the prob- According to Ref.[27] the SU3) coherent statefN,I’)
ability that all the photons are in a single mode after 43U  are the states with larggidl'Q(T") for fixed N. In our con-
or SUQ3) transformation. Some other similar procedurestext, this implies thaiN,I") are the states with the maximum
based on the measurement of the mode intensities aftefegree of polarizatiof for fixed intensity. The explicit cal-
SU(2) or SUR) transformations can be found in R¢24].  culation of D for |N,T) is carried out in Sec. V.
All these approaches allow the determinationQsf’) with- Next we show thatD is invariant under linear energy-
out determining first the quadrature distributi@(a), i.e.,  conserving transformatiod of the complex amplitudes
avoiding the complete reconstruction of the state of the sys-
tem. N
In the above analysis we have assumed the minimum U'aU :Zujykakv 3.3
number of modes(three required to describe a three- k=t
dimensional field. However, there would be situations Whera/\/hereL[Lk is a unitary matrix. This transformation maps co-
a larger number of modes can contribute to the field, fomerent states into coherent states with different complex am-
example when multiple beams cross the point of interesplitudesa=U/a preserving the volume element
propagating in different directions. Next we show in brief
that there is a generalization of the above approach to en- d%a, 0?00, = dPa; d?aydPas, (3.4

compass such multimode situations. The starting point is.

provided by mulimode quadrature coherent statesNCe this is a linear canonical transformation. The idea is to
oy, ay, avy) defining a quadrature distributiod (e, @, as) use Eq.(2.4) to transform this into the same equality for the

where the three multi-dimensional complex vectars =1, polarization volume element. To this end we note ifmat.

2, 3, denote the complex amplitudes of the coherent states ? o?gc\(/a'v;nmgt the transformation of thivariable, from Eq.
the modes contributing to the compongntf the field. The ' 9

relevant variables are the three components of the electric
field along three Cartesian axes at the point of interest. These

projectionsa; are given by the sume;=2,a; Where e  wheref is a function of the polarization variables and the
are the components af;. In a first stage we can carry out a yansformation. This relation holds becatés just a func-

first removal of variables irrelevant for the specification oftion of @ but not of & . Sinced embracess completelv. the
polarization by averagin@(a;, a,, a3) over all the degrees @ a. pletely,

of freedom different froma=(ay, @y, a3). The details of the ~Other transformed polarization variablés=6,6",¢,¢" do
procedure will depend on the particular number of modes© depend o,

The result is an effective three-mode quadrature distribution ~

Q(a). In a second stage we can perform the final removal ar _ 0 (3.6)
from Q(a) of the variables irrelevant for the specification of a6 '
polarization as described in E¢&.3) and(2.10.

3

5= 6+1(T,U), (3.5

These vanishing derivatives along witlsr imply the fol-
lowing for the Jacobian of the transformation of the polar-

Ill. DEGREE OF POLARIZATION FOR THREE- ization variables

DIMENSIONAL FIELDS

The above polarization distribution provides a very natu- ﬁ _dF,61) _ ar _ 1 3.7)
ral measureD of the degree of polarization for 3D fields as da o(r,8T) o '
the distance betwee@ and the uniform distribution associ- _
ated with fully unpolarized lighf14,25, so thatdI'=dI". This in turn implies
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5 - of the third dimension, and its 2D counterp@rp [14],

J drQf, () = J drQi() = f drQi(r), (3.9
Dop=4mw | dOQ2,(Q) -1, 4.6
that demonstrates the above-mentioned invariance of the de- 2D Wf Qp(®) 4.8

gree of polarization that ignores the fluctuations of the third dimension from the

Dyut=D,, (3.9 very beginning.
Focusing again for simplicity in the case of fixed total
valid for linear energy-conserving transformatidus photon number, we get from E(4.5) that
Concerning the practical determination of the degree of 5
polarization, up to now we have found no practical proce- dre? (F)_L(N+2) d0Q2.(Q),  (4.7)
dure for a direct measurement &t The only method cur- 3b 167 (N + 1) 2D '

rently available consists in the evaluation of the integration
in Eq. (3.2) after the measurement of the polarization distri-2nd then
bution Q(T"), for example as discussed in Sec. Il. (N+2)? N2

Dip=—""—"D,pt+ . 4.8
T AN+1) P AN+ 4.8

IV. RELATION BETWEEN THE THREE-DIMENSIONAL
AND TWO-DIMENSIONAL DEGREES OF We obtain Dsp>D,p (leaving aside the casd=0 which
POLARIZATION corresponds to the vacuum state for whibgp=D,5=0).

