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A procedure is described that allows one to solve the evolution equations in birefringent optical fibers

by using repeated diagonalization. With this approach several practical problems are solved in a unified

way. Included are evolution in twisted fibers, sinusoidally rocked fibers, and fibers with randomly varying

birefringence. In the last case it is shown that a phenomenological model described by Poole and others

applies to fibers whose axes of birefringence can take on any orientation.

1. INTRODUCTION

It is well known that so-called single-mode fibers are

actually bimodal because of birefringence.' 3 Values of
An/n vary in the range 10-9-10-. Fibers with high or

moderate-to-high values of birefringence play a key role in

sensors,4-7 gyros,8 9 switches, 10-13 rotators, 14
15 and other

devices.14'16 In these applications the location of the

axes of birefringence is known, but random fluctuations

along the length of the fiber can degrade the polarization-

holding capabilities of the fiber. Kaminow3 derived a

model that describes in an ensemble-averaged sense the

decrease in the degree of polarization. Shortly thereafter

Rashleigh et al. 1
7 showed that this model applied to single

lengths of optical fiber when a broadband source is used.

With a sufficiently broadband source excellent agreement

is found between theory and experiment. 7"18

In communication systems, by contrast, the birefrin-

gence is typically in the range An/n 10-7_10-5, and

the orientation of the axes of birefringence is unknown.

While little is known about the details of the birefringence

evolution along the fiber, it is generally supposed that

the birefringence is locally linear and that the strength

and the orientation of the birefringence vary randomly

on a length scale whose autocorrelation spectrum may

have components from a few centimeters to perhaps hun-

dreds of meters.' 9
-
2 4 This random variation leads to

polarization mode dispersion, which in turn has impor-

tant implications for long-distance nonreturn-to-zero2 5

and soliton2 6
-
28 communication systems. It is not at

all apparent that a coupled-mode approach2 9 like that of

Kaminow3 will be useful in this context. Yet Poole and

co-workers,3 0
-
3 5 who introduced this model phenomeno-

logically to study polarization mode dispersion in commu-

nication fibers, and others who have used this model36 3 9

have demonstrated reasonable consistency with the ex-

perimental data.

In this paper we introduce a theoretical framework

that allows us to derive Poole's phenomenological model

from physically reasonable assumptions about how the

random variations in optical fibers occur. In particular,

we demonstrate that this model remains valid when the

birefringence axes can take on any orientation, and we

find the theoretical limitations of this model. Addition-

ally, this theoretical framework also allows us to deter-
mine the field evolution in a twisted or spun fiber and the

evolution in a fiber with rocked axes. While the results

that we obtain for twisted and rocked fiber are already
known,5 1

5' 21 22 our approach allows us to obtain these re-

sults simply and to deal with the evolution in both these

fibers and communication fibers with randomly varying

birefringence in a unified way.
The remainder of this paper is organized as follows. In

Section 2 we introduce the theoretical approach that we

use. In Section 3 we describe its application to twisted

and rocked fibers. In Section 4, we describe its appli-
cation to communication fibers with randomly vary-

ing birefringence and obtain Poole's phenomenological
model from physically reasonable assumptions. Finally,

Section 5 contains the conclusions.

2. THEORETICAL APPROACH

In a perfectly circular fiber the fundamental mode of the

fiber is the HE,, mode. This mode exists for arbitrarily
small index differences between the core and the cladding
and, in the limit as the index difference grows smaller,

changes to a plane-wave solution propagating along the

axis of the fiber. From this physical standpoint it follows

that this mode should be doubly degenerate, as indeed is

the case. Any ellipticity in the core or stresses at the

core-cladding interface will break this degeneracy, lead-

ing to two distinct eigenmodes in which the electric and

the magnetic fields inside the fiber have a unique config-

uration. While the same effect that breaks the degener-

acy of the HE,, mode will lead to some alteration in the

transverse profile, this breakdown of the degeneracy is so

small-less than one part in a thousand in fibers with

the largest possible birefringence-that its effect on the
transverse profile can be ignored. Hence the transverse

patterns of the two eigenmodes are essentially the same

and are simply rotated by 900 with respect to each other.

