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Abstract—Computing the polarization energy between a
ligand (i.e., a small molecule such as a drug molecule) and
a receptor (e.g., a virus molecule) is of utmost importance in
drug design. We have designed and implemented distributed-
memory and distributed-shared-memory parallel algorithms
for approximating GB-polarization energy (e.g., polar part
of free energy of hydration) of protein molecules. This is
an octree-based hierarchical algorithm, built on Greengard-
Rokhlin type near-far decomposition of data points (i.e., atoms
and points sampled from the molecular surface) for calculating
the polarization energy of protein molecules using the surface
based r

6-approximation of Generalized Born radii of atoms.
We have shown that our implementations outperform state-
of-the-art GB-polarization energy implementations, such as
Amber 12, GBr

6, Gromacs 4.5.3, NAMD 2.9 and Tinker
6.0. Using approximations, cache-efficient data structures and
efficient load-balancing schemes, we achieve a speedup factor
of ∼ 400 w.r.t Amber with less than 1% error w.r.t. the naı̈ve
exact algorithm using as few as 144 cores (i.e., 12 compute
nodes with 12 cores each) for molecules with as many as half
a million atoms.

Keywords-Polarization Energy, Generalized Born, Cluster of
Multicores, Hybrid Parallelism.

I. INTRODUCTION

Whenever a molecule comes under the influence of an

electric field, its charge distribution is relaxed in response

to that field. The energy associated with this relaxation

is known as the polarization energy (Epol). It is typically

negative in quantity, as a relaxation leads to decrease in

energy [27]. Electronic polarization plays a crucial role in

drug design, discovery & design of new proteins, antivirus

and antibiotics, protein-protein docking, molecular dynamics

simulations for determining the molecular conformation with

minimal total free energy, and so on.

The Poisson-Boltzmann [1], [15], [19], [25] model can

be used to approximate Epol. However, due to high com-

putational costs Poisson-Boltzmann method is rarely used

for large molecules such as proteins. Instead Epol is ap-

proximated using the Generalized Born (GB) model [16],

[17], [28] – a popular approximation model which considers

solvent as a statistical continuum. However, computing

Epol naı̈vely even based on the GB model takes time

quadratic in the number of atoms in the molecule, and thus

it remains computationally expensive for large molecules.

Hence, another level of approximation over the original GB-

approximation is required in order to reduce its complexity

below quadratic, and preferably to linear.

*This work used the Extreme Science and Engineering Discovery En-
vironment (XSEDE), which is supported by National Science Foundation
grant number OCI-1053575

An additional level of performance boost can be gained

in GB-approximation by introducing parallelism in the com-

putation [22]. In fact, multicore computers have already

become the mainstream computing devices, and the number

of cores in these devices is increasing rapidly. Not only

that most of our desktops and laptops are already mul-

ticore computers, nowadays most modern supercomputers

are also built as clusters of multicore machines. Before

multicores became widely available, distributed-memory

parallel algorithms were typically used in high performance

parallel computing, and these algorithms were designed to

use explicit distribution and communication of data among

compute nodes. Even though multicore computers allow

implicit communication among the cores through the mem-

ory hierarchy and the shared memory space, when run

on clusters of multicores, distributed-memory algorithms

typically require separate memory space for each core of

the same compute node, and explicit communication among

the cores. One natural way of avoiding the use of data

replication and explicit communication among the cores of

a compute node is to use hybrid algorithms – algorithms

that use shared-memory parallelism inside each multicore

node and distributed-memory parallelism across the nodes

of the cluster. The goal is to reduce space usage (due to

data replication) and communication time (due to explicit

communication among threads) whenever possible.

The main contribution of this paper is a hybrid distributed-

shared-memory parallel algorithm for approximating GB

polarization energy on a cluster of multicores. We use a

fast approximation scheme based on a hierarchical spa-

tial decomposition of the molecule1 [6], [7], and apply a

Greengard-Rokhlin type near-far approximation scheme [13]

on the decomposition. We also present detailed performance

results of our approach. We show that it runs faster than

other state-of-the-art implementations of GB polarization

energy namely, Amber 12 [9], GBr6 [35], Gromacs 4.5.3

[18], NAMD 2.9 [31], [34] and Tinker 6.0 [29], and can

handle molecules larger than most of them can process.

We have also compared our hybrid algorithm with our

own purely distributed-memory implementation of the same

algorithm. We found that though for small molecules the

hybrid algorithm runs slower, it outperforms the distributed-

memory version as the size of the molecule increases.

This paper extends our prior work for shared-memory ar-

chitectures [6], [7] to the distributed-shared-memory setting.

The resulting algorithm has the following properties:

1consisting of atoms and points sampled from the surface of the molecule
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• Hybrid parallelism. We use shared-memory paral-

lelism inside each compute node and distributed-

memory parallelism across compute nodes.

• Cache- and space-efficient data structures. We use

octrees [20] for finding nonbonded atoms, which, un-

like traditional nonbonded lists [30], always use space

linear in the number of atoms in the molecule indepen-

dent of any distance cutoff used, and are also known

to be cache-friendly.

• Space-independent speed-accuracy tradeoff. The al-

gorithm uses user-defined approximation parameters,

and by tuning these parameters one can get a more

accurate approximation of Epol at the cost of increasing

the running time and vice versa. Unlike traditional

distance cutoff based methods, the space usage is inde-

pendent of the values of the approximation parameters.

• Load balancing. Inside each compute node, we use dy-

namic load balancing based on efficient (fast and cache-

efficient) randomized work-stealing [3], and across

nodes, we use static load balancing in order to reduce

the communication overhead.

