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Abstract

The polarized images of a synchrotron emitting ring are studied in the regular Hayward and

Bardeen black hole spacetimes. These regular black holes carry a magnetic field in terms of gravity

coupled to nonlinear electrodynamics. Results show that the main features of the polarization

images of the emitting rings are similar in these two regular black hole spacetimes. As the magnetic

charge parameter increase, the polarization intensity and the electric vector position angle in the

image plane increase in Hayward and Bardeen black hole spacetimes. Moreover, the polarization

intensity and electric vector position angle in the image of the emitting ring in the Hayward black

hole spacetime are closer to those in the Schwarzschild case. The effects of the magnetic charge

parameter on the Strokes Q−U loops are also slightly smaller in the Hayward black hole spacetime.

This information stored in the polarization images around Hayward and Bardeen black holes could

help understand regular black holes and the gravity coupled to nonlinear electrodynamics.
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I. INTRODUCTION

Observational black hole astronomy is widely considered to have entered an exciting era of rapid progress.

In recent years, the first image of the supermassive black hole M87* [1–6] and its polarized image [7, 8]

were released in succession by the Event Horizon Telescope collaboration. The brightness of the surrounding

emission region and the corresponding polarization patterns carry a wealth of information about the electro-

magnetic emissions near the black hole. Thus, studying the black hole image and its polarization patterns

helps understand the matter distribution and accretion process around the black hole as well as its character-

istics. In particular, analyzing polarization information in black hole images can further probe magnetic field

configurations and powerful jets near a black hole, which is beneficial for obtaining insight into the physics in

the strong-field region and checking theories of gravity. Thus, much effort has been devoted to investigating

the polarized images of various black holes [9–22].

To obtain polarization information in black hole images in the observer’s sky, null geodesic equations must

be solved for photons traveling in the black hole spacetime together with the parallel transport equations

of polarization vectors along photon geodesics. Generally, numerical simulations must be used to obtain an

exact description of a polarized black hole image. Recently, a simple model has been used to investigate

the polarized images of axisymmetric fluids orbiting black holes arising from synchrotron emission in various

magnetic fields [23, 24]. It is shown that the polarization signatures in the black hole images are dominated

by the magnetic field configuration, together with the black hole parameters and the observer inclination. In

this model, only the emission within a narrow range of radii R is considered, but the image of a finite, thin

disk can be produced by simply summing contributions from individual radii [23–25]. With this model, the

polarization signatures for a four-dimensional black hole in Gauss-Bonnet theory are analyzed in [26].

In general relativity, according to the well-known singularity theorems [27], the existence of singularities is

inevitable, and black hole solutions own a singularity inside an event horizon. However, the singularities are

widely believed to be nonphysical and are produced by classical theories of gravity and should be avoided in

terms of the perfect theory of quantum gravity. In this spirit, the first regular black hole solution was proposed

by Bardeen [28] and is spherically symmetric without a singularity. However, the physical source of Bardeen

black holes was unclear then. Until the end of the last century, a possible nonlinear electromagnetic source

was proposed to account for Bardeen black holes [29, 30], so a regular black hole can be interpreted as the

gravitational field of a nonlinear electric or magnetic monopole. Some other regular black hole solutions were
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obtained using the nonlinear electrodynamic mechanism [31–34]. The observational effects of regular black

holes are of great research interest because they could help understand some fundamental issues in physics,

including black holes, singularity and nonlinear electrodynamics [35, 36]. Since a regular black hole can be

considered a solution of the gravity coupled to a nonlinear electromagnetic field, it should carry a magnetic

field itself. This attribute could modify the polarized image of an emitting ring around a regular black hole.

This paper aims to study the polarization information in the image of a synchrotron emitting ring around a

regular Hayward black hole [31] and a Bardeen black hole [28] and to probe the effects of the magnetic charge

parameter on the polarization image in these two regular black hole spacetimes.

The paper is organized as follows: Section II briefly introduces Hayward and Bardeen black holes and

presents formulas to calculate the observed polarization vector in the image plane of an emitting ring in these

two regular black hole spacetimes. Section III presents the polarization images of a synchrotron emitting

ring around a regular black hole and probes the effects of the magnetic charge parameter on the polarization

image. Finally, this paper ends with a summary.