) ) o _ This result can be explained qualitatively as follows: When a
It is natural to ask whe'gher thgre exists a definite re|at'0'”fluctuating two-dimensional field is embedded in a larger di-
between two- and three-dimensional approaches to quantufjension the relative amount of uncertainty must decrease
polarization. To this end we should consider field states agjnce we know in advance that one of the field components
close as possible to have a vanishing componentasayy  vanisheq5,10]. For example, two random uncorrelated field
assuming that the moda is in the vacuum stat{®)s, components of the same intensity are fully unpolarized light
_ in a two-dimensional space but this is certainly not com-
pan = pan @ [0)30]. “.D pletely unpolarized light in three dimensions, since this
We can update the 3D polarization distribution by projectingwould require three random uncorrelated components of the
the positive operator measuf2.11) on |0)s, same intensity. This agrees with a similar analysis in terms of
Stokes parametef$,10].

/

AG
3<0|N,1"><N,F|0>3=(smz) IN,OXN,Q|, (4.2 V. SOME EXAMPLES

where|N, Q) is a SU2) coherent staté2.9), leading to Next we apply the above definitions to some relevant field
states.

“ (N
Q=3

+2)(N+1)< i
o 2(4m)?

2N
smE) (N,Q|p,p|N, Q). A. One-photon states
The Hilbert space for one photon split between three
(4.3 modes is three-dimensional, being spanned by the photon-

This shows that the 2D distribution can be readily obtained“"ﬁnbfer elgenstate}is,o,(), .0’1'0' and|0,0,3. Tak.mg this as
a basis, any density matrix can be expanded in terms of the

from the 3D counterpart as a marginal by removing the . :
¢, ¢ dependence Gell-Mann matricegAppendix B [6,8—11]

8
o0 1 1
Qo) = 3 N, OlpaglN.0) P=3(Sot TSN, (5.1
N=0

o o where the coefficients of this expansion are the Stokes pa-
:4f da’d¢’coszsin35Q3D(F), (4.4 rameters. FON=1 the state$N,T’) are

0 0.0 _ .
where the trigonometric functions come from the volume |1,F>:COSE|0,0,]>+COS£SIHEG '%10,1,0
element(2.5).

A closer relationship betwee®;p(I") and Q,p({2) can .0 . 0_’ ()
only be obtained if we focus on field states with a definite +3|n55|n2 € 11,0,0. (5.2)
number of photons in modes ,a,. In such a case, for fixed ) )
N we get The Q function for the staté5.1) is
8
N+2( ¢\ 1 3
=—|sin— N=——={1+= (@I, 5.3
Qyp(M) - (sm 2) Qup(Q). (4.5 Q) ( 477)2( 2§1<%>MJ( ) (5.3

Next we inquire about the relation between the degree ofvhere theu;(I') functions are defined in EGB9). This leads
3D polarizationD5p that naturally includes the fluctuations to
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FIG. 1. Q(I') as a function ofg and ¢’ for a number state with

ny=n,=0, Ny=3. FIG. 2. Q(I') as a function off and ¢’ for a number state with

n1:3, n2:n3:0.

D= §2 <§>2 (5.4) this is not an unpolarized state since the polarization distri-
821 ' ' bution is far from being uniform as illustrated by Fig. 3. This

) ) ] is conveniently reflected by the degree of polarizaiibr),
This suggests that there should be a direct relation begng for largen we get

tweenD and the degree of polarizatidghdefined in terms of _

the Stokes parameters and recalled in@g) [5]. Using Eq. 3V3

(A6) and taking into account that the std&el) is an eigen- D= EN’ (5.9

state of the total photon numb&;, we getD=2P2. This

relation arises in this case because every one-photon stateViiereN=23n is the total number of photons. The degree of

fully specified by the Stokes parameters. Such a relationshipolarizationD never vanish, but increases with the number

no longer holds for larger photon numbers. of photons. Nevertheless, this growing is lesser than for the
states0,0,N), |0,N,0), and|N,0,0).

B. Number states

C. SU(3) coherent states
For the number statgs,,n,,n3) we get ®

The SU3) coherent states are obtained from the photon

Q(r) = 1 (n+np+ng+2)! (Sinesin,)znl number stat¢0,0,N) by a linear energy-conserving transfor-
3277 ninylng 2 2 mation as recalled in Appendix B. Therefore we can apply
0 o\ g\ 2 the invariance ofD under linear energy-conserving transfor-
X(cossin) (cos) , (5.5) mations discussed in Sec. lll to conclude that all th 3U
2 2 2 coherent states with the sanehave the same degree of

leading to polarization in Eq«(5.7).

_1{(n1+nz+n3+2>!r(2n1)!(2n2)!(2n3)! .

D= D. Quadrature coherent states
2 ng!'ny!ng! (2ny +2n, + 2n3 + 2)!