The rest of the paper is organized as follows. In Section

II we provide necessary background on polarization energy

as well as on the data structures and algorithms we use.

In Section III we describe related work on the estimation

of polarization energy. Section IV presents our algorithms

along with their theoretical complexity analysis. In Section

V we present simulation results and a detailed comparison

with other existing approaches namely, Amber 12, GBr6,

Gromacs 4.5.3, NAMD 2.9 and Tinker 6.0. Finally, Section

VI concludes the paper with some future research directions.

II. BACKGROUND

In this section we first explain the mathematical expres-

sions for estimating Epol. Then we provide some background

on the cache-efficient octree data structure, and the near-far

approximation scheme from [6], [7] which we extend to the

distributed-shared-memory setting.

Polarization Energy: The polarization energy of a molecule

depends on the difference of potential of that molecule in

solvent and gas-phase, and its charge density:

Epol =
1

2

∫

Øreaction(r).ρ(r), (1)

where Øreaction=Øsolvant − Øgass−phase, and Ø(r) and

ρ(r) are the electrostatic potential and charge density of the

molecule, respectively.

In the GB-model, the polarization energy of a molecule

is given by the following equation:

Epol =
1

2

(

1−
1

ǫsolv

)

∑

i,j

qi.qj

fij
GB

, (2)

where fij
GB =

[

rij
2 +RiRj exp

−rij
2

4RiRj

]
1
2

, and ǫsolv =

solvent di-electric, rij = distance between atoms i and j,

Rk and qk (k ǫ{i, j}) denote the Born radius and charge

value of atom k, respectively.

The effective Born radius reflects how deep a charge is

buried inside the molecule. The Born radius of an atom i,
Ri shows the extent of interaction of the atom with a solvent

when it is dissolved in that solvent. If the atom is close to

the molecular surface, Ri is small. An atom with large Ri

has a weaker interaction with the solvent.

To approximate Born radii and polarization energy, we

have used Gaussian quadrature points sampled from the

molecular surface. Gaussian quadrature attempts to obtain

the best numerical estimate of an integral (e.g., molecular

surface function) by picking optimal abscissas xi to evaluate

the function. Gaussian quadrature is considered to be optimal

as it fits all polynomials exactly up to a certain degree [36].

The triangulation of Gaussian quadrature function of the

molecular surface yields an estimation of molecular surface

normal at triangulation vertices, and at Gauss quadrature

numerical integrations points in each triangle’s interior. A

constant number of quadrature points per triangle are needed

for high accuracy of the Born radii calculation.

The evaluation of Born radii is essentially based on the

Coulomb field approximation [14], which assumes that the

electric displacement is in the Columbic form. Using this

approximation Born radii can be calculated as follows:

1
Ri

= 1
4π

∫

1
|r−xi|4

d3r,

where xi represents the center of atom i.
We can obtain a discrete approximation of Born radii

by applying Gaussian quadrature as shown in Equation 3

(known as r4-approximation) [11]:

1

Ri
≈

1

4π

N
∑

k=1

wk
(rk − xi).

−→nk

|rk − xi|4
, (3)

where rks denote N Gaussian quadrature points on the

molecular surface, −→nk is the unit outward surface normal

at rk, and wk is a weight assigned to the quadrature point

in order to achieve higher order of accuracy for small

N . However, the following approximation of Born radius

(known as r6-approximation) shows better accuracy for

spherical solutes, e.g., proteins [14]:

1

Ri
3 =

3

4π

∫

1

|rk − xi|6
≈

1

4π

N
∑

k=1

wk
(rk − xi).

−→nk

|rk − xi|6
. (4)

Octrees vs. Nblists: An Octree is a tree data structure that

recursively and adaptively sub-divides the 3D space into 8
octants, and is often used as a container for rectilinear scalar

field data. Octrees are very cache friendly because of their

recursive nature. We use octrees to store the atoms in a

molecule and the surface quadrature points. Once an octree
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Figure 1: In the Born radius approximation algorithm two octrees
are constructed: one for the atoms in the molecule, and the other
for the quadrature points. Born radii of all atoms are approxi-
mated by recursively traversing both octrees simultaneously. For
simplicity, the octrees are drawn as quadtrees.

is built, it can be used for any approximation parameter

(similar to distance cutoff used in other molecular dynamics

(MD) packages). Some existing MD packages, e.g., Amber,

NAMD and Gromacs use nblists (nonbonded list) to

represent interacting atom pairs. The size of the nblist

of any given atom grows linearly with the number of atoms

in the system, and cubically with the distance cutoff that

truncates the non-bonded interactions. On the other hand,

an octree uses space linear in the number of data points it

holds, and its size does not change with the approximation

parameter. Updating the nblist after the initial construc-

tion is costly and also not scalable with the distance cutoff.

Often MD implementations that use nblists run out of

memory for molecules with millions of atoms. For large

cutoffs, octree is more space-efficient, update-efficient and

cache-efficient compared to nblists [8].

Approximating Born Radii and GB Energy: This section

gives a quick review of the approximation algorithms for

Born radii and polarization energy calculation described in

[6]. We use the same basic ideas of near-far approximation

in our distributed and distributed-shared-memory algorithms,

although we change the algorithms as well as the approxi-

mation schemes for efficient work-division. Let A be the set

of atoms in a molecule, and Q be the set of quadrature points

(denoted q-points) sampled from the molecular surface.