II. OBSERVED POLARIZATION FIELD IN THE REGULAR BLACK HOLE SPACETIMES

This section focuses on regular Hayward and Bardeen black hole spacetimes. A Hayward black hole is an

important static regular black hole and its metric has the form [31]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dθ2 + r2 sin2 θdφ2, (1)

with

f(r) = 1− 2Mr2

r3 + g3
, (2)

where M is related to the black hole mass, and g is a regularizing parameter. The Hayward spacetime is

asymptotically flat since the metric function f → 1 as r →∞. Moreover, it is regular everywhere and contains

no singularity. The Hayward spacetime can be considered a magnetic solution to the Einstein equation coupled

to nonlinear electrodynamics with an action [32, 33]

I =
1

16π

∫
d4x
√
−g [R− 4L(F)] . (3)

R is the usual scalar curvature, and L(F) is the Lagrangian density with the form

L(F) =
12

α

(αF)
3
2[

1 + (αF)
3
4

]2 , (4)
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where the invariant F ≡ 1
4F

µνFµν and the electromagnetic field tensor Fµν = ∂µAν − ∂νAµ. Aµ is the

electromagnetic four-vector potential. For the Hayward black hole spacetime, the electromagnetic four-vector

potential has the form

Aµ = (0, 0, 0, Qm cos θ), (5)

where Qm is the magnetic monopole charge. The coupling parameter α in the Lagrangian density (4) and g

in the metric function (2) are related to Qm by α =
8Q6

m

M4 and g =
2Q2

m

M , respectively. The metric function (2)

can be rewritten as

f(r) = 1− 2M4r2

8Q6
m +M3r3

. (6)

Another important regular black hole is a Bardeen black hole [28]. Its metric can be expressed as (1), but the

metric function is

f(r) = 1− 2Mr2

(r2 + g2)3/2
. (7)

Similarly, M is related to the black hole mass, and g is a regularizing parameter. In [29, 30, 32, 33], a

Bardeen black hole is also considered a solution of the gravity coupled to nonlinear electrodynamics, and the

corresponding Lagrangian density of the electromagnetic field is

L(F) =
12

α

(αF)
5
4(

1 +
√
αF
) 5

2

. (8)

With the magnetic monopole charge Qm, the metric function f(r) for a Bardeen black hole can be expressed

as

f(r) = 1− 2M4r2

(4Q4
m +M2r2)3/2

. (9)

The electromagnetic four-vector potential Aµ has the same form in the Bardeen and Hayward black hole

spacetimes. Thus, in these two regular black hole spacetimes, the nonzero components of the electromagnetic

tensor are F23 = −F32 = Qm sin θ. This result means that a regular black hole carries a magnetic field itself,

which should modify the polarized image of the emitting ring around a black hole. As Qm = 0, these two

regular black holes reduce to the Schwarzschild case.

The metric functions (2) and (7) indicate that two regular black hole spacetimes coincide with the

Schwarzschild solution for large r and behave like the de Sitter spacetime for small r. Moreover, the scalar



5

curvatures RµνρσR
µνρσ, RµνR

µν , and R, respectively, can be expressed as

RµνρσR
µνρσ =

48M6(M12r12 − 32M9Q6
mr

9 + 1152M6Q12
m r

6 − 1024M3Q18
m r

3 + 8192Q18
m )

(M3r3 + 8Q6
m)6

,

RµνR
µν =

4608M8Q12
m (128Q12 − 16M3Q6

mr
3 + 5M6r6)

(8Q6
m +M3r3)6

, R =
96M4Q6

m(M3r3 − 16Q6
m)

(8Q6
m +M3r3)3)

, (10)

in the Hayward black hole spacetime and

RµνρσR
µνρσ =

48M6(M8r8 − 12M6Q4
mr

6 + 188M4Q8
mr

4 − 64M2Q12
m r

2 + 512Q16
m )

(M2r2 + 4Q4
m)7

,

RµνR
µν =

288M8Q8
m(128Q8

m − 16M2Q4
mr

2 + 13M4r4)

