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We introduce a probability distribution for polarization of three-dimensional quantum light fields as a
marginal of the quadratureQ function for a three-mode field by removing the variables irrelevant for polar-
ization stotal intensity and global phased. The probability distribution turns out to be determined by projection
on SUs3d coherent states. We introduce a degree of polarization as the distance between the polarization
distribution and the uniform distribution associated with completely unpolarized light. We study the relation
between two- and three-dimensional polarization by considering field states with a component in the vacuum
state. We apply this formalism to some relevant field states.
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I. INTRODUCTION

Polarization is a fundamental ingredient of light, both in
the quantum and in the classical domains. In the quantum
regime this variable has been crucial for the experimental
demonstration of fundamental issues such as entanglement,
complementarity, quantum cryptography, teleportation, Bell
inequalities, and precision measurementsf1,2g.

Although the electric field is by definition a three-
dimensionals3Dd magnitude, most approaches to polariza-
tion assume two-dimensionals2Dd transverse fields. This is
because most problems in optics are addressed by consider-
ing plane-wave fields, where the longitudinal component
vanishes. Moreover, polarization of harmonic waves is lo-
cally a two-dimensional phenomenon, since the electric field
at each spatial point describes an ellipse contained in a plane.

Nevertheless, there are reasons justifying a three-
dimensional analysis of polarization. For example, for non-
paraxial fields without a well-defined propagation direction
the plane of the ellipse may vary from point to point. Also,
plane-wave behavior and the vanishing of the longitudinal
component are approximationsf3g. Moreover, quantum fluc-
tuations affect the three field components even when they are
in the vacuum state, so that quantum polarization is perforce
a 3D phenomenonf4,5g.

Up to now 3D polarization has been addressed by a gen-
eralization of the Stokes parameters and Stokes operators
f5–13g. In this regard, some previous works have discussed
the limitations of polarization formalisms based exclusively
on the Stokes parametersf14g. These limitations arise be-
cause Stokes parameters are second-order field correlations,
while higher-order correlations can be crucial, especially in
quantum optics. For example, polarization squeezing is de-
termined by the fluctuations of the Stokes operators rather
than by their mean valuesf2,15g.

In this work we address a quantum description of 3D
polarization beyond Stokes parameters by introducing a
probability distribution for polarization as a 3D extension of

a previous 2D approachf14g. Quantum physics impels the
statistical description of polarization from the very begin-
ning. The complete specification of a definite polarization
state would require precise values of the Stokes variables. In
quantum optics they become noncommuting operators so
that no state can have a definite value for all of them simul-
taneously and a probability distribution is required to de-
scribe every polarization state.

As a suitable probability distribution for polarization we
propose the marginal of the quadratureQ function of a three-
mode field obtained after removing the variables irrelevant
for the specification of the polarization state, i.e., the inten-
sity and a global phasesSec. IId f16g. We find that the polar-
ization distribution for 3D fields is the projection of the state
of the system on SUs3d coherent statesf17g sSec. II and
Appendix Bd. Among other properties, the SUs3d coherent
states are minimum uncertainty states for Stokes operators
sAppendixes A and Bd f5g. This supports their use as refer-
ence states for the definition of a polarization distribution.

Furthermore, we introduce a degree of polarization as the
distance of the polarization distribution to the uniform distri-
bution associated with completely unpolarized lightsSec.
III d. This approach goes beyond definitions based on the
Stokes parameters since the distance between distributions
involves field correlations of all orders. A similar approach
has been adopted for the assessment of fringe visibilityf18g.

We examine also the relation between the 2D and 3D
approaches by considering field states with a field compo-
nent in vacuumsSec. IVd. Finally we consider some ex-
amples of relevant field states illustrating this formalism
sSec. Vd.

Finally, for the sake of completeness in Appendixes A and
B we recall some previous results concerning generalized
Stokes operators for three-dimensional fields and some prop-
erties of SUs3d coherent states.

II. POLARIZATION DISTRIBUTION FOR THREE-
DIMENSIONAL FIELDS

In previous works dealing with quantum 2D polarization
we have found it convenient to represent the statistical prop-
erties of field states by means of the quadratureQ function,
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defined by projection of the system state on quadrature co-
herent statesf14g. This choice is motivated by the fact that,
in sharp contrast to other quantum distributions known in
physics, the quadratureQ function is always a true probabil-
ity distribution and transforms properly under polarization
changing transformationsf16,20g. Moreover, theQ function
can be determined in practice by simple experimental proce-
dures whose principles of operation can be understood even
within a purely classical frameworkf21g. To this end the
schemes determining the Wigner function are also valid since
Q is simply the convolution of the Wigner function with a
Gaussianf16g.