First, two octrees TA and TQ for A and Q, respectively, are

built, and then Born radii are approximated by traversing

them simultaneously starting at their root nodes.

Approximate integrals (using Equation 4) are collected at

appropriate internal nodes of TA and atoms of A. Suppose at

some point during this traversal we are at node A ∈ TA and

node Q ∈ TQ. Let rA (resp. rQ) be the radius of A (resp.

Q). If A and Q are far enough, i.e., the distance between

their centers, rAQ is larger than (rA+ rQ)
(

(1+ǫ)1/6+1
(1+ǫ)1/6−1

)

for

some user-defined approximation parameter ǫ > 0, then the

contribution of all q-points in Q to the Born radius integral

of each atom in A can be approximated by treating A (resp.

Q) as a single pseudo-atom (resp. pseudo q-point) centered

at the geometric center of the atoms (resp. q-points) under

it. These approximated contributions are collected in A. If

A and Q are not far enough but at least one of them is a

non-leaf, we recurse using the children of the non-leaf/non-

leaves. If both are leaves, then we compute the contributions

exactly using the atoms under A and the q-points under Q,

and collect them in the respective atoms. Next, we traverse

TA top-down, and collect and add partial integrals from

all ancestors of an atom to it. Finally, we compute the

Born radii values from these accumulated values [6]. Epol

is approximated using similar techniques. The pseudo-code

for the Born radii and Epol calculation can be found in

[6]. Note that the accuracy and speedup of these algorithms

can be tuned by changing the approximation parameters, ǫ;
increasing ǫ gives better speedup while sacrificing accuracy

in results more and vice-versa.

III. RELATED WORK

Octree-based hierarchical treecode algorithms have al-

ready been used for energetics computations. These algo-

rithms are typically based on Barnes-Hut clustering [21]

or the Fast Multipole Method (FMM) [4], and have been

implemented for both serial and distributed-memory parallel

machines to compute Coulomb, London, Lennard-Jones, H-

bonds potentials [10], [33], polarized Coulomb interactions

[24], Yukawa potential [37], etc.

A. Popular Parallel Epol Implementations

The well-known Amber 12 [9] package has an MPI-

based distributed-memory implementation for GB-energy

calculation. Amber also has a shared-memory parallel im-

plementation of GB-energy which uses vectorization [32].

Gromacs [18] has OpenMP based shared-memory and MPI

based distributed-memory implementations of Epol. On the

other hand, NAMD [31], [34] uses Charm++ [23] and MPI

for its shared and distributed-memory implementations, re-

spectively. Tinker-6.0 [29] is also a well-known MD package

which supports OpenMP based shared-memory parallelism.

On the other hand, GBr6 has a serial approximation algo-

rithm that uses volume-based r6-approximation of Born radii

as opposed to our surface-based r6-approximation. Note

that all existing MD packages currently use either shared-

memory or distributed-memory parallelism for computing

GB-energy. Most of these MD packages support multiple

GB-models such as HCT [17], STILL [16], OBC [28] etc.

IV. OUR CONTRIBUTIONS

Our main contributions in this paper are as follows:

• We have designed an efficient and scalable hybrid

distributed-shared memory parallel algorithm for ap-

proximating Born radii and polarization energy. A

number of different load balancing/work distribution

schemes have been explored.

• We have analyzed the time complexity and scalability

of the algorithm.
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• We have implemented our algorithm with distributed-

shared- & distributed-memory parallelism, and com-

pared our implementations with five other state-of-the-

art implementations of Epol, namely, Amber 12, GBr6,

Gromacs 4.5.3, NAMD 2.9 and Tinker 6.0, and showed

that our implementations outperform all of them.

The major difference of our approach from algorithms

presented in [6] is that we only traverse one octree instead of

two, and hence the approximation scheme is also different.

Figures 2 and 3 show our modified algorithms.

A. Load Balancing

There are basically two ways of load balancing in our

distributed-shared- and distributed-memory algorithms:

• distribute only the work/computation (each process will

have all the data),

• distribute both the data and work evenly among the

processes (each process gets only a part of the data).

In the current paper, we have reported only the implemen-

tations in which we divide the work (each process has a

complete set of data).

Load balancing on octree data structures has been dis-

cussed in [5]. We have used both static and dynamic load

balancing schemes in our algorithms. We use static load

balancing among the processes because static load balancing

is more efficient and less costly than dynamic load balancing

in this case. Our load balancing scheme works as follows:

• EXPLICIT STATIC LOAD BALANCING: Work is divided

evenly among processes. The ith process computes the

Born radii and Epol for the ith segment of atoms and

leaf nodes, respectively, from the atoms octree.

• IMPLICIT DYNAMIC LOAD BALANCING:We also en-

sure dynamic load balancing among the threads inside a

compute node using the cilk++ work-stealing sched-

uler [3].

Different Work Distribution Approaches: In the

distributed/distributed-shared-memory algorithms, one

can distribute the work of calculating Born radii and

polarization energy among the processes or the cores of the

compute nodes of a cluster, either by dividing the leaf nodes

(NODE-BASED-WORK-DIVISION
2) or by dividing the atoms

(ATOM-BASED-WORK-DIVISION
3). We have used MPI

[12] and cilk++ [26] to implement our distributed and

distributed-shared-memory algorithms. We chose cilk++

because our algorithms are mainly based on nested

parallelism, and such recursive parallel algorithms can be

implemented very easily in cilk++. Also, cilk++’s

randomized work-stealing scheduler allows efficient parallel

execution of these recursive divide-and-conquer algorithms.