(M2r2 + 4Q4
m)7

, R =
24M4Q4

m(M2r2 − 16Q4
m)

(4Q4
m +M2r2)7/2

, (11)

in the Bardeen black hole spacetime. These scalar curvatures are finite everywhere in two regular black

hole spacetimes and differ from those in the Schwarzschild black hole spacetime with the divergent invariant

RµνρσR
µνρσ at the point r = 0. In particular, each scalar curvature at r = 0 has the same value in these

two black holes. This attribute is understandable because these two spacetimes have the same behavior near

the point r = 0. Moreover, the weak and strong energy conditions could be violated in the Hayward and

the Bardeen black hole spacetimes [37–40]. In contrast, the Schwarzschild black hole spacetime satisfies both

these energy conditions. Notably, in the Bardeen (7) or Hayward (2) spacetime, the two parameters M and

g are not independent but are related to the coupling parameter α in the nonlinear electrodynamic theory,

which is different from those in the Reissner-Nordström case. This comparison implies that the Bardeen or

Hayward solution could not be the most general static and spherically symmetric solution due to lacking an

additional parameter associated with the condensate of the graviton. Thus, the current regularity in these

two black hole spacetimes may be a fine-tuning result by setting this extra parameter to zero.

Now, the polarization vectors are to be studied for photons emitted from the ring around regular black

holes. A synchrotron emitting ring is assumed to lie in the equatorial plane of a regular black hole. In the

local Cartesian frame of the point P in the ring (the P -frame where the axis x̂ is along the polar direction)

[21–24], the nonzero components of the electromagnetic tensor become F2̂3̂ = −F3̂2̂ = Qm
R2 , where R is the

ring radius. Then, the black hole magnetic field in the P -frame can be written as

~B(P) = F2̂3̂x̂ =
Qm
R2

x̂. (12)

Supposing that the fluid at point P has a velocity β with angle χ from the x̂-axis in the local P -frame [21–24],

i.e.,

~β = β(cosχx̂+ sinχŷ), (13)
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the magnetic field Bµ(F ) and the photon’s wave vector kµ(F ) at point P in the frame (F -frame) comoving with

the fluid can be obtained through a Lorentz transformation [21–24]

Br(F ) = (cos2 χ+ γ sin2 χ)
Qm
R2

, Bφ(F ) = − (γ − 1)Qm
R2

cosχ sinχ, (14)

and

kt̂(F ) = γkt̂(P ) − γβ cosχkx̂(P ) − γβ sinχkŷ(P ), (15)

k
ˆ̂x
(F ) = −γβ cosχkt̂(P ) +

(
1 + (γ − 1) cos2 χ

)
kx̂(P ) + (γ − 1) cosχ sinχkŷ(P ),

kŷ(F ) = −γβ sinχkt̂(P ) + (γ − 1) cosχ sinχkx̂(P ) +
(
1 + (γ − 1) sin2 χ

)
kŷ(P ),

kẑ(F ) = kẑ(P ).

where γ is the Lorentz factor γ = 1√
1−β2

. Setting ζ as the angle between the magnetic field ~B(F ) and the

3-vector ~k(F ) in the F -frame, the factor sin ζ can be expressed as [21–24]

sin ζ =

∣∣∣~k(F) × ~B(F )

∣∣∣∣∣∣~k(F)∣∣∣ ∣∣∣ ~B(F )

∣∣∣ , (16)

which plays an important role in the intensity of synchrotron radiation emitted along 3-vector ~k(F ). Since the

electric vector of light is along the vector ~k(F ) × ~B(F ), the four-dimensional polarization vector fµ(F ) in the

F -frame can be expressed as [21–24]

f t̂(F) = 0, f x̂(F) =

(
~k(F) × ~B(F )

)
x̂∣∣∣~k(F)∣∣∣ , f ŷ(F) =

(
~k(F) × ~B(F )

)
ŷ∣∣∣~k(F)∣∣∣ , f ẑ(F) =

(
~k(F) × ~B(F )