By using again the invariance @ under linear energy-
(5.6) conserving transformations we can consider without loss of
It can be seen that for fixeN=n,+n,+n; the maximum generality the quadrature coherent stifg0,«) which is a
of D is obtained when all the photons are in the same mode,
(i. e.,]0,0,N), |0,N,0), or |N,0,0), with

N2(N + 5)
=, (5.7
4(2N+1) 2
”’"”z‘\\i\\“’-
that for largeN scales asD=N?/8. Actually, the states 2 ;;;l'l'l".Qs\\\\\\‘\\\E;\is.
|0,0,N), |0,N,0), and [N,0,0) are SU3) coherent states _l!,"b.’s“\\‘\\\“\\\\
with ¢’ =0 for the first onep’ =, =0 for the second one, 'is‘ﬁ&,}?‘\‘:&

and ¢’ =, 6= for the last one.

.00', .': L7177 "".‘Q&,‘
(AL
In Figs. 1 and 2, we have represent®d’) for n,=n, LR

=0, n3=3, andn;=3, n,=n3=0, respectively. . 2
On the other hand, the minimuf® occurs for the equi- 6 (rad) 370
partition stateln,n,n) with the same number of photons in
all modesn; =n,=nz=n. This example is interesting since all  FIG. 3. Q(I) as a function ofg and ¢’ for a number state with

the Stokes parameters vani@)=0forj=1,..., 8. However, n;=n,=nz=1.

063815-5



ALFREDO LUIS PHYSICAL REVIEW A 71, 063815(2005

Poissonian superposition of the number stided ,N), <§> :tr()\J-CD), (A1)

1 - [N j=0,1,..,8, where® is the 3X 3 correlation matrix for the
Q=522 (N+2(N+ D eTcos">, (5.9 electric fieldE
wheren=|q/? is the mean number of photons. The sum can i (BB, (A2)
be performed leading to and \; the nine Gell-Mann matricefthe generators of the
1 o 510/ 520/ R (0'12) SU(3) grOUp]
I') = —| n“co$'— + 4ncos— + 2 |e™ :
QD=5 2 2

1
(5.10 Ao=|0
0

The graphical plot of this function is very similar to Fig. 1,
even for low photon numbers.

For the degree of polarization we get 010 0 -i 0
o 3767 +87 + 27 - 3 - gne 5.10 ME|L00) A=t 00,
that for large photon numbers>1 scales asD=n?/8, 1 0 O 001
\I/Evhicg is the same scaling of the number stgd@&D ,N) in N=[0 -1 0], n=[0 0 0], (A3)
a- 5.7 0 0 0 100
VI. CONCLUSIONS
We have presented a natural and consistent approach to 00 -i 000
the polarization of quantum three-dimensional fields. Due to As=|0 0 O, N=[0 0 1},
the noncommuting character of quantum polarization vari- i 00 010
ables, the polarization state must be described always by a
probability distribution. We have obtained such a distribution 00 O 10 0
as a marginal of the quadratug function for a three-mode 1o o -i 1 01 0
field retaining just the polarization variables. We have found A7 = Pl Ae= @ '
that the states providing the correspondence between quan- 0i O 00 -2

tum states and polarization distributions are thé3Bdoher-
ent states, that are the minimum uncertainty states for th
?eneralized Stokes operators with fixed total number of pho- tr(NjA) =28k + 8,06k 0- (A4)
ons.

We have introduced a degree of polarization as the dis-
tance between the polarization distribution and the uniforn{"
distribution associated with fully unpolarized light. The ap- S :aT)\ja, (A5)
proach introduced here is superior to the standard definition . ) )
in terms of Stokes parameters since it depends on field cofYherea, &' are three-dimensional column and row vectors
relations of all orders. For example, it correctly assesses th@ade of the complex amplitude operators and their Hermit-
polarization state of partially polarized light fields with van- 1@n conjugates, respectively. ,
ishing Stokes parameters. The generallz_ed _Stokes parame_:ters a_llow us to introduce a

We have studied the relation between the 2D and 3D apglegre_e of polarization for_ three-d|mens_|onal fields. Two al-
proaches to quantum polarization by considering field statelrnatives are analyzed in Rdb] showing that the most
with a component in the vacuum state. We have applied thi§PPropriate in the quantum domain is the generalization to
formalism to some relevant field states such ag35doher- three dimensions of the two-dimensional proposal in Ref.
ent states, quadrature coherent states, and number states.[28],

8
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In Ref.[5] it is shown that the maximum degree of polariza-
tion P occurs provided thahAS,=0 and

The standard two-mode Stokes parameters can be gener- ) o= 2ql ) = agly). (A7)
alized to a three-mode field in the forf6,8—123 This is satisfied only by the SB) coherent state€B1).