In the rest of the paper we will refer to our Hybrid

2Each compute node computes only for the leaves assigned to it.
3Each compute node computes only for the atoms assigned to it.

distributed-shared implementation as OCTMPI+CILK and

distributed implementation as OCTMPI .

WORK DISTRIBUTION FOR BORN RADII CALCULATION:

For Born radii calculation work can be divided by first

dividing the atoms or nodes from any of the two octrees

(atoms octree or quadrature points octree) evenly among

the processes, and then assigning the job of computation

on a particular segment of nodes or atoms to a particular

process. To compute Born Radii, we distribute the work in

two phases. Firstly, we evenly divide the leaf nodes from the

quadrature points octree to the MPI processes. We assign

the work of computing approximated integrals for the ith

segment of leaf nodes to the ith MPI process. In the second

phase (in PUSH-INTEGRALS-TO-ATOMS), we divide the

atoms evenly among the processes, and the ith MPI process

computes the final Born Radii for the ith segment of the

atoms. Note that each MPI process only traverses the atoms

octree, and for each leaf node of the quadrature points octree

that has been assigned to it, it computes the approximated

integrals. In another implementation, we divide the atoms in

both of these phases, and each process traverses both octrees

(TA and TQ), but computes only for those nodes and atoms

that fall within its range.

WORK DISTRIBUTION FOR Epol CALCULATION: For Epol

calculation, we first divide the leaf nodes of the atoms

octree into P equal segments, where P is the number of

MPI processes. Then we assign the work of computing

the interaction of the ith segment of leaf nodes with the

entire atoms octree to the ith MPI process. In this case,

each process computes the interaction energy due to all leaf

nodes assigned to it, either by considering them in parallel

(in OCTMPI+CILK) or by taking them one at a time (in

OCTMPI ) while it traverses the other atoms octree. We refer

to the work division that divides leaf nodes for Born radii

and energy computation as the node–node work division.

Other combinations of work divisions (e.g., atom–node,

atom–atom, qpoint–node, node–atom, etc.) are also possible,

but the node–node type work division scheme performed

better than other alternatives in the experiments we con-

ducted. We have observed that atom–node work division

takes slightly more time than the purely node based (node–

node) work division. Moreover, in node–node work division,

only leaf nodes (of one octree) are considered during inter-

action computation (with other octree) which leads to less

approximation compared to approximating at internal nodes.

For this reason, the node–node work division performs better

than others with respect to the percentage of error in the

energy value. The error of atom based work division keeps

changing with the number of processes even when the

approximation parameters are kept fixed, because different

division boundaries can split the same treenode differently in

atom-based work division. On the contrary, for node-based

work division, the error is constant for constant parameters,

because each compute node always gets a full treenode, and
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APPROX-INTEGRALS( A, Q ) (Here A denotes a node from atoms octree, and Q denotes a leaf node from quadrature points octree. For each atom a under the subtree

rooted at the given node A in the atoms octree, this function approximates
∑

q∈Q wq
(pq−pa)·nq

|pq−pa|6
. By pa = 〈xa, ya, za〉 we denote the center of an atom a, while by

pq = 〈xq, yq, zq〉, wq and nq = 〈nxq, nyq, nzq〉 we denote the location of a quadrature point q, weight assigned to q, and the unit outward normal on the molecular

surface at q, respectively. By rA (resp. rQ) we denote the radius of the smallest ball that encloses all atom centers (resp. integration points) under A (resp. Q). The distance

between the geometric centers of A and Q is given by rA,Q. We also assume ñxQ =
∑

q∈Q wqnxq . Similarly for ñyQ and ñzQ. Each atom a has a field sa, and each

node A in the atoms octree has a field sA, all of which are initialized to zero. The approximated sum is added to sA provided A and Q are far enough in space so that the sum

can be approximated reasonably well (controlled by an approximation parameter ǫ > 0). Otherwise the sums are computed recursively and added to the s field of appropriate

descendants of A. By CHILD(A) we denote the set of non-empty octree nodes obtained by subdividing node A.)

1) if rA,Q − (rA + rQ) > 0 ∧
rA,Q+

(
rA+rQ

)

rA,Q−
(
rA+rQ

) > (1 + ǫ)
1
6 then sA = sA +

ñxQ·(xQ−xA)+ñyQ·(yQ−yA)+ñzQ·(zQ−zA)

(rA,Q)6
{far enough to approximate}

2) elif LEAF(A) then {too close to approximate; compute exact value}
for each atom a ∈ A do

for each quadrature point q ∈ Q do

sa = sa +
wq(nxq·(xq−xa)+nyq·(yq−ya)+nzq·(zq−za))

(ra,q)6

3) else ∀A′ ∈ CHILD(A) : APPROX-INTEGRALS( A′, Q )

PUSH-INTEGRALS-TO-ATOMS( A, s , sid, eid) (A is a node in the atoms octree, and s =
∑

A′∈ANCESTORS(A) sA′ . This function pushes s + sA to each descendant of A.

If A is a leaf it computes the Born radius of each atom a ∈ A using s + sA + sa. Here, sid and eid denote the start id and end id of the atoms assigned to a process.)

1) if LEAF(A) then ∀a ∈ A that falls in [sid, eid]: Ra = max

{
ra,

(
sa+s+sA

4π

)− 1
3

}
{compute Born radii of A’s atoms}

2) else ∀A′ ∈ CHILD(A) : PUSH-INTEGRALS-TO-ATOMS( A′, s + sA ) {push integrals to A’s descendants (parallel)}

Figure 2: Octree-based algorithm for r
6-approximation of Born radii.