)
ẑ∣∣∣~k(F)∣∣∣ , (17)

which satisfies fµfµ = sin2 ζ| ~B(F )|2. With the inverse Lorentz transformation [21–24], the polarization 4-

vector fµ(P ) in the P -frame can be given by

f t̂(P) = γf t̂(F) + γβ cosχf x̂(F) + γβ sinχf ŷ(F),

f x̂(P) = γβ cosχf ı̂(F) +
(
1 + (γ − 1) cos2 χ

)
f x̂(F) + (γ − 1) cosχ sinχf ŷ(F), (18)

f ŷ(P) = γβ sinχf ı̂(F) + (γ − 1) cosχ sinχf x̂(F) +
(
1 + (γ − 1) sin2 χ

)
f ŷ(F),

f ẑ(P) = f ẑ(F).

Moreover, in regular black hole spacetimes (1), the celestial coordinates (x, y) for the photon moving from

point P along the null geodesic to the observer at infinity are [41]

x = −Rk
ŷ

sin θ
, (19)

y = R

√
(kẑ)

2 − cot2 θ (kŷ)
2

sgn(sinφ).
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With the help of the conserved Penrose-Walker constant κ [42], the polarization vector at the observer can

be easily calculated because its real and imaginary parts are conserved along the null geodesic. At point P in

the fluid, the Penrose-Walker constant κ has the form [21–24]

κ = κ1 + iκ2, κ1 = ψ
−1/3
2

(
ktfx − kxf t

)
, κ2 = ψ

−1/3
2 R2 (kyfz − kzfy) , (20)

with

kt =
1

f(R)
, kx =

√
f(R)kx̂(P ), ky =

kŷ(P )

R
, kz =

kẑ(P )

R
,

f t =
f t̂(P )√
f(R)

, fx =
√
f(R)f x̂(P ), fy =

f ŷ(P )

R
, fz =

f ẑ(P )

R
.

(21)

Here, the Weyl scalar ψ2 has the form

ψ2 =
M4(M3R3 − 16Q6

m)

(8Q6
m +M3R3)

2 , (22)

in the Hayward black hole spacetime and

ψ2 =
M4(M2R2 − 8Q4

m)

(4Q4
m +M2R2)

5/2
, (23)

in the Bardeen black hole spacetime. Thus, the normalized polarization electric field vector ~E along the x

and y directions in the observer’s sky can be given by [21–24]

Ex,norm =
yκ2 + xκ1√

(κ21 + κ22) (x2 + y2)
,

Ey,norm =
yκ1 − xκ2√

(κ21 + κ22) (x2 + y2)
, (24)

E2
x,norm + E2

y,norm = 1.

In general, for synchrotron radiation, the intensity of the linearly polarized light that reaches the observer

from point P can be approximated as [21–24]

|I| ∼ δ3+αν lp| ~B|1+αν sin1+αν ζ, (25)

where the power αν depends on the properties of the accretion disk, including the ratio of the emitted photon

energy hν to the disk temperature kT . The quantity lp is the geodesic path length for the photon traveling

through the emitting region, which is given by [21–24]

lp =
kt̂(F )

kẑ(F )

H. (26)
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H is the height of the disk and can be taken as a constant for simplicity. As in refs.[21–24], αν can be set to

αν = 1, so the observed polarization intensity becomes

|I| = δ4lp| ~B|2 sin2 ζ, (27)

and the observed polarization vector components are

Ex,obs = δ2l
1
2
p sin ζ| ~B|Ex,norm,

Ey,obs = δ2l
1
2
p sin ζ| ~B|Ey,norm.

(28)

Then, the total polarization intensity and the electric vector position angle (EVPA) can be expressed as

[21–24]

I = E2
x,obs + E2

y,obs, EV PA =
1

2
arctan

U

Q
, (29)

where the Stokes parameters Q and U are given by

Q = E2
y,obs − E2

x,obs, U = −2Ex,obsEy,obs. (30)

For regular black holes (1), to obtain the polarization information in the image of point P , the null geodesic

equation of the photon emitted from point P must be solved first. Then, combining this solution with Eqs.(20),

(24), (28), (29), and (30), the corresponding polarization intensity and EVPA in the pixel related to point

P can be obtained. Repeating similar operations along the ring, the total polarization image of the emitting

ring around a regular black hole can be presented.

