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Polarization Evolution Due to the Kerr
Nonlinearity and Chromatic Dispersion

D. Wang and C. R. Menyuk

Abstract—This paper numerically investigated the evolution
of the degree of polarization of individual channels and their
Stokes parameters in a wavelength division multiplexed (WDM)
system in which Kerr nonlinearity and chromatic dispersion are
taken into account but in which polarization mode dispersion
as well as polarization-dependent loss and gain are neglected.
We compared the results to a mean field model which assumes
that the channels are strongly dispersion-managed so that each
channel is only affected by the Stokes parameters of the others.
This model predicts no change in the degree of polarization of
each of the channels so that an initially polarization-scrambled
channel does not repolarize. The full simulations showed that
the repolarization of a polarization-scrambled signal is small for
parameters corresponding to realistic communication systems,
validating the use of the mean field model. However, we also
found that the repolarization can become significant for low data
rates and a small number of channels in a dispersion-managed
system with a short length map, thus setting limits on the model’s
validity and indicating operating regimes that should be avoided
in real communication systems.

Index Terms—Chromatic dispersion, evolution, modeling, non-
linearity, optical fiber communication, polarization, repolari-
zation, Stokes parameters, wavelength division multiplexing
(WDM).

I. INTRODUCTION

POLARIZATION effects in optical fiber transmission sys-
tems are due to birefringence in both the optical fiber

itself and the components like the WDM couplers that are
used in current amplifier systems. Birefringence in the optical
fiber is due to the accidental loss of degeneracy of the two
orthogonal polarization modes that exist in a single-mode
fiber and is weak and randomly varying. By contrast the
materials like LiNbO3 that are used in optical components
often have a strong polarization dependence in which case
these components are strongly birefringent along a fixed axis.
Polarization effects in both optical components and optical
fiber have become important in recent years because the
advent of the erbium-doped fiber amplifiers (EDFA’s) implies
that these effects accumulate over hundreds of kilometers in
terrestrial systems and thousands of kilometers in undersea
systems.

It is generally assumed that the principal polarization ef-
fects that lead to transmission impairments are polarization-
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dependent loss, polarization-dependent gain, and polariza-
tion mode dispersion (PMD) [1]. Polarization-dependent loss
is caused by the strong polarization dependence in optical
components such as WDM couplers, isolators, and optical
switches. Polarization-dependent gain is caused by polarization
hole-burning in the Er-doped fiber amplifiers. Finally, polar-
ization mode dispersion is principally caused by the randomly
varying birefringence in the optical fiber, although the differ-
ential group delay of the optical components can contribute
under some circumstances. The combination of these effects
contribute to channel fading [2] which may sometimes lead to
the loss of an entire channel in a long-distance, high-data-rate
wavelength division multiplexed (WDM) system. Polarization
scrambling greatly ameliorates the effects of polarization im-
pairments [3], but under some circumstances the signal can
repolarize [4], [5], leading once more to polarization effects.

These effects couple in turn to the nonlinearity and disper-
sion in a complex way that is described by the Manakov-PMD
equation [6], [7]. There is a general misconception that initially
polarization-scrambled channels cannot repolarize unless some
combination of polarization mode dispersion, polarization-
dependent loss, and polarization-dependent gain are present.
However, nothing could be farther from the truth! As we shall
describe in detail in this article, nonlinearity and dispersion
all by themselves can led to channel interactions that in turn
cause significant repolarization when the channels are closely
spaced. These interactions set limits on how closely channels
can be spaced and other system parameters. These limits are
of increasing importance in modern-day WDM systems.

It is now commonplace to study fiber system impairments
using the coupled nonlinear Schrödinger equation that has been
modified to include loss, amplification, spontaneous emission
noise [8], and other effects. When polarization effects, includ-
ing polarization mode dispersion, can be neglected and the
signal is launched in a single state of polarization, then it is
possible to study optical fiber impairments using the scalar
nonlinear Schr̈odinger equation and its modifications [6], [7].
In fact, this scalar approach is far more commonly used than
the complete vector equation [8].

There is a misconception that the nonlinear Schrödinger
equation is more fundamental than the Manakov equation in
which polarization mode dispersion is neglected [5]. In fact,
just the opposite is true since polarization mode dispersion
must be negligible and in addition the signal must be launched
in a single polarization state for the nonlinear Schrödinger
equation to hold. Polarization mode dispersion is a significant
issue in terrestrial systems with optical fiber that is more
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than a decade old, but it plays a nearly negligible role in
undersea systems or terrestrial systems that use fiber that
has been laid within the last five years. For example, if
we assume a value for the polarization mode dispersion of
0.1 ps/(km)1/2, then over 10 000 km, the differential group
delay is only 10 ps. This value is not large enough to
significantly distort individual channels, although it does lead
to some relative drift of the polarization states of channels that
are spaced far apart [6], [7]. We will show explicitly, later
in this paper, that the effect of this additional polarization
mode dispersion on signal repolarization is small. Modern-
day undersea systems also use polarization scrambling or
orthogonal polarization when launching their signals. In these
systems, the Manakov equation is the correct equation to use
to study of nonlinear and dispersive effects. Solving either the
scalar nonlinear Schrödinger equation or vector equations such
as the Manakov equation or the Manakov-PMD equation can
be very computationally time-consuming—particularly when
WDM systems that include more than ten channels are studied.
A full simulation of a terrestrial system can take many central
processor unit (CPU) hours for a single parameter set and a
full simulation of an undersea system can actually take many
CPU days [9]! To appropriately study polarization effects, one
must additionally simulate many different realizations of the
randomly varying polarization orientations in the optical fiber.
Thus, it is not realistic to study the impairments introduced
by polarization effects in modern-day WDM systems that
may have many tens of channels using complete numerical
solutions of the Manakov equation and its modifications. There
is thus an urgent need for effective reduced models.