APPENDIX A: STOKES OPERATORS FOR THREE-
DIMENSIONAL FIELDS
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APPENDIX B: SU(3) COHERENT STATES

The SU3) coherent statéN,I') can be defined by the
action of a SW3) transformation on the number state
|0,0,N> [17],

IN,I) = €2'R40,0,N), (B1)

whereR is a Hermitian 3< 3 matrix,I" represents the param-
eters required to suitably speciR and|0,0,N) is the prod-
uct of the vacuum state in modas, a, and the number state
N in modeas. The above transformation acting &, 0,N)
can be expressed also as a product of two consecutiyg) SU
transformations,

|N F) - ea(e'i‘/’a;al—ei‘/’aIaZ)IZe&’(e’id’,agaz—ei‘/’,a£a3)/2|0 0 N).
(B2)

This produces the following transformation of the complex
amplitude operators:

eia'Raggia’Ra = 17 (B3)
wherel/ is the unitary matri{19],
c -sd? 0\(1 O 0
Uu=|se® ¢ ofl|l0 ¢ -g€?|, B4
0 0 1/\0 gei¥ o

with c=cog6/2), s=sin(6/2), and similarly for the primed
variables.

PHYSICAL REVIEW A 71, 063815(2005

L0 .0 0
3= sm25<sm2§ - c0§5) , (B9)

!

=2 cosa—sin—singcos(d) + ')
pameBm5 == ’

4

!

0 0
=2 cos—sin—sin=sin(¢ + ¢'),
Ms 2 2 2 (¢ ¢ )

!

!

[/
=2 Cc0S—-SiN—Cc0S-C0S¢’,
He 5 Sy cos, cosé

!

!

6
=2 cos—sin—cos-sin ¢’,
M7 2 2 > ¢

!

1

—
V3

0 0
=—|sifr—-2 Co§—).
He ( 2 2
These functions satisfy an orthogonality relation similar
to Eq. (A4),

(4m)
J dl (D) (1) = T(5j,k+ 53,050 (B10)
We note that there is an interesting relationship between
guadrature coherent states, (8lcoherent states, SP) co-

herent states, and number states, which is displayed in Egs.

These states are eigenstates of the total number operat@.7)—(2.9). The three-mode quadrature coherent stajeis

S=aa +ajay+ala;,

SIN,T) =NIN,T). (B5)
Furthermore, it holds that
[N, T) o< @y|N,T') o ag|N, I, (B6)

formally identical to a one-mode coherent state, but replac-
ing the number statgsl) by the SU3) coherent statelN, I')
(that are eigenstates of the total number operai}al
+a£a2+a§a3 with eigenvalueN). In turn,|N,T’) has the same
structure of a two-mode SB) coherent state but replacing
the number state) in one of the modes by the two-mode

so that the S(B) coherent states have maximum degree ofSU(2) coherent statefn,()), , (that are eigenstates of the

polarizationP in Eq. (A6) and minimum polarization fluc-
tuations S provided that they are measured[&s30]

8S= /%(Aq)?

Vice versa, all the states satisfying EB6) within each sub-
space of fixed total photon numb&; are SU3) coherent
states.

From Eqgs.(B1), (B3), and(B4) the Stokes parameters for
IN,T) are

(B7)

(N,TISIN,T) = N@U N5 5= Nw, (B8)
for k=0,1...,8, where the functiong, are

/LO:lv

=2 sin?i,singcosgco&ﬁ
H 272 2 "

0 .
s-sin ¢,

=2 sir?e—,sin—aco
Ha= 271"

number of photonsla, +ala, with eigenvaluen), as shown
in Ref.[17]. Itis clear that the role played by each one of the
modes in this chain of coherent states can be interchanged.
Some other examples of this grouping of coherent states can
be found in Ref[29].

There is another expression for the stdted"),

N m’
Ny = —— > £
@+ HEPNE S An tnt(N=-n-n')!
X|m,N=n"=n,n"), (B11)
where
0 -ip N e i
gztanie . =41+ cotEe . (B12)

In terms of these variables the volume element becomes
B 32
(L+|g>+[&'))°

whered?é=dé&.dé being &, &, the real and imaginary parts
of ¢, respectively. This expression can be checked by impos-

dr ded?e, (B13)
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ing the fulfillment of the resolution of the identity in Eq.

(2.12.

Furthermore, with this expression the scalar products be-

tween SU3) coherent states admit a very simple form,

PHYSICAL REVIEW A 71, 063815(2005

N
7

(B14)

1+§6,+ & &
VL H[EP+[EDQ +|&P+]8)

(N,T'{|N,I",) :<
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