The 3D quadrature coherent statesual with ajual=a jual
are

ual = e−sua1u2+ua2u2+ua3u2d/2 o
n1,n2,n3=0

`
a1

n1a2
n2a3

n3

În1 ! n2 ! n3!
un1,n2,n3l,

s2.1d

with un1,n2,n3l being the number states anda1, a2, anda3
the projection of the complex amplitude along Cartesian
axes. The quadratureQ function is f16g

Qsad =
1

p3trsrualkaud, s2.2d

wherer is the density matrix.
We can derive a probability distribution for polarization if

we remove fromQ the degrees of freedom irrelevant for the
description of polarization. These are the total intensity
ua1u2+ ua2u2+ ua3u2 and a global phase, since only relative in-
tensities and relative phases enter on the idea of polarization.
After this removal we will get a distribution depending on
four real variables. This is consistent with the fact that the
specification of a classical polarization state in a three-
dimensional space requires four parameters: Two define the
plane of the ellipse, and the other two fix the ellipse.

In order to remove the total intensity and the global phase
it is convenient to expressa in terms of phase-angular coor-
dinates in the form

a1 = r sin
u8

2
sin

u

2
eisd−f8/2−f/2d,

a2 = r sin
u8

2
cos

u

2
eisd−f8/2+f/2d,

a3 = r cos
u8

2
eisd+f8/2+f/2d, s2.3d

where`ù r ù0, pùu , u8ù0, and 2pùd , f ,f8ù 0.
The Jacobian of the transformation leads to

d2a1d
2a2d

2a3 =
1

32
r5drdddG, s2.4d

being

dG = 4 sinu cos
u8

2
sin3u8

2
dudu8dfdf8, s2.5d

with

E dG = s4pd2, s2.6d

and d2a=dardai, with ar ,ai being the real and imaginary
parts ofa, respectively.

With this change of variables, the quadrature coherent
statesual can be expressed as

ual = e−r2/2o
N=0

` freisd+f8/2+f/2dgN

ÎN!
uN,Gl, s2.7d

whereuN,Gl are SUs3d coherent statesf17g,

uN,Gl = o
n=0

N SN

n
D1/2Scos

u8

2
DN−nSsin

u8

2
Dn

e−inf8un,Vl1,2uN − nl3, s2.8d

un,Vl1,2 are SUs2d coherent states in modesa1,a2 f22g,

un,Vl1,2= o
m=0

n Sn

m
D1/2Scos

u

2
Dn−mSsin

u

2
Dm

e−imfuml1un − ml2,

s2.9d

and uN−nl3, uml1, un−ml2 are number states in the corre-
sponding modes. In Appendix B we provide further details
and properties of the statesuN,Gl.

The removal ofr andd in Eq. s2.2d leads to theQ func-
tion for polarization variables,

QsGd =
1

32
E

0

`

drE
0

2p

ddr5Qsad = trfrDsGdg , s2.10d

where

DsGd =
1

32p3E
0

`

drE
0

2p

ddr5ualkau

= o
N=0

`
sN + 2dsN + 1d

2s4pd2 uN,GlkN,Gu s2.11d

satisfies the resolution of the identity

E dGDsGd = I , s2.12d

whereI is the identity.
This procedure defines a legitimate probability distribu-

tion QsGd which is nonnegativeQsGdù0 and normalized
edGQsGd=1. We can appreciate thatQsGd is defined by pro-
jection of the field state on the SUs3d coherent states. There
are reasons that make this fact attractive and consistent with
previous results. In Ref.f5g it is shown that the SUs3d coher-
ent statesuN,Gl are the minimum uncertainty states for the
Stokes operators with fixed total number of photons. More-
over, they are also maximally polarized states when the de-
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gree of polarization is measured in terms of the Stokes pa-
rametersf5g. Therefore the SUs3d coherent states can be
regarded as the quantum states closer to represent a definite
three-dimensional polarization state with fixed intensity.