APPROX-Epol(U, V ) (For two given nodes U and V in the atoms octree TA where, V is a leaf, approximate the part of Epol resulting from the interaction between the set of

atoms under U and V . By rU we denote the radius of the smallest sphere that encloses all atom centers under U . For any atom u ∈ U , its center, radius, charge and Born radius

are given by (xu, yu, zu), ru, qu and Ru, respectively. For 0 ≤ k < Mǫ = log1+ǫ (Rmax/Rmin), qU [k] =
∑

(u∈U) ∧ (Ru∈[Rmin(1+ǫ)k,Rmin(1+ǫ)k+1))
qu,

where Rmin and Rmax are the minimum and the maximum Born radius among all atoms in A. By CHILD(A) we denote the set of non-empty octree nodes obtained by

subdividing node A.)

1) if LEAF(U) then return − τ
2

∑
(u∈U) ∧ (v∈V ) quqv

/√
r2uv + RuRve

−r2uv/4RuRv {exact value}

2) elif rU,V > (rU + rV )
(
1 + 2

ǫ

)
then return − τ

2

∑
0≤i,j<Mǫ

qU [i] · qV [j]
/√

r2UV + R2
min(1 + ǫ)i+je−r2

UV
/4R2

min
(1+ǫ)i+j

{approximate}

3) else return
∑

U ′ ∈ CHILD(U) APPROX-Epol( U ′, V ′ ) {recurse on U (parallel)

Figure 3: Octree-based algorithm for approximating Epol from Born radii.

hence the approximation does not change with the change of

division boundaries. We have also observed the same trend

of errors in Gromacs that also uses atom based work division

techniques.

Dynamic load balancing among threads: In our

distributed-shared-memory algorithm, inside each compute

node multiple threads (or cores) are used to accomplish the

work assigned to a process. The cilk++ runtime system

provides dynamic load balancing among threads using a

randomized work-stealing scheduler [3]. In cilk++ work-

stealing scheduler, each thread maintains a double ended

queue (deque) to store its outstanding work/tasks and adds

the newly generated work to the bottom of the queue.

On the other hand, when a thread runs out of work, it

chooses a random victim thread and steals work from top

of the victim’s queue which helps to reduce inter-thread

communication and guarantees progress [2].

B. Algorithm

Figure 4 shows a sketch of our Hybrid distributed-shared-

memory parallel octree based GB-radii and Epol algorithms,

where p denotes the number of threads running concurrently

in shared-memory and is upper bounded by the number of

cores in a single compute node. If the distributed-shared-

memory algorithm runs with P processes, each running

p threads internally, the corresponding distributed-memory

algorithm should run P x p MPI processes to achieve

the same level of parallelism (using the same number of

cores). It is important to design hybrid (distributed-shared)

algorithms and explore their performance for the following

reasons.

• Most modern supercomputers are networks of multi-

cores, and hence the future computation model is likely

to be of distributed-shared-memory type.

• A purely distributed-memory approach typically re-

quires more memory than its distributed-shared-

memory counterpart.4

• Running two threads on the same compute node (multi-

core machine) incurs less communication overhead than

running two single threaded processes on two different

compute nodes.

• No distributed-shared-memory implementation of GB-

energy is available yet.

Suppose, in a shared-memory algorithm k threads share the

same data of size s. Now if we launch these k threads as

k different processes as in a distributed-memory setting,

each process will require a separate copy of the same

data occupying ks space in total. As long as this ks data

fits in the shared-cache/main memory, the speedups from

both distributed and distributed-shared memory approaches

should be comparable. However, as k independent processes

(distributed) use k times more memory than used by one pro-

cess with k threads (shared), at some point, the distributed-

shared-memory algorithm should outperform the distributed-

memory algorithm. This happens when the input becomes so

4Distributed memory implementations are typically designed to replicate
data instead of sharing.
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DISTRIBUTED/DISTRIBUTED-SHARED-MEMORY OCTREE BASED GB-POLARIZATION ENERGY COMPUTATION ALGORITHM (Suppose, we have
P processes, each of which is running p threads internally. Therefore, if p = 1, it’s a purely distributed approach and if p > 1, it’s a distributed-shared
approach. We first divide the work among the processes as evenly as possible. Inside each node, work is further distributed among multiple threads
dynamically by the cilk++ framework.)

1) Each compute node builds atoms-octree, TA and quadrature-points-octree, TQ independently.

2) For 1 ≤ i ≤ P [in parallel], the ith process calculates the approximated integrals due to the ith segment of leaf nodes from the quadrature points
octree by traversing TA using the APPROX-INTEGRALS algorithm. {Node based work division}.

3) Each process gathers the partial approximated integrals due to other segments of leaf nodes computed by other processes using MPI Allreduce.
4) For 1 ≤ i ≤ P [in parallel], the ith each process calls the PUSH-INTEGRALS-TO-ATOMS function and computes final Born radii for the ith

segment of atoms.
5) Each process gathers the Born radii of other segments of atoms from other processes.
6) Each process traverses TA, and for 1 ≤ i ≤ P [in parallel], the ith process calculates partial energy by computing the one-to-one interactions of

the ith segment of leaf nodes from TA on other nodes of TA. {Node based work division}.
7) The master process accumulates partial energy values form step 6 and generates the final Epol.