From the preceding discussion it follows that at a given
frequency the complex electric field CE propagating along
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the fiber axis can be written as

fE(z,rt) = El(z)4,(rt) + E2(z)'2(rt),

K2 = 0. We now reduce Eq. (3) by eliminating the phase
variation that is not due to the birefringence. We set

(1)

where z indicates the coordinate along the fiber axis and
rt indicates the coordinates transverse to the fiber axis.
The vectors T 1 and ' 2 differ negligibly in structure ex-
cept for a 90° rotation. This structure is for all practi-
cal purposes the same as the standard HE,, structure
in circular fibers. The complex scalars El and E 2 con-
tain the z-dependent phase evolution of the electric field.
Phase differences between El and E 2 accumulate over
lengths that are many orders of magnitude greater than
the light's wavelength-indeed, many kilometers in the
largest stretches of fiber. Thus even small differences in
the rate of change of the phase in the two components
El and E2 will lead to measurable effects. It is this fact
that lies at the heart of the observed fiber birefringence.
In the absence of nonlinear effects in the optical fiber, the
two components will couple linearly; thus we may write

d E .kil k2 l1,(
dz E2 / zk 2l k22 )E22

which we summarize as

d = iKE. (3)
dz

The kij are functions of z whose behavior depends on
the details of the variations in the fiber core shape and the
stresses that act on the fiber core. Assuming, however,
that fiber loss is negligible, the matrix K must be Hermi-
tian; i.e., kll and k22 must be real and k 2 = k 2l*. In this
paper we also assume that the local fiber eigenmodes are
linearly polarized. From a physical standpoint this as-
sumption is equivalent to assuming that the electric and
magnetic fields have definite orientations on the length
scale of a wavelength, so that there is no intrinsic heli-
city in the material-a physically reasonable assump-
tion in glass. This assumption is consistent with almost
all experimental observations to date, although specially
manufactured fibers with intrinsic circular birefringence
have been reported.21' 22 From a mathematical stand-
point this assumption implies that both k 2 and k2 l are
real, and hence k 2 = k21. We can rephrase these results
as follows: defining the standard Pauli matrices,

I=[o °1]'
O 1 O -i

°* 1 0 ' r= i 0 ,

1 0

=0 -1,

we find

K = kol + Kl1 + K20f2 + K30c3, (5)

where ko = (kl + k 2 2 )/2, Ki = (k, 2 + k2 1)/2, K2 = i(k1 2 -

k2 1)/2, and K = (kl - k22 )/2. Demanding that the fiber
be lossless is equivalent to demanding that ko and all
the K be real. Demanding that the local polarization
eigenmodes be linear is equivalent to demanding that

(6)A = E exp [-i f ko(z')dz']

and obtain the equation

dA= in,

where = 3U3 + Kla-1. Defining

K3 = b sinO,

(7)

(8)K = b sinO,

we find explicitly

0= b cos0 sin0
[sin 0 -cos J (9)

where b can be interpreted physically as the birefringence
strength and is the angle that the birefringence axes
make with respect to a fixed pair of axes.

In polarization-preserving fibers, in which there are a
large birefringence and well-defined axes of birefringence,
we may assume that 0 is small and randomly varying. In
this case, with y = b, Eq. (9) becomes

(10)e=[, -b 

where IYI << b and varies randomly. This random vari-
ation leads to a deterioration in the degree of polar-
ization of injected light. This model applies to many
practically important situations, including sensors, gy-
ros, and some switches,4"' 0 and its solution has been dis-
cussed by Kaminow.3 One might question what is meant
by random in this context, since, for this term to have
meaning in a physical application, there must be some
ensemble over which one is averaging.40 It is natural to
suppose that the variation of 0 as a function of z will
yield the necessary ensemble, but experiments indicate
that the lengths of fiber being used in at least two of the
applications just cited, sensors and gyros, are too short.
Rashleigh et al.' 7 resolved this issue elegantly and com-
pletely by showing that an ensemble average over the dif-
ferent frequencies in a broadband source yields excellent
agreement between theory and experiment. 17"8 It is pos-
sible, indeed advantageous, to use broadband sources in
several of these applications. Thus the applicability of
Kaminow's model in the context of polarization-preserving
fibers is well understood.

The situation with communication fibers differs in
important respects. First, the axes of birefringence are
unknown and presumably pass through all possible ori-
entations over a sufficiently long length. Second, one
does not typically use broadband sources, and one does
typically propagate light over long lengths; hence the
appropriate ensemble average should be over distance.
Despite these differences, Poole and co-workers32 34 as-
sumed that Kaminow's model still applies and deduced
the polarization mode dispersion from this model. While
their experimental tests of this model used ensemble
averages over frequency and temperature,3 3 34 other
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studies2 5 28 37 38 indicate that these measurements re-

main valid when an appropriate ensemble average is

taken over length.
Motivated by these observations, we attempt to solve

Eq. (9) by repeated diagonalization. This approach

yields a physical basis for understanding when the

phenomenological model of Poole and co-workers is ex-

pected to apply. Moreover, as is noted in Section 1,

this approach is also of use in finding the evolution of

light in twisted or rocked fiber with moderate-to-high
birefringence.