The SUs3d and SUs2d coherent states can also be related
to an operational approach to quantum polarization. In prac-
tical terms, we may say that the output of a linear polarizer
sall the photons in a single mode and the rest of modes in
vacuumd is as much polarized as allowed by the quantum
theory. Then we can construct any other quantum polarized
state by applying rotations and phase platessi.e., arbitrary
energy-conserving linear transformationsd. This leads pre-
cisely to the SUs2d coherent states in a 2D approach and to
the SUs3d coherent states in a 3D approach.

This operational perspective agrees with the scheme for a
direct determination of the polarization distributionQsGd that
can be derived from the approaches analyzed in Ref.f23g in
the context of spin systems. The idea is to measure the prob-
ability that all the photons are in a single mode after a SUs2d
or SUs3d transformation. Some other similar procedures
based on the measurement of the mode intensities after
SUs2d or SUs3d transformations can be found in Ref.f24g.
All these approaches allow the determination ofQsGd with-
out determining first the quadrature distributionQsad, i.e.,
avoiding the complete reconstruction of the state of the sys-
tem.

In the above analysis we have assumed the minimum
number of modessthreed required to describe a three-
dimensional field. However, there would be situations where
a larger number of modes can contribute to the field, for
example when multiple beams cross the point of interest
propagating in different directions. Next we show in brief
that there is a generalization of the above approach to en-
compass such multimode situations. The starting point is
provided by multimode quadrature coherent states
ua1,a2,a3l defining a quadrature distributionQsa1,a2,a3d,
where the three multi-dimensional complex vectorsa j , j =1,
2, 3, denote the complex amplitudes of the coherent states of
the modes contributing to the componentj of the field. The
relevant variables are the three components of the electric
field along three Cartesian axes at the point of interest. These
projectionsa j are given by the sumsa j =o,a j ,, wherea j ,,
are the components ofa j. In a first stage we can carry out a
first removal of variables irrelevant for the specification of
polarization by averagingQsa1,a2,a3d over all the degrees
of freedom different froma=sa1,a2,a3d. The details of the
procedure will depend on the particular number of modes.
The result is an effective three-mode quadrature distribution
Qsad. In a second stage we can perform the final removal
from Qsad of the variables irrelevant for the specification of
polarization as described in Eqs.s2.3d and s2.10d.

III. DEGREE OF POLARIZATION FOR THREE-
DIMENSIONAL FIELDS

The above polarization distribution provides a very natu-
ral measureD of the degree of polarization for 3D fields as
the distance betweenQ and the uniform distribution associ-
ated with fully unpolarized lightf14,25g,

QunpolarizedsGd =
1

s4pd2 , s3.1d

as

D = s4pd2E dGFQsGd −
1

s4pd2G2

= s4pd2E dGQ2sGd − 1.

s3.2d

It must be noticed thatD is not bounded̀ .Dù0. If a
normalized degree would be required we might consider ex-
pressions such asD / s1+Dd, for example.

The inverse ofedGQ2sGd is a measure of the volume of
the polarization space occupied by the functionQ, so that the
smaller the volume over whichQ extends, the larger the
degree of polarization. A similar strategy has been adopted in
different areasf18,26,27g.

According to Ref.f27g the SUs3d coherent statesuN,Gl
are the states with largeredGQ2sGd for fixed N. In our con-
text, this implies thatuN,Gl are the states with the maximum
degree of polarizationD for fixed intensity. The explicit cal-
culation ofD for uN,Gl is carried out in Sec. V.

Next we show thatD is invariant under linear energy-
conserving transformationU of the complex amplitudes

U†ajU = o
k=1

3

U j ,kak, s3.3d

whereU j ,k is a unitary matrix. This transformation maps co-
herent states into coherent states with different complex am-
plitudesã=Ua preserving the volume element

d2ã1d
2ã2d

2ã3 = d2a1d
2a2d

2a3, s3.4d

since this is a linear canonical transformation. The idea is to
use Eq.s2.4d to transform this into the same equality for the
polarization volume element. To this end we note thatr̃ =r.
Concerning the transformation of thed variable, from Eq.
s2.3d we get

d̃ = d + fsG,Ud, s3.5d

where f is a function of the polarization variables and the
transformation. This relation holds becauseã is just a func-

tion of a but not ofa* . Sinced̃ embracesd completely, the

other transformed polarization variablesG̃= ũ , ũ8 ,f̃ ,f̃8 do
no depend ond,

]G̃

]d
= 0. s3.6d

These vanishing derivatives along withr̃ =r imply the fol-
lowing for the Jacobian of the transformation of the polar-
ization variables