Figure 4: Octree based distributed- and distributed-shared-memory algorithm.

large that the ks data does not fit into the shared-cache/main

memory or incurs severe memory overhead (page fault/cache

misses) causing a slowdown of the program. Moreover, the

typical cost of communication among k threads in shared-

memory < (is less than) cost of communication among

k processes on a single compute node/socket < cost of

communication among k processes on different sockets or

computing nodes across the cluster. This also implies that as

we increase the number of processes, the overhead of purely

distributed algorithm will be more than the distributed-

shared-memory algorithm. We have also observed similar

trends in our experiments.

C. Analysis of Time Complexity

In this section, we present the time complexity analysis

of our distributed/distributed-shared-memory octree-based

algorithms. We have used complexity results proved in [6]

and [7] for this analysis. Let P be the number of MPI

processes, and p be the number of threads running internally

inside each process. Let, the molecule has M atoms in it.

Computational Cost, Tcomp:

Step 1: Each process builds octrees from atoms and quadra-

ture points which takes O(M logM) time (assuming the

number of Gaussian quadrature points, m = O(M)) [6].

Once the octrees have been built, we can approximate for

any ǫ (recall that ǫ is an approximation parameter) without

reconstructing them. Moreover, for drug-design and docking

where we need to place the ligand at thousands of different

positions w.r.t. the receptor, we can move the same octree

to different positions or rotate it as needed by multiplying

with proper transformation matrices, and then recompute

the energy values. Therefore, we can consider the octree

construction cost as a pre-processing cost and ignore it.

Step 2: Each process calculates the Born radii by traversing

the atoms octree starting at the root node. The ith process

computes only for the ith segment of leaf nodes from

the quadrature points octree using the APPROX-INTEGRALS

algorithm. Since each process gets approximately ⌈M/P ⌉
atoms, and inside each process each of the p cores/threads

again does approximately
⌈M/P⌉

p part of the work, it costs

O(( 1
ǫ3 (

M
P

1
p + log M

P )) = O(( 1
ǫ3 (

M
P

1
p + logM)) time as

M >> P (using results from [7]).

Step 4: Each process calls PUSH-INTEGRALS-TO-ATOM,

and the ith process calculates Born radii only for the ith seg-

ment of atoms. Traversing the entire tree takes O(M logM)
time but each process traverses only that part of the tree

that falls in its range. Eventually each thread traverses

approximately O( 1
P ( 1p )) fraction of the tree. Therefore, this

function will take O( 1
P ( 1p (M logM))) time.

Step 6: Each process traverses TA, and the ith process

calculates partial energy by computing the one-to-one in-

teractions of the ith segment of leaf nodes from TA with

other nodes of TA. Since each process gets ⌈1/P ⌉ fraction

of the total number of leaf nodes from the atoms-octree

containing approximately ⌈M/P ⌉ atoms, each core/thread

will get around
⌈M/P⌉

p of the atoms for computation. Hence,

this step will take O( 1
P ( 1

ǫ3 (
M
p + 1) logM)) time (using

results from [7]).

Therefore, the total computation time is, Tcomp =

O
(

1
P

1
ǫ3 (

M
p + 1) logM

)

.

Communication cost Tcomm:

Step 3 & 5: Each process gathers the approximated integrals

and Born radii of other segments from other processes. It

takes O(ts logP+tw
M
P (P−1)) time, where ts is the startup

time and tw is the message passing time per word (costs for

MPI primitives can be found in Table 4.1 of [12] ).

Step 7: The master process accumulates partial energy

values from Step 6 using MPI Allreduce and generates the

final Epol which takes O(ts logP + tw(P − 1)) time.

Therefore, the total parallel time, Tp = Tcomp + Tcomm

= O
(

1
P

1
ǫ3 (

M
p + 1) logM + ts logP + tw

M
P (P − 1)

)

= O
(

1
Pp

1
ǫ3M logM + twM

)

.

Attribute Name Property

Processors 3.33 GHz-Hexa-Core 64-bit Intel-Westmere

Cores/node 12

RAM size and speed 24 GB, 1333 MHz

Cluster Interaction Type InfiniBand, fat-tree topology, 40Gb/s p2p bandwidth

Cache 12 MB L3, 64 KB private L1, 256 KB private L2

Operating System Linux CentOS 5.5.

Parallelism Platform Intel Cilk-4.5.4, MPI (MVAPICH2/1.6)

Optimization parameter -O3

Table I: Simulation Environment
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V. SIMULATION RESULTS

All experiments included in this section were performed

on the Lonestar4 computing cluster located at the Texas

Advanced Computing Center (TACC). All algorithms were

tested on ZDock Benchmark Suite-2.0 containing 84 com-

plexes (168 proteins) both in bound and unbound states.

We used proteins from the bound dataset only. The number

of atoms per protein varied from around 400 to 16,000.

Important properties of the simulation environment are sum-

marized in Table I.

We have compared three different octree based im-

plementations, namely, the shared-memory, distributed-

memory, and distributed-shared-memory implementations

with GBr6 [35], and the GB-polarization energy implemen-

tations from four existing well-known Molecular Dynamics

Packages, namely, Gromacs 4.5.3 [18], NAMD 2.9 [31], [34],

Amber 12 [9] and Tinker 6.0 [29]. Table II summarizes

some important properties of these programs. We have also

reported the running times and energy values computed by

the naı̈ve serial implementations of Equations 2 and 4.

Package GB-Model Parallelism

Gromacs 4.5.3 [18] HCT [17] Distributed (MPI)

NAMD 2.9 [34] OBC [28] Distributed (MPI)

Amber 12 [9] HCT Distributed (MPI)

Tinker 6.0 [29] STILL [16] Shared (OpenMP)

GBr6 [35] STILL Serial

Name GB-Model Parallelism

OCTCILK STILL Shared (cilk++ )

OCTMPI STILL Distributed (MPI)

OCTMPI+CILK STILL Distributed (MPI+cilk++)

Naı̈ve STILL Serial

Table II: Packages with GB models and types of parallelism used.