We begin by carrying out the transformation that

diagonalizes 0 when 0_. d/dz = 0. Since 0 is Her-

mitian, this transformation will be unitary, and we find
explicitly that

UiOU,-' = b3,

where

U 1 = cos(0/2)1 + i sin(0/2)02,

U 1 = cos(0/2)1 - i sin(0/2) 02.

so that the second constraint amounts to demanding that

02,z be large. The physical meaning of the transforma-
tion from Eq. (13) to Eq. (15) is not nearly so transpar-
ent as the physical meaning of the transformation from
Eq. (7) to Eq. (13). Nonetheless, these two transforma-
tions are closely analogous, and we can repeat this pro-

cedure an arbitrarily large number of times, obtaining
an infinite sequence of transformations. At successive
transformations successively higher derivatives of 0 and b
appear. When the product of these transformations con-

verges, i.e., when the infinite product

V = *.* U 3 U 2 U1 (17)

exists, we find A = V-'B., where

(11)

= OP.B. (18)
dz

and 'P. = VOV-1 cx3 is diagonal. Writing the two
(12) components of B. as B.,1 and B.,2, we obtain

Making the transformation B, = U 1A, we conclude that

dB _( U U 1 _ U1 dU "B,

(13)

Physically we are transforming from a fixed frame of ref-

erence to a frame that follows the local axes of birefrin-

gence. If we assume that 0,/21 << b and that I(boz. -

b,0,)/2I >> b3, where b, db/dz and 0_,=d 2 0/dz 2 , then

Eq. (13) is essentially the same as the phenomenological

model of Poole and co-workers, as is discussed in greater

detail in Section 4. The appearance of 0` 2 in Eq. (13) as

opposed to a, in Eq. (7) makes no difference in the behav-

ior of the polarization mode dispersion. The first condi-

tion 10,/21 << b implies that the off-diagonal coupling is

weak, while the second condition I(b0,, - bzo,)/21 >> b3

implies that 0. changes on a length scale that is short com-

pared with the birefringent beat length, so that ensemble-

averaging over length is possible.
The origin of the second constraint can best be under-

stood by noting that the transformation from Eq. (7) to

Eq. (13) is the first in an infinite series of transforma-

tions that can be used to completely diagonalize Eq. (7)

and hence solve it when the variation of 0 is sufficiently

smooth. We obtain the second member of this series of

transformations by setting

b = C2 cos '2, 0,/2 = C2 sin 02,

defining U2 = cos(k 2/2)1 - i sin(02/2)a 1,

B 2 = U 2 B1. We then find

dB, = i2B%,dBz 

where * 2 = C2 o03 - (02,/2)a 1 and

b2 d 0,

'02,z -b
2 + 0,2/4 dz 2b

and letting

B., 1(z) = BcxJ(O)exp[i fZ c.(z')dz'] 

Bc,2(Z) = B., 2 (0)exp[-i f Cc(Z)dZ']. (19)

The quantity c. > b is greater than zero. Hence, in an

optical fiber whose statistical properties are stationary, it

follows that the phase difference between the two compo-
nents of B. will grow linearly with z on average, as long
as 0 and b are sufficiently smooth functions of z to en-

sure that the infinite product (17) converges. The polar-
ization mode dispersion, which is given by the frequency
derivative of the phase difference, will also grow linearly
with z. This result differs from both the result of the

phenomenological model of Poole and co-workers as well
as the applicable experiments, which yield a polarization
mode dispersion that is ultimately proportional to z 2

.

It is not surprising that when the product given by

Eq. (17) is convergent the dispersion is ultimately pro-
portional to z, since well-defined modes exist that are

uncoupled, although their relationship to the local eigen-
modes can be quite complicated and, in particular, they

can be in any state of polarization as a function of z,

not just the linearly polarized states. We thus conclude

that the assumption that there is random mode coupling
in the fiber depends on the breakdown of convergence of

Eq. (17), which corresponds physically to the presence of

abrupt changes in some of the derivatives of b and 0. We
will postpone further discussion of the physical conditions
under which we can treat mode coupling as random to
Section 4. We merely point out here that the assump-
tion that 0, is small in magnitude while 0,, is large is
not unreasonable. It corresponds to many small, abrupt
twitches in the drawing mechanism as the fiber is be-

ing drawn. This sort of behavior is quite common in na-

ture-Brownian motion being a classical example-and
it is connected to the fact that the acceleration of physical
objects can change abruptly, but their velocities cannot.
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The product given by Eq. (17) will evidently be conver-
gent when it terminates, as is the case when b equals
a constant and 0 equals some polynomial in z. When
0 = e sin fz, it is not apparent that the sequence will be
convergent, but it will be useful if fl «< b. Both these
cases are of great practical interest, and the transforma-
tion approach that we have just described gives a simple,
powerful, unified way to determine the evolution. This
issue is discussed in Section 3.