]ã

]a
=

]sr̃,d̃,G̃d
]sr,d,Gd

=
]G̃

]G
= 1, s3.7d

so thatdG=dG̃. This in turn implies
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E dGQUrU†
2 sGd =E dGQr

2sG̃d =E dGQr
2sGd, s3.8d

that demonstrates the above-mentioned invariance of the de-
gree of polarization

DUrU† = Dr, s3.9d

valid for linear energy-conserving transformationsU.
Concerning the practical determination of the degree of

polarization, up to now we have found no practical proce-
dure for a direct measurement ofD. The only method cur-
rently available consists in the evaluation of the integration
in Eq. s3.2d after the measurement of the polarization distri-
bution QsGd, for example as discussed in Sec. II.

IV. RELATION BETWEEN THE THREE-DIMENSIONAL
AND TWO-DIMENSIONAL DEGREES OF

POLARIZATION

It is natural to ask whether there exists a definite relation
between two- and three-dimensional approaches to quantum
polarization. To this end we should consider field states as
close as possible to have a vanishing component, saya3, by
assuming that the modea3 is in the vacuum stateu0l3,

r3D = r2D ^ u0l33k0u. s4.1d

We can update the 3D polarization distribution by projecting
the positive operator measures2.11d on u0l3,

3k0uN,GlkN,Gu0l3 = Ssin
u8

2
D2N

uN,VlkN,Vu, s4.2d

whereuN,Vl is a SUs2d coherent states2.9d, leading to

Q3DsGd = o
N=0

`
sN + 2dsN + 1d

2s4pd2 Ssin
u8

2
D2N

kN,Vur2DuN,Vl.

s4.3d

This shows that the 2D distribution can be readily obtained
from the 3D counterpart as a marginal by removing the
u8 ,f8 dependence

Q2DsVd = o
N=0

`
N + 1

4p
kN,Vur2DuN,Vl

= 4E du8df8cos
u8

2
sin3u8

2
Q3DsGd, s4.4d

where the trigonometric functions come from the volume
elements2.5d.

A closer relationship betweenQ3DsGd and Q2DsVd can
only be obtained if we focus on field states with a definite
number of photons in modesa1,a2. In such a case, for fixed
N we get

Q3DsGd =
N + 2

8p
Ssin

u8

2
D2N

Q2DsVd. s4.5d

Next we inquire about the relation between the degree of
3D polarizationD3D that naturally includes the fluctuations

of the third dimension, and its 2D counterpartD2D f14g,

D2D = 4pE dVQ2D
2 sVd − 1, s4.6d

that ignores the fluctuations of the third dimension from the
very beginning.

Focusing again for simplicity in the case of fixed total
photon number, we get from Eq.s4.5d that

E dGQ3D
2 sGd =

1

16p

sN + 2d2

sN + 1d E dVQ2D
2 sVd, s4.7d

and then

D3D =
sN + 2d2

4sN + 1d
D2D +

N2

4sN + 1d
. s4.8d

We obtainD3D.D2D sleaving aside the caseN=0 which
corresponds to the vacuum state for whichD3D=D2D=0d.
This result can be explained qualitatively as follows: When a
fluctuating two-dimensional field is embedded in a larger di-
mension the relative amount of uncertainty must decrease
since we know in advance that one of the field components
vanishesf5,10g. For example, two random uncorrelated field
components of the same intensity are fully unpolarized light
in a two-dimensional space but this is certainly not com-
pletely unpolarized light in three dimensions, since this
would require three random uncorrelated components of the
same intensity. This agrees with a similar analysis in terms of
Stokes parametersf5,10g.

V. SOME EXAMPLES

Next we apply the above definitions to some relevant field
states.