A. Dealing with NUMA Effect

Note that to reduce the impact of NUMA (Non-uniform

memory architecture) on Intel machines, we ran all the

MPI programs with ibrun tacc affinity, which is basically

a wrapper around the mpirun or mpiexec, and it fixes the

affinity of the processes to the cores, sockets and caches to

reduce overall cache misses. On the other hand, cilk++

does not provide any thread affinity manager. The cilk++

work-stealing scheduler allows a thread to steal from any

other thread. However, by stealing the oldest entry from

a deque (least recently used data), it tries to reduce the

number of cache misses. On Lonestar4, each machine was

dual socket, and we launched one process with 6 threads

on each socket for the OCTMPI+CILK program, which

bounded those 6 threads only to one socket and alleviated

the NUMA effect.

B. Scalability

Figures 5 and 6 show the scalability of our OCTMPI and

OCTMPI+CILK implementations from which we observe

how the running time decreases and speedup increases

with the number of cores. We ran this experiment on the

Blue Tongue Virus (BTV) that has 6 million atoms and

more than 3 million quadrature points. Since for smaller

number of cores (or processes), each core needs to handle

a comparatively larger data segment, the segment may not

fit in the cache fully at the same time leading to more

cache misses. However, as the number of cores or processes

increases, because of the balanced work division, each core

will work only on a smaller portion of data which can

easily fit into the cache. For OCTMPI program we ran 12

processes in each compute node, and for OCTMPI+CILK

program we ran 2 processes each with 6 threads each.

For each configuration, we ran all programs 20 times and

plotted the minimum and maximum running times in the

Figure 6. We observe that the minimum running time

of OCTMPI+CILK is always smaller than the minimum

running time of OCTMPI after the core count reaches 180,

whereas we always (independent of core count) see the

opposite for the maximum running times. As the OCTMPI

program has 6 times more processes than OCTMPI+CILK ,

the communication overhead of OCTMPI was more than

OCTMPI+CILK . Similarly, the memory overhead was also

more in OCTMPI . For these reasons OCTMPI+CILK

eventually ran faster than OCTMPI . For BTV, when run on

a single node with 12 cores, OCTMPI+CILK (2 processes,

each with 6 threads) took approximately 1.4GB of memory,

whereas OCTMPI+CILK (12 processes, each with 1 thread)

occupied 8.2GB, which is 5.86 times more than that of

OCTMPI+CILK (as expected). This ratio continues to hold

as we increase the number of compute nodes.

C. Running Time and Speedup

Next we ran OCTMPI and OCTMPI+CILK on a 12-

core machine for the ZDock benchmark molecules, and com-

pared their performance with that of OCTCILK . Note that

the algorithms underlying OCTMPI and OCTMPI+CILK

were different from the one used by OCTCILK . All these

algorithms were run with approximation parameters set to

0.9 (Born Radii) and 0.9 (Epol), respectively. We used

approximate math for computing square root and power

functions. No vectorization was used. We observed that

OCTCILK showed better performance than both OCTMPI

and OCTMPI+CILK for molecules with less than 2500

atoms, since for small molecules the communication cost

dominated computation cost. The OCTMPI implementa-

tion was significantly faster than OCTCILK for molecules

with greater than 2500 atoms, because for larger molecules

computation costs beaten communication cost, and the

differences in running times increased with the size of

the molecules. The OCTMPI implementation was also

slightly faster than OCTMPI+CILK for molecules with

less than 7500 atoms. After molecule size 7500, both

OCTMPI and OCTMPI+CILK showed similar perfor-

mance. As OCTMPI was using almost 6 times more mem-

ory than OCTMPI+CILK , the difference in performance

diminishes with the size of the molecule. MPI turns out to be
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more optimized compared to the cilk++ implementation5

and cilk++ does not maintain thread affinity. There is an

additional overhead of interfacing cilk++ and MPI. These

overheads of OCTMPI+CILK were prominent for smaller

molecules and became less dominant as the size of the

molecule increased.
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Figure 7: Performance Comparison of Different Octree Based
Algorithms (Results are sorted by the OCTCILK time).

Note that Gromacs also has a shared-memory implementa-

tion of GB-energy, and we observed that for Gromacs, too,

the distributed-memory implementation was slightly faster

5We have used cilk-4.5.4, which is a predecessor of Intel cilk plus, and
Intel cilk plus is likely to be much better optimized than cilk-4.5.4.
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Figure 8: Performance Comparison of Different Algorithms. Results
are sorted by molecule size.

than the shared-memory implementation. Hence, in the rest

of this section, we only compare the MPI based distributed-

memory implementation of Gromacs.

For comparison purposes, we ran all programs mentioned

in Table II on a 12-core machine (single compute node). For

the distributed implementations (NAMD, Gromacs, Amber,

OCTMPI ), we ran 12 different MPI processes on these 12

cores. For NAMD we were not able to find any way to

compute only the GB-energy. So, we first computed the total

electrostatic potential with GB energy turned on, and then

computed the electrostatic energy with GB energy turned

off, and took the difference to retrieve actual GB energy.