3. APPLICATION TO NONRANDOM
VARIATIONS

Twisted fibers with strong birefringence play an impor-
tant role in a wide variety of fiber devices, including sen-
sors, rotators, and filters,5 5 2 1 22 and thus have long been
an object of study. The evolution of the light's state of
polarization is usually studied on the Poincar6 sphere.
A complex vector A is related to a point (X, Y, Z) on the
Poincar6 sphere by the relations4'- 43

X = AOr 3 A, Y ==Atu-A, Z = Ato1A (20)

This relation can be regarded as a case of the well-known
SUM2 - 0(3) homomorphism. 4 An equation of motion
corresponding to Eq. (7) can be derived for motion on the
Poincar6 sphere. 3 2 3 3 We have found it useful instead to
solve Eq. (7) directly, yielding a solution in the form

A(z) = T(z)Ao,

where A0 = A(z = 0) and T(z) must be unitary. 
now Rj= At arA, one can show that

3 3

ILRj a, = T YZRj.o oTt
j=1 j=1

where Rj,o = Rj(z =0), and we note that

AAt I= + -IojAtojA.

Equation (22) allows us to trace the motion
Poincar6 sphere.

We now consider three simple examples.

(21)

Deft

Using Eq. (22), we finally obtain

X = [S 2(bz) + cos(200)sin2 (bz)]Xo

+ sin(20o)sin2 (bz)YO - sin Oo sin(2bz)Zo,

Y = sin(200)sin2(bz)Xo

+ [S 2(bz) - cos(200)sin2(bz)]YO
+ cos Oo sin(2bz)ZO,

Z= sin Oo sin(2bz)Xo

- cos o sin(2bz)Yo + cos(2bz)ZO. (27)

Equations (26) and (27) can be easily generalized to deal
with the case in which b is z dependent; one simply re-
places bz by fo b(z')dz'.

If we initially set X = os 0o, Yo = sin 
0

, and Zo = 0,
or we initially set X = -OS 

0
, Yo = -in 0 , and Zo = 0,

corresponding to an input wave whose input polarization
state is one of the fiber eigenmodes, then there is no
motion on the Poincar6 sphere. Otherwise the trajectory
of Eqs. (27) is a circle about the axis of the eigenmodes.
This circular motion is most readily apparent when 0

= 0,
in which case Eqs. (27) become

x = x0 ,

Y cos(2bz)Yo + sin(2bz)ZO,

Z -sin(2bz)Yo + cos(2bz)ZO. (28)

fling The periodic evolution of the state of polarization pre-
dicted by Eqs. (28) is a well-known feature of evolution
in any birefingent material, not just optical fibers,4 1 and

(22) plays an important role in a variety of optical devices.
The period in Eqs. (28) is half the period in which the
components of A evolve. The reason is that after a dis-
tance z = rb, A - -A, and both A and -A correspond to
the same point on the Poincar6 sphere.

(2i)

on the

A. Constant Agle ( = o)
In this case 0 = b(cos Oo)cr3 + b(sin Oo)o-l in Eq. (7), and
the matrix U that diagonalizes 0 is given by U =
cos(OO/2)I + i sin(Oo/2)0-2. Letting B U A, we obtain
the equation

B. Constant Rate of Angular Change ( = fz)
In the case of a constant angnlar rotation, one must carry
out two transformations as described in Section 2. These
transformations yield, in sequence,

dB, a 

d2= ic2 cr3 B, (29)
dz

dB, 

dz

where It, = bff 3. Since Eq. (24) is diagonal, it is easily
integrated to yield

Bi(z) [cos(bz)I + i sin(bz)0r3]B,(0). (25)

Using the relation A = U 'B, to return to the original
coordinate system, we find

T = U '[cos(bz)I + i sin(bz)0u3 ]U 

= cos(bz)I + icos Oo sin(bz)0r3

+ i sin Oo sin(bz)ou,. (26)

(2) where C2 = (b2
+ W1/4)"2 . The last equation can be in-

(2) tegrated immediately to yield

B2(Z) T220

where T2 = COS(C2 z)I + i sin(C 2 z)0u3 , and B2,0 = B2 (Z = 0).