A. One-photon states

The Hilbert space for one photon split between three
modes is three-dimensional, being spanned by the photon-
number eigenstatesu1,0,0l, u0,1,0l, andu0,0,1l. Taking this as
a basis, any density matrix can be expanded in terms of the
Gell-Mann matricessAppendix Bd f6,8–11g

r =
1

3
kS0ll0 +

1

2o
j=1

8

kSjll j , s5.1d

where the coefficients of this expansion are the Stokes pa-
rameters. ForN=1 the statesuN,Gl are

u1,Gl = cos
u8

2
u0,0,1l + cos

u

2
sin

u8

2
e−if8u0,1,0l

+ sin
u

2
sin

u8

2
e−isf+f8du1,0,0l. s5.2d

The Q function for the states5.1d is

QsGd =
1

s4pd2S1 +
3

2o
j=1

8

kSjlm jsGdD , s5.3d

where them jsGd functions are defined in Eq.sB9d. This leads
to
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D =
3

8o
j=1

8

kSjl2. s5.4d

This suggests that there should be a direct relation be-
tweenD and the degree of polarizationP defined in terms of
the Stokes parameters and recalled in Eq.sA6d f5g. Using Eq.
sA6d and taking into account that the states5.1d is an eigen-
state of the total photon numberS0, we getD=2P2. This
relation arises in this case because every one-photon state is
fully specified by the Stokes parameters. Such a relationship
no longer holds for larger photon numbers.

B. Number states

For the number statesun1,n2,n3l we get

QsGd =
1

32p2

sn1 + n2 + n3 + 2d!
n1 ! n2 ! n3!

Ssin
u

2
sin

u8

2
D2n1

3Scos
u

2
sin

u8

2
D2n2Scos

u8

2
D2n3

, s5.5d

leading to

D =
1

2
F sn1 + n2 + n3 + 2d!

n1 ! n2 ! n3!
G2 s2n1d ! s2n2d ! s2n3d!

s2n1 + 2n2 + 2n3 + 2d!
− 1.

s5.6d

It can be seen that for fixedN=n1+n2+n3 the maximum
of D is obtained when all the photons are in the same mode,
si. e., u0,0,Nl , u0,N,0l, or uN,0 ,0ld, with

D =
N2sN + 5d
4s2N + 1d

, s5.7d

that for large N scales asD.N2/8. Actually, the states
u0,0,Nl , u0,N,0l, and uN,0 ,0l are SUs3d coherent states
with u8=0 for the first one,u8=p , u=0 for the second one,
andu8=p , u=p for the last one.

In Figs. 1 and 2, we have representedQsGd for n1=n2

=0, n3=3, andn1=3, n2=n3=0, respectively.
On the other hand, the minimumD occurs for the equi-

partition stateun,n,nl with the same number of photons in
all modesn1=n2=n3=n. This example is interesting since all
the Stokes parameters vanishkSjl=0 for j =1,…, 8. However,

this is not an unpolarized state since the polarization distri-
bution is far from being uniform as illustrated by Fig. 3. This
is conveniently reflected by the degree of polarizations5.6d,
and for largen we get

D .
3Î3

8p
N, s5.8d

whereN=3n is the total number of photons. The degree of
polarizationD never vanish, but increases with the number
of photons. Nevertheless, this growing is lesser than for the
statesu0,0,Nl , u0,N,0l, and uN,0 ,0l.

C. SU(3) coherent states

The SUs3d coherent states are obtained from the photon
number stateu0,0,Nl by a linear energy-conserving transfor-
mation as recalled in Appendix B. Therefore we can apply
the invariance ofD under linear energy-conserving transfor-
mations discussed in Sec. III to conclude that all the SUs3d
coherent states with the sameN have the same degree of
polarization in Eq.s5.7d.

D. Quadrature coherent states

By using again the invariance ofD under linear energy-
conserving transformations we can consider without loss of
generality the quadrature coherent stateu0,0,al which is a

FIG. 1. QsGd as a function ofu andu8 for a number state with
n1=n2=0, n3=3. FIG. 2. QsGd as a function ofu andu8 for a number state with

n1=3, n2=n3=0.

FIG. 3. QsGd as a function ofu andu8 for a number state with
n1=n2=n3=1.
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Poissonian superposition of the number statesu0,0,Nl,

QsGd =
1

32p2 o
N=0

`

sN + 2dsN + 1d
n̄N

N!
e−n̄cos2Nu8

2
, s5.9d

wheren̄= uau2 is the mean number of photons. The sum can
be performed leading to

QsGd =
1

32p2Fn̄2cos4
u8

2
+ 4n̄cos2

u8

2
+ 2Ge−n̄sin2su8/2d.

s5.10d

The graphical plot of this function is very similar to Fig. 1,
even for low photon numbers.