III. POLARIZATION IMAGES OF THE EMITTING RING AROUND REGULAR BLACK
HOLES

Figs. (1)-(6) present the polarization vector distribution in the image of the emitting ring (with radius

R = 6) around regular Hayward and Bardeen black holes, respectively. The polarized intensity tick plots in

Figs. (1) and (2) show that the properties of the observed polarized intensity in the image of the emitting

ring for a fixed magnetic charge Qm and observer inclination angle θ are similar in the Hayward and Bardeen

black hole spacetimes. Moreover, for a given external magnetic field, the polarization image features of the

emitting ring in Schwarzschild and regular black hole spacetimes are qualitatively similar.

Figs. (3)-(6) show that for fixed χ and β, the polarization intensity and EVPA change periodically with

the angle coordinate φ. Moreover, the polarization intensity increases with the magnetic charge Qm in the

above two regular black hole spacetimes. EVPA also increases with Qm, but the change amplitude is tiny. The
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FIG. 1: Variation in the polarized image of a synchrotron emitting ring around a black hole with the magnetic field
parameter. The first, second, and third lines correspond to the Schwarzschild, Hayward, and Bardeen black hole cases,
respectively. Here, M = 1, the observation inclination θ = 20◦, the emitting ring radius R = 6, and the fluid velocity
β = 0.3.

changes in the quantities ∆I = I−IS and ∆EV PA = EV PA−EV PAS with the magnetic charge Qm are also

presented in Figs. (4) and (6), where the subscript S denotes the Schwarzschild black hole spacetime. These

two quantities describe the difference between the polarization images of the emitting ring around a regular

black hole and a Schwarzschild black hole. With increasing Qm, the differences ∆I and ∆EV PA increase for

the Hayward and Bardeen black holes. However, the values of ∆I and ∆EV PA are smaller in the Hayward

black hole spacetime than in the Bardeen black hole, which is due to the metric function for the Hayward

black hole being closer to that for the Schwarzschild black hole since fHayward ≈ 1 − 2M
r +

16Q6
m

M2r4 + O(Q10
m )
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FIG. 2: Effect of the inclination angle θ on the polarized images of a synchrotron emitting ring around a regular black
hole for a fixed Qm = 0.6. The first and second lines correspond to Hayward and Bardeen black holes, respectively.
Here, M = 1, the ring radius R = 6, and the fluid velocity β = 0.3 and χ = −90◦.

and fBardeen ≈ 1 − 2M
r +

12Q4
m

Mr3 + O(Q6
m), which means that the effect of Qm arising from a metric function

is smaller in the Hayward black hole spacetime. For different observer inclination angles θ, Figs. (5)-(6)

also show that the polarization intensity and EVPA change periodically with the angle coordinate φ in both

regular black hole spacetimes. With increasing Qm, the polarization intensity, EVPA, and differences ∆I and

∆EV PA increase. Moreover, the values of ∆I and ∆EV PA are smaller in Hayward black hole spacetime

than in a Bardeen black hole, as with the cases with different fluid velocity angles χ.

The Q− U loop patterns of the polarization vector are studied in the image of the emitting ring around a

regular black hole and describe the continuous variability of the polarization vector in the image of the emitting

ring around a regular black hole. As with the usual static black holes, two loops surround the origin in the

Q− U plane. Figs. (7) and (8) show that the Q− U loops are similar in shape in the Hayward and Bardeen

black hole spacetimes but slightly smaller for the Hayward black hole. With increasing fluid direction angle χ,

the inner and outer rings shrink. With increasing inclination angle θ, the outer loop gradually expands and the

inner loop dramatically shrinks such that the Q−U loops gradually change from circular to irregular-shaped.