We then find that B, = TB,o, where T =U2'T 2

and U2 = COS(-02/2) - i sin(qS2/2)o,. We recall that
c 2 Sinl 2 = f/2 and c 2 COS 2 = b. We find explicitly
that

TI= COS(C2z)I + i OS 102 sin(C2 z)0u3 + i sin 2 sin(C 2 z)0r 2 .

(30)
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Defining, by analogy to Eqs. (20), Xl = Bi
to. 3 Bi, Y, =

Bitar1Bi, and Z, = BlitI 2B, we obtain

XI = [Cos
2(c2 z) + cos(20 2 )sin2(c 2z)]Xo

+ sin '02 sin(2c 2z)Yo + sin (2'02) sin2(c2 z)Zo,

Y = - sin 02 sin(2c2z)XO

+ cos(2c2 z)Yo + cos 02 sin(2c2z)Zo,

Z = sin(202) sin2
(c2z)XO

- cos 02 sin(2c2z)Yo

+ [COS2 (C2Z) - cos(202)sin2(c2z)]Zo. (31)

This result closely resembles Eqs. (27), but quantities on

the Z axis are interchanged with quantities on the Yaxis.
In particular, if we let

X= cos '2 = (b2 + fl 2/4)1/2 YO = 0,

fl/2 (2
Z = sin 'P2 = (b2 + fl 2/4)'

1 2 (32)

we find that X, Y1 and Z, do not evolve. More generally,
the trajectory on the sphere (X, Y1, Z1) will be circular

about the axis given in Eqs. (32). When we transform

back to the original reference frame and calculate X, Y,

Z, we find that the motion is a combination of the circular

motion given by Eqs. (31) and circular motion about the
Z axis, leading to nutatory motion that is like the motion

of a spinning top.45 We do not present the full equation
of evolution, as it is lengthy without being physically
revealing.

An important result that emerges from Eqs. (31) and

(32) is that in the rotating frame given by x = cos(flz),

y = sin(flz), where x and y refer to the transverse co-

ordinates of the optical fiber, the fiber appears to be

elliptically birefringent. That is the physical meaning
of the nonzero Zo component in Eqs. (32). This occurs

even though the underlying local modes of the fiber are

linearly birefringent! This behavior contrasts with the

situation in which the underlying local modes are ellip-

tical, as would occur, for example, in a fiber whose core
is elliptically shaped and fixed in direction but is heli-
cally strained. This sort of fiber has been discussed by

Rashleigh2 2 but is difficult to make.5 It is easier to make

the sort of fiber described here, in which the local eigen-
modes are linearly polarized but in which twisting leads

to elliptical eigenmodes in a rotated frame.2 2

Elliptical birefringence has implications for nonlinear

behavior in optical fibers. In particular, Menyuk4 6 has

shown that the ratio of the cross-phase- to the self-phase-
modulation coefficients is given by B = (2 + 2 sin2 a)/(2 +

cos2 a), where a is the angle of ellipticity. When B = 1,

i.e., when tan a = 1/, nonlinear polarization rotation
is eliminated. Since this effect is a nuisance in fiber

sensors, its elimination would be helpful. It is natural

to wonder if this result still holds when a fiber is twisted

so that the underlying local birefringence is still linear

but there is an elliptical birefringence in a rotating frame.

The answer turns out to be positive, as we have recently
demonstrated.4 7

C. Sinusoidal Rocking ( = E sin Qz)
Periodically twisted fibers play an important role
in a number of fiber devices that do switching and
filtering.5,"4,"5 ,2 ,22

If we directly apply the formalism of Section 2, we find
the following hierarchy of equations:

d = i[b cos(e sin flz)0r3 + b sin(E sin flz)oi]A,
dz

dB, I 
d = i[ba-3 + ef cos(flz)0 2 ]BI,

dB2 i f + 2 sin lz 1
dz L 4b 1 + (e2

f1
2/4b2 )cos2

lz a'B 2 ,

*-- (33)

where c2 = [b2
+ (e

2
f1

2 /4)cos 2 flz]1I2 . The equations for

B, become progressively more complicated, but the quali-
tative behavior is already apparent from Eqs. (33). As
n increases, the off-diagonal term is multiplied by succes-
sively higher powers of fl/b, and successively higher pow-
ers of fl/b appear in cn2 . While it is not apparent that

this sequence will be convergent even when fl/b << 1, it
is apparent that at least the first few terms are rapidly
decreasing, so this expansion will yield a useful approx-
imation. This result is analogous to the theory of the
driven harmonic oscillator.45