For the degree of polarization we get

D =
3 − 6n̄2 + 8n̄3 + 2n̄4 − 3e−2n̄ − 6n̄e−2n̄

16n̄2 , s5.11d

that for large photon numbersn̄@1 scales asD. n̄2/8,
which is the same scaling of the number statesu0,0,Nl in
Eq. s5.7d.

VI. CONCLUSIONS

We have presented a natural and consistent approach to
the polarization of quantum three-dimensional fields. Due to
the noncommuting character of quantum polarization vari-
ables, the polarization state must be described always by a
probability distribution. We have obtained such a distribution
as a marginal of the quadratureQ function for a three-mode
field retaining just the polarization variables. We have found
that the states providing the correspondence between quan-
tum states and polarization distributions are the SUs3d coher-
ent states, that are the minimum uncertainty states for the
generalized Stokes operators with fixed total number of pho-
tons.

We have introduced a degree of polarization as the dis-
tance between the polarization distribution and the uniform
distribution associated with fully unpolarized light. The ap-
proach introduced here is superior to the standard definition
in terms of Stokes parameters since it depends on field cor-
relations of all orders. For example, it correctly assesses the
polarization state of partially polarized light fields with van-
ishing Stokes parameters.

We have studied the relation between the 2D and 3D ap-
proaches to quantum polarization by considering field states
with a component in the vacuum state. We have applied this
formalism to some relevant field states such as SUs3d coher-
ent states, quadrature coherent states, and number states.
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APPENDIX A: STOKES OPERATORS FOR THREE-
DIMENSIONAL FIELDS

The standard two-mode Stokes parameters can be gener-
alized to a three-mode field in the formf6,8–12g

kSjl = trsl jFd, sA1d

j =0,1,…,8, whereF is the 333 correlation matrix for the
electric fieldE

F j ,k = kEjEk
*l, sA2d

and l j the nine Gell-Mann matricesfthe generators of the
SUs3d groupg

l0 = 11 0 0

0 1 0

0 0 1
2 ,

l1 = 10 1 0

1 0 0

0 0 0
2, l2 = 10 − i 0

i 0 0

0 0 0
2 ,

l3 = 11 0 0

0 − 1 0

0 0 0
2, l4 = 10 0 1

0 0 0

1 0 0
2 , sA3d

l5 = 10 0 − i

0 0 0

i 0 0
2, l6 = 10 0 0

0 0 1

0 1 0
2 ,

l7 = 10 0 0

0 0 − i

0 i 0
2, l8 =

1
Î311 0 0

0 1 0

0 0 − 2
2 ,

that satisfy the trace-orthogonality relations

trsl jlkd = 2d j ,k + d j ,0dk,0. sA4d

In the quantum domain, the Stokes parameters are the
mean values of the Stokes operatorsf13g

Sj = a†l ja, sA5d

wherea, a† are three-dimensional column and row vectors
made of the complex amplitude operators and their Hermit-
ian conjugates, respectively.

The generalized Stokes parameters allow us to introduce a
degree of polarization for three-dimensional fields. Two al-
ternatives are analyzed in Ref.f5g showing that the most
appropriate in the quantum domain is the generalization to
three dimensions of the two-dimensional proposal in Ref.
f28g,

P =
Î3

2

Îo
j=1

8

kSjl2

ÎS0sS0 + 3d
ø

1

Î1 +
3

kS0l

. sA6d

In Ref. f5g it is shown that the maximum degree of polariza-
tion P occurs provided thatDS0=0 and

a1ucl ~ a2ucl ~ a3ucl. sA7d

This is satisfied only by the SUs3d coherent statessB1d.
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APPENDIX B: SU(3) COHERENT STATES

The SUs3d coherent stateuN,Gl can be defined by the
action of a SUs3d transformation on the number state
u0,0,Nl f17g,

uN,Gl = eia†Rau0,0,Nl, sB1d

whereR is a Hermitian 333 matrix,G represents the param-
eters required to suitably specifyR, andu0,0,Nl is the prod-
uct of the vacuum state in modesa1, a2 and the number state
N in modea3. The above transformation acting onu0,0,Nl
can be expressed also as a product of two consecutive SUs2d
transformations,

uN,Gl = euse−ifa2
†a1−eifa1

†a2d/2eu8se−if8a3
†a2−eif8a2

†a3d/2u0,0,Nl.

sB2d

This produces the following transformation of the complex
amplitude operators:

e−ia†Raaeia†Ra = Ua, sB3d

whereU is the unitary matrixf19g,

U = 1 c − seif 0

se−if c 0

0 0 1
211 0 0

0 c8 − s8eif8

0 s8e−if8 c8
2 , sB4d

with c=cossu /2d , s=sinsu /2d, and similarly for the primed
variables.