We also took the difference of running times of these two

runs to get the time of GB energy computation. We took

the average of 10 runs to reduce noise. Figure 8 shows

the performance of different algorithms. From the plot of

running times for GB-energy (including Born radii), we ob-

serve that overall OCTMPI and OCTMPI+CILK perform

the best among all algorithms. The differences in perfor-

mance among Gromacs, OCTMPI and OCTMPI+CILK

become prominent as the size of the molecule increases.

On the other hand, Amber was much slower than both

OCTMPI and Gromacs but faster than NAMD, Tinker and

GBr6. Experiments show that Tinker is slightly faster than

GBr6. We can get a glimpse of the speedup achieved by

these programs on 12 cores of one compute node (1 core
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for GBr6) compared to Amber. Figure 8 (b) shows that

OCTMPI achieves a speedup of approximately 11 w.r.t.

Amber for a molecule of size 16,301 using only 12 cores,

whereas Gromacs achieves a speedup of ∼ 2.7 for the

same molecule (although the maximum speedup achieved

by Gromacs is 6.2 for a molecule with 2260 atoms). The

maximum speedup achieved by NAMD, Tinker and GBr6

for the ZDock benchmark molecules are 1.1, 2.1 and 1.14,

respectively.
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Figure 10: Performance Change of OCTMPI+CILK with Approx-
imation Parameter; Born Radius ǫ is fixed at 0.9 and Epol ǫ varies.

D. Energy Value

Figure 9 plots the GB-energy values for the ZDock

benchmark molecules calculated by different algorithms

mentioned in Table II. The energy values computed by Am-

ber, GBr6, Gromacs, NAMD and OCTMPI match closely

with GB-energy computed by the naı̈ve approach. Energy

values reported by Tinker were around 70% of the naı̈ve

energy. All octree based algorithms reported approximately

the same energy value. We have observed that Tinker and

GBr6 do not work for larger molecules (> 12k and > 13k
respectively) as they run out of memory.

E. Change in Error and Running Time with Approximation

Parameter

Recall that the octree based algorithms are tunable, be-

cause we can change the error in result by changing the

approximation parameters. An increase in approximation

parameter ǫ increases error in energy value and decreases

running time. However, for small molecules, running times

do not depend on ǫ at all. Figure 10 shows the impact of

approximation parameter on our distributed-shared-memory

algorithm’s percentage of error in energy value and running

time. The distributed-memory algorithm also follows the

same trend. For this experiment, we kept the approximation

parameter of Born Radii calculation fixed at 0.9 and varied

the approximation parameter of Epol from 0.1 to 0.9. We

ran the OCTMPI+CILK implementation on all protein

molecules of the ZDock benchmark suite. Approximate math

was turned “off”. Turning approximate math “on” shifted the

error by 4−5% and decreased the running times by a factor

of 1.42 on average (Figure 7 vs. Figure 10). We collected

the average and standard deviation of percentage of error for

Epol, and plotted these avg. ± std. for all molecules.

F. Scalability with Larger Molecule

We also ran all octree-based implementations and Amber

on the Cucumber Mosaic Virus (CMV) shell consisting of

509,640 atoms and 1,929,128 quadrature points. GBr6 and

Tinker ran out of memory for CMV. We were able to run

Gromacs and NAMD on CMV only for cutoff values up

to 2 and 60, respectively, which are not reasonable cutoff

values for such a large molecule. For CMV, OCTMPI and

OCTMPI+CILK achieved a speedup of more than 400−500
using only 12 cores of a single compute node and 300−400
times speedup using 144 cores (12 compute nodes each

running 12-threads internally) w.r.t. Amber, while the errors

w.r.t. the naı̈ve energy were still less than 1% 6. Note that

we get such a high speedup because of three levels of

acceleration: (a) from parallelism, (b) from two levels of

approximations in calculations (in Born Radii and Epol),

and (c) from using the cache-friendly octree data structure.

To summarize, our octree based polarization energy ap-

proximation algorithms run faster than Amber, Gromacs,

NAMD, Tinker and GBr6, and can handle molecules with

millions of atoms which cannot be handled by most of the

other implementations. The octree-based approaches show

6At present, Amber does not support concurrent execution of more than
256 cores.
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OCTCILK 12.5s X 187 X -1.48 -0.95

Amber 39min 3.3min 1 1 -1.44 2.2

OCTMPI+CILK 4.8s 0.61s 488 325 -1.47 -0.07

OCTMPI 4.5s 0.46s 520 430 -1.47 -0.07

Figure 11: Scalability on a large molecule (Cucumber Mosaic Virus shell).

very good speedup and scalability with the number of cores

and molecule size.

VI. CONCLUSION

In this work we have presented a hybrid distributed-

shared-memory parallel octree based approximation algo-

rithm for approximating polarization energy of protein

molecules, and provided detailed performance comparison

with Gromacs, NAMD, Amber, Tinker and GBr6. We

have shown that our octree-based approaches perform the

best among all and achieve a speedup of ∼ 400 for

molecules with half a million atoms w.r.t. to the popular MD

package Amber. We have also shown that the distributed-

shared-memory implementation of our algorithm performs

slightly better than the distributed-memory implementation

for larger molecules. We believe that distributed-shared-

memory parallelism is the right approach for implementing

high performance MD simulations. We also believe that

octree is the right data-structure to use in MD packages

instead of nonbonded lists that cause most MD packages to

run out of memory for very large molecules. Although our

octree based algorithms perform better than others without

explicit dynamic load balancing (except the one provided by

cilk++), we are planning to incorporate explicit dynamics

load balancing techniques such as work-stealing to improve

the performance even further. Distributing data as well as

computation is also an interesting approach to explore.
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