It is useful to point out that the trajectory on the
Poincar6 sphere is quasi-periodic, a result that is analo-
gous to Bloch's theorem in solid-state physics.48 To ob-

tain this result, we note that

Bi(z) = Tl(z)Bl,o = Ti(s)T1m(21r/f1)BI,o, (34)

where m is the integer part of flz/2vr and s is the re-
mainder, so that z = 27rm/fl + s. Since T 1(2r/fl) is a

unitary matrix, we may write

T 1(2vr/fl) = R DR, (35)

where D cos(2ia/fI)I + i sin(27ra/Q)ff 3 is diagonal and
R is the diagonalizing transformation, which must be uni-
tary. Defining D(z) cos(az)l + i sin(az)a-3 , we obtain

BI(z) = T,(s)R-'D-'(s)(z)RB,0,

= R S(z)D(z)RB,,o, (36)

where S (z) = RTI(s)R D (s) is evidently periodic, with
a period 27r/fl. Thus the motion combines the frequen-
cies a and fQ. When these frequencies are incommensu-

rable, the trajectory will ergodically fill some region on

the Poincar6 sphere; when they are commensurable, the
trajectory will execute a Lissajous figure on the sphere.

From Eqs. (33) and the definition of c2, we find that

a = b + e2fl 2/16b through second order in fl/b.
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4. APPLICATION TO RANDOM VARIATION

We now turn to calculations of the polarization mode
dispersion. We begin by considering once again Eq. (13),

dB, = i IB1, (37)
dz

where

T = be 3 + 2 -2 [i=/2 -i0z/2l
-b 

In a similar manner, B, will transform as a function of
frequency so that 3 0 -3 9

dB, iFB,
dw

(39)

where w is angular frequency and F, is a traceless, Her-
mitian matrix. The eigenvectors of F, are the principal
states of polarization, i.e., the directions of B, that do not
change as a function of w to first order.Y'~ Writing the
eigenvalues of F, as Al and -Al, we find that T

d = 2A is
the polarization mode dispersion. Alternatively, we may
write Td

2
= -4 det F1. Taking the z derivative of Eq. (39)

and the c derivative of Eq. (37), we find

aF, _ alp, + i[I, ,F,]. (40)
az o

We now specify physical models for b and 0 that allow
us to determine I1 and a"l4/Oa. The quantity b, which
measures the birefringence strength, equals half the mag-
nitude of the phase difference per unit distance between
the two eigenmodes. To the extent that the phase and
the group velocities are the same, which is -10% in op-
tical fibers,4 9 then b c . It is certainly legitimate to
treat the variation of b as a linear function of c over a
physically relevant bandwidth, setting b = c + bw, where
c and b' are independent of and depend only on z. At
the same time 0, which is due to the intrinsic core el-
lipticity or doping anisotropy, is not expected to depend
significantly on c, and we will treat it as depending only
on z. We conclude that

1~~~~~~~~~(1
a = b '3 *(41)

To complete our physical description, we must specify the
variations of b and 0 as functions of z. We assume that
b' is proportional to b with a fixed constant of propor-
tionality, since the phase and the group velocities in op-
tical fibers are nearly the same.4 9 There is little that is
known experimentally about the variation of b and 0, and
we consider here two physically plausible models. In the
first model we assume that 0 varies randomly, while b and
hence b are constant. In the second model we assume
that r = b cos and s = b sin 0 vary randomly, are Gauss-
ian distributed, and are uncorrelated with each other.
As discussed in Section 2, we also assume in both models
that 0/2b is small in magnitude, while (b 2z2 - b0_)/2b 3

is large in magnitude on average. We briefly discuss at
the end of this section what happens if the assumption
that 102/2bi << 1 on average is relaxed.

The physical models that we have described here closely

resemble the phenomenological models of Curti et al.37

and Poole et al.34 The principal distinction with the
model of Poole et al. is that Poole et al. assume that there
are three independent driving fields in I1, whereas in
our models there are only one or two driving fields. This
distinction has no significant effect on the behavior of
the polarization mode dispersion. The reason is that in
either of the physical models that we are considering, the
variable B, is completely randomized over a sufficiently
long length, a result that has been amply verified in
simulations.2 850 The same holds for the phenomenologi-
cal model of Poole et al. Equivalently, one can say that
the vector (X1, Y1, Zj) corresponding to B, is randomized
on the Poincar6 sphere. Writing

F, = fxcr3 + fyu, + fzu2, (42)

we find that the effect of the second term in Eq. (40)
is to randomize the direction of the vector (fx,fy,fz)
without changing its magnitude, which equals Td/