With increasing Qm, the loops change very slightly. This information stored in the polarization image could

help understand regular black holes and gravity-coupled nonlinear electrodynamics.
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Hayward Hayward Hayward

Hayward Hayward Hayward

Bardeen Bardeen Bardeen

Bardeen Bardeen Bardeen

FIG. 3: Effect of the magnetic charge parameter Qm on the polarized intensity and the EVPA in the image plane for
different values of χ. The top two lines are for a Hayward black hole, and the bottom two lines are for a Bardeen black
hole. Here, M = 1, the ring radius R = 6, the fluid velocity β = 0.3, and the inclination angle θ = 20◦.

IV. SUMMARY

This study investigated the polarized images of the emitting ring around regular Hayward and Bardeen black

holes. The results show that the polarization images and polarization characteristics of the emitting rings are

similar in these two regular black holes. The dependence of the polarization image of the emitting ring on

the fluid velocity and observer inclination angle is similar to that in the usual static black hole spacetimes.

With the increase in magnetic charge parameter Qm, the polarization intensity and EVPA of each point in the
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Hayward Hayward Hayward

Hayward Hayward Hayward

Bardeen Bardeen Bardeen

Bardeen Bardeen Bardeen

FIG. 4: Effect of the parameter Qm on the difference in the polarized intensity ∆I and in the electric vector position
angle ∆EV PA for different values of χ. The top two lines are for a Hayward black hole, and the bottom two lines are
for a Bardeen black hole. Here, M = 1, the ring radius R = 6, the fluid velocity β = 0.3, and the inclination angle
θ = 20◦.

image plane increase in Hayward and Bardeen black hole spacetimes. The difference values ∆I and ∆EV PA

between regular and the Schwarzschild black holes with the same magnetic field increase with Qm. However,

these difference values are smaller in Hayward black hole spacetimes than in Bardeen black hole spacetimes.

Moreover, the Q− U loop patterns of the polarization vector are studied in the image of the emitting ring

around a regular black hole. The Q − U loops are similar in shape in the Hayward and Bardeen black hole

spacetimes but slightly smaller in the Hayward black hole. With increasing fluid direction angle χ, the inner
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Hayward HaywardHayward

Hayward Hayward Hayward

Bardeen Bardeen Bardeen

Bardeen Bardeen Bardeen

FIG. 5: Effects of the magnetic charge parameters Qm on the polarized intensity and the EVPA in the image plane for
the different observation inclination angles θ. The top two lines are for a Hayward black hole, and the bottom two lines
are for a Bardeen black hole. Here, M = 1, the ring radius R = 6, the fluid velocity β = 0.3, and the angle χ = −90◦.

and the outer rings shrink. With increasing inclination angle θ, the outer loop gradually expands and the

inner loop dramatically shrinks, making the shapes of Q−U loops more irregular. With increasing magnetic

charge parameter Qm, the loops change very slightly. This information stored in the polarization image

around Hayward and Bardeen black holes could help understand regular black holes and the gravity coupled

to nonlinear electrodynamics.



14

Hayward Hayward Hayward

Hayward Hayward Hayward

Bardeen Bardeen Bardeen

Bardeen Bardeen Bardeen

FIG. 6: Effects of the parameter Qm on the difference in the polarized intensity ∆I and of the electric vector position
angle ∆EV PA for the different observation inclination angles θ. The top two lines are for a Hayward black hole, and
the bottom two lines are for a Bardeen black hole. Here, M = 1, the ring radius R = 6, the fluid velocity β = 0.3, and
the angle χ = −90◦.
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FIG. 7: Q− U loops diagram of the polarization vector in the image of the emitting ring around a regular black hole
for different fluid velocity angles χ. The brown dotted line corresponds to a Hayward black hole, and the orange solid
line corresponds to a Bardeen black hole. Black crosshairs indicate the origin of each plot. Here, M = 1, R = 6,
θ = 20◦, β = 0.3, and Qm = 0.6.

FIG. 8: Q−U loops diagram of the polarization vector in the image of the emitting ring around a regular black hole for
different observing inclination angles θ. The brown dotted line corresponds to a Hayward black hole, and the orange
solid line corresponds to a Bardeen black hole. Black crosshairs indicate the origin of each plot. Here, M = 1, R = 6,
χ = −90◦, β = 0.3, and Qm = 0.6.
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