These states are eigenstates of the total number operator
S0=a1

†a1+a2
†a2+a3

†a3,

S0uN,Gl = NuN,Gl. sB5d

Furthermore, it holds that

a1uN,Gl ~ a2uN,Gl ~ a3uN,Gl, sB6d

so that the SUs3d coherent states have maximum degree of
polarizationP in Eq. sA6d and minimum polarization fluc-
tuationsdS provided that they are measured asf5,30g

dS=Îo
j=1

8

sDSjd2. sB7d

Vice versa, all the states satisfying Eq.sB6d within each sub-
space of fixed total photon numberS0 are SUs3d coherent
states.

From Eqs.sB1d, sB3d, andsB4d the Stokes parameters for
uN,Gl are

kN,GuSkuN,Gl = NsU†lkUd3,3= Nmk, sB8d

for k=0,1,…,8, where the functionsmk are

m0 = 1,

m1 = 2 sin2u8

2
sin

u

2
cos

u

2
cosf,

m2 = 2 sin2u8

2
sin

u

2
cos

u

2
sinf,

m3 = sin2u8

2
Ssin2u

2
− cos2

u

2
D , sB9d

m4 = 2 cos
u8

2
sin

u8

2
sin

u

2
cossf + f8d,

m5 = 2 cos
u8

2
sin

u8

2
sin

u

2
sinsf + f8d,

m6 = 2 cos
u8

2
sin

u8

2
cos

u

2
cosf8,

m7 = 2 cos
u8

2
sin

u8

2
cos

u

2
sinf8,

m8 =
1
Î3

Ssin2u8

2
− 2 cos2

u8

2
D .

These functions satisfy an orthogonality relation similar
to Eq. sA4d,

E dGm jsGdmksGd =
s4pd2

6
sd j ,k + 5d j ,0dk,0d. sB10d

We note that there is an interesting relationship between
quadrature coherent states, SUs3d coherent states, SUs2d co-
herent states, and number states, which is displayed in Eqs.
s2.7d–s2.9d. The three-mode quadrature coherent stateual is
formally identical to a one-mode coherent state, but replac-
ing the number statesuNl by the SUs3d coherent statesuN,Gl
sthat are eigenstates of the total number operatora1

†a1
+a2

†a2+a3
†a3 with eigenvalueNd. In turn, uN,Gl has the same

structure of a two-mode SUs2d coherent state but replacing
the number statesunl in one of the modes by the two-mode
SUs2d coherent statesun,Vl1,2 sthat are eigenstates of the
number of photonsa1

†a1+a2
†a2 with eigenvaluend, as shown

in Ref. f17g. It is clear that the role played by each one of the
modes in this chain of coherent states can be interchanged.
Some other examples of this grouping of coherent states can
be found in Ref.f29g.

There is another expression for the statesuN,Gl,

uN,Gl =
ÎN!

s1 + uju2 + uj8u2dN/2 o
n+n8øN

j8n8jn

În8 ! n ! sN − n − n8d!

3un,N − n8 − n,n8l, sB11d

where

j = tan
u

2
e−if, j8 = Î1 + uju2cot

u8

2
eif8. sB12d

In terms of these variables the volume element becomes

dG =
32

s1 + uju2 + uj8u2d3d2jd2j8, sB13d

whered2j=djrdji beingjr , ji, the real and imaginary parts
of j, respectively. This expression can be checked by impos-
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ing the fulfillment of the resolution of the identity in Eq.
s2.12d.

Furthermore, with this expression the scalar products be-
tween SUs3d coherent states admit a very simple form,

kN,G1uN,G2l = S 1 + j1
*j2 + j18

*j28

Îs1 + uj1u2 + uj18u
2ds1 + uj2u2 + uj28u

2d
DN

.

sB14d
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