2
. The

first term in Eq. (40) does affect T
d, but, since this term

is always oriented in the +fx direction, its effect on Td

depends on the orientation of the vector (fx, fy, fz). We
thus find that

dTd = 2b' cos 6,
dz

(43)

where f is the angle that the vector (fx,fy,fz) makes
with respect to the +fx direction. If f is completely
randomized over the Poincar6 sphere, then Eq. (43) is
precisely analogous to the equation that determines the
magnitude of a particle's excursion from the origin in
Brownian motion.3 8 As a consequence, rd will become
Maxwellian distributed over a length scale that is long
compared with that over which the direction of (fx, fy, fz)
is randomized on the Poincar6 sphere, even though, as
was pointed out earlier by Poole et al.,3 4 the physical
process that we are considering is quite different from
Brownian motion.

We next determine the rate at which the expected value
of rd increases and find the constraints that 0 and b
must satisfy so that we can carry out an appropriate
spatial average. This issue is significant, because many
experimental measurements of d have been performed
with averaging over frequency and even temperature, 3 3 34

while in communication systems it is the spatial average
that is of practical importance.

The approach that we follow is closely related to
that of Poole.32 We begin by recalling the relationship
Bj(z, a) = T(z, &w)Bi,o, from which it follows that

FTj = -i a I= w
Ir'= -4 det F, = 4 det(aTj/aow),

(44)

(45)

where we note that det T, = 1. It is convenient to use Ti
rather than F, to calculate the expectation of d2. As-
suming that 10,/2b << 1 when averaged over the length
of the fiber, the evolution of T, contains a rapidly varying
portion that is due to the birefringence, and it is useful
to remove this rapidly varying portion so that we can ex-
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amine the slower variation that is due to 0z. We may do

so by defining

S = exp[-i4D(z)0r3]Ti = {COS[kO(Z)]I - i ink[o(z)]c}T1,

(46)

where

p(z) = b(z')dz'.

We then find that

(47)

dS [ 0 2z exp(-2iqp)1 5 (48)

dz Oz OAexp(2iq') 0 S
2

From Eq. (45), we now obtain

rd2 = 4 det(S' + i 3 tp1S), (49)

where the primes indicate derivatives with respect to co.

Writing the components of S explicitly so that

S = [i S*2* (50)
-S2 S1

and taking the first derivative of Td
2

, we obtain

= 8b'Sp' + 8ib'(slsi'* + S2S2'*), (51)

where we have neglected the z derivatives of s1, s1', S2,

and S2', since we assume that they are slowly varying.
Taking the z derivative of Eq. (51), we obtain

_____ - 8(b)2 + 8 / db _ 4ib'0z[sIs2' exp(2iqg)
dZ

2 dz

- SiS2 exp(-2i'p) - Sl'S2 exp(2iqo)

+ sl*s2* exp(-2igp)]. (52)

Although S is slowly varying, its z derivative varies

rapidly, and we can use this fact to replace Si and S2

in Eq. (52) with the integral terms:

si(z) = si(fl - f 2 exp[-2iqo(z')]s*'(z')dz'

- I~~~~~~~~~~2 ~ ~

S1(W) - 4Wf 2 exp[-2iqo(z')]dz', (53)

and similarly

S2 (Z) - S2(0) + S1 () | 2 exp[-2iqp(z')] dz',

whore z - ; is a length that is long compared with the

variation of 02 and short compared with the variations of

S, and S2. The assumed existence of this intermediate-
scale length, of the order of the birefringent beat length,
plays a critical role in our argument. We also find

S,'(Z) SI(f) - [S2I*(0) - 2i9PV%*(N

X f 2 exp[-2iip(z')]dz',

S2'(Z) S2V(') + [sI*(;) - 2ifp(;)s*(;)]

X f 2 exp[-2iS(z')]dz'. (55)

We now define

H() Re 2 Oz(z)oz(z') exp[2iqp(z) - 2ivp(z)]dz']

1 z(z)0z(z') exp[2i~p(z) - 2iq(pz')]dz', (56)

where we have used the assumed rapid variation of 02

to extend the integral to -oo. The quantity H(z) is
closely related to the spectral density of the autocor-
relation function R(0z/2). Physically the autocorrelation
length must be small compared with the birefringent beat
length for H(z) to differ significantly from zero. Using
relations (53)-(56) in Eq. (52), we obtain

___ = 8(b)2 + 8( - 32b'qpH(z)
d~z

2 dz

- 32ib'H(z)(sisi1* + S2S21*), (57)

where we have dropped both small terms and rapidly
varying terms that will not contribute on the length scale
z - ;. The quantity db'/dz is zero in the first physical
model, and it is rapidly varying in the second physical

model on the length scale z - ;, so one might be tempted
simply to drop the second term on the right-hand side of

Eq. (57). However, the mean of db'/dz varies on a length

scale that is comparable with the length scale on which b'

itself varies. Hence we keep this contribution for now.
In our first physical model of an optical fiber the bire-

fringence strength is fixed, and we can assume that H(z)

is a constant independent of z. Additionally, we obtain
(p = bz and (P' = b'z. In this case Eqs. (51) and (57) are
the same as the equations found by Poole32 and can be

dealt with in a similar fashion, although some thought
must be given to the appropriate way of replacing the
ensemble average over "a collection of statistically equiva-
lent fibers" with a spatial ensemble average. By con-
trast, in the second physical model, in which b and 0z both
vary, they are evidently correlated. When the birefrin-
gence strength is larger, the value of 0Z2 will be smaller
on average. Since by assumption both b and 0 change
slowly, we may replace -p(z) - p(z') in relation (56) with

b(z - z'), where b is the local value. As a consequence
of the correlation just mentioned, H(z) will have a slow

variation on the same length scale on which b changes,

and we cannot assume that b and H are uncorrelated.
We can, however, assume that Sp and the combination
SS1/* + S2S2/* are uncorrelated with b and H over a suf-

ficiently long length, since both So and the combination

sIsI * + S2S21* are obtained by an integration from the

origin to the local position. After a long length the local
contribution of b and H to these integrals will be negligi-

ble. From our earlier discussion at the beginning of this
section concerning the evolution of the vector (fX, fy, fz),
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it follows that this length scale is the scale on which this

vector samples the entire Poincar6 sphere. To carry out
a spatial average of Eqs. (51) and (57), we must average
on a length scale L that is long compared with this ran-
domization distance on the Poincar6 sphere. We must
also assume that rd is already large, so that it does not
change significantly with respect to its own value over the
length scale of the average. Under these circumstances
we may define the ensemble average

1 F
2

(X(z)) -J X(z') dz', (58)L z-L

and, averaging on both sides of Eqs. (51) and (57), we
obtain

d(ad2) = 8(b')(p') + 8i(b')(sjsj'* + S282 ),
dz

d2(Td2) = 8((b')2 - 32(p')(b'H)

dZ
2 -32i(b1H)(8sii* + 22*), (59)

where we note ('db'/dz) = () (db'/dz) = 0. Writing
now (b'H) = r(b') (H), we obtain the ordinary differential
equation

d2(rd 2) = _4r(H) d 2 (Td
2 ) + 8((b)2),

dZ2 dz + 8( b) ) (60)

where the quantity r is equal 1 in our first physical model
but will not equal 1 in general in our second physical
model. Equation (60) has the solution

(d 2) = ((2(H)2 [exp(-4r(H)z) - 1 + 4r(H)z], (61)

which equals 0 at z = 0.
The solution that appears in Eq. (61) is physically

meaningful at any z when an ensemble average is carried
out over different fibers or over frequency and tempera-
ture. However, Eq. (61) is physically meaningful only at
large z when the spatial ensemble average defined in
Eq. (58) is carried out. In this limit only the last term
in Eq. (61) contributes significantly, and Eq. (61) becomes
('rd

2
) = 2((b')2 )z/r(H), exhibiting the linear dependence

that is expected for a random walk. While we anticipate
on physical grounds that Td 

2
0C Z

2 when z is small, it is
evidently not possible to relate the coefficient to averaged
fiber parameters, since the coefficient will depend on lo-
cal fiber parameters at z = 0.

In the large-z limit we have determined the dependence
of (d

2
) on averaged fiber parameters ((p

1
)

2 ), r, and (H)

under restrictive assumptions that require that the auto-
correlation distance for 0 be short compared with the beat
length and that the length scale on which the electric-
field vector wanders over the entire Poincar6 sphere be
long compared with the beat length. If we relax these
assumptions, then we still anticipate from the discussion
at the beginning of this section that (rd

2
) z when z be-

comes large. Determining the behavior of this coefficient
as fiber parameters are varied is of considerable practical
importance and will be the topic of future studies.

5. CONCLUSIONS

In this paper we have developed a procedure using re-
peated diagonalization, which allows us to solve the equa-
tions that govern field evolution in birefringent optical
fibers. This procedure allows us to deal in a unified way
with several practically important cases. These include
twisted and sinusoidally rocked fibers. They also include
fibers with randomly varying birefringence. In particu-
lar, we have shown that a phenomenological model devel-
oped by Poole and other workers applies to optical fibers
whose axes of birefringence can take on any orientation.
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