In previous work, we introduced a mean field approach in
which one merely follows the Stokes parameters of the indi-
vidual channels neglecting their detailed temporal evolution
[5]. The potential computational saving in this approach is
vast. We note that this approach presupposes that polarization
effects like repolarization are dominated by the interplay
of polarization mode dispersion, polarization-dependent loss,
and polarization-dependent gain and that nonlinearity and
dispersion play no significant role in these effects. This as-
sumption is reasonable in modern-day dispersion-managed
systems in which the local dispersion is large, although the
average dispersion is kept small. So, the bits in two channels
slide rapidly through one another, and each channel is only
affected by the average properties of the others. However,
this assumption will fail when channels are spaced too closely
together. At this point nonlinearity and dispersion can lead
to significant polarization impairment. Given the interest in
spacing channels ever closer together in dense WDM system,
it is of practical importance to determine this limit.

It is the purpose of this article to explore the conditions
under which the mean field approach is valid for studying
polarization effects. We will be focusing on the extent to which
the combination of chromatic dispersion and the Kerr effect
can induce changes in the polarization states of the individual
channels beyond what the mean field model predicts. Our
procedure will be to compare full split-step simulations with
realistic temporal pulse profiles and with up to seven channels
to the mean field model. Our purposes are threefold. First,

we will determine when the system parameter are such that
nonlinearity and dispersion alone lead to significant polariza-
tion effects. These effects limit the channel spacing and other
parameters in real systems. Second, we will set a baseline
for further studies in which neglected effects like polarization
mode dispersion, polarization-dependent loss, polarization-
dependent gain and amplified spontaneous emission noise are
included. Given the complex interplay between the different
effects, it is important to study them in isolation before com-
bining them. We will however determine the effect of adding
moderate polarization in this paper. Third, we will determine
when the mean field approach can be safely used to study
polarization effects. This approach yields vast computational
savings [5].

The remainder of this paper is organized as follows:
Section II reviews the derivation of the mean field equations
governing the evolution of the Stokes parameters. We add to
previous work [5] by taking into account the effect of fiber
attenuation and amplifier gain. In Section III, we compare the
results of the mean field model to full split-step simulations
for a typical set of parameters and up to seven channels.
In Section IV, we examine the effects of varying the channel
spacing, varying the dispersion, and adding filtering. Section V
contains the conclusions.

II. DERIVATION OF THE MEAN FIELD EQUATION

Our starting point is the Manakov equation

(1)

where represents the complex envelope of
the two polarizations, where is the dispersion coefficient,

is the nonlinear coefficient, and and are distance
along the fiber and retarded time. Earlier experimental [9]
and theoretical [6], [7] work has shown that this equation
accurately describes nonlinear and dispersive light propagation
in standard communication fiber with rapidly and randomly
varying birefringence when polarization mode dispersion can
be neglected. There are several reasons for neglecting po-
larization mode dispersion in most of this study. First, with
high-quality optical fibers and a limited number of channels,
polarization mode dispersion is negligible. For example, as-
suming a value of 0.1 ps/(km)1/2, polarization mode dispersion
can be neglected over a bandwidth of about 4 nm over 500 km
and about 1 nm over 10 000 km. These numbers are sufficient
to include several channels with single channel rates of 2.5
Gb/s. Even at higher data rates and with channels spread
over a larger bandwidth, the effect is small, as we will show
explicitly in Section III, as long as the polarization mode
dispersion is moderate. Second, it is of practical importance
to determine when nonlinearity and chromatic dispersion lead
to significant polarization effects on their own. Third, it is of
critical importance in validating the mean field approach to
determine its ability to accurately reproduce the impact of the
Kerr effect and chromatic dispersion on the polarization states
of the channels in a WDM systems in the absence of other
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effects. Thus, this work will serve as a baseline against which
the importance of polarization mode dispersion and other
polarization effects in combination can be determined. We also
note that (1) does not include the spatially varying gain and
loss that is present in real systems; however, this effect is easily
included and we will show how to do that at the end of this
section. Finally, we note that , where
is the light’s central wavenumber, is the Kerr coefficient,
and is the optical fiber’s effective area. The extra factor
of 8/9 appears due to rapid mixing of the central frequency’s
polarization state on the Poincaré sphere [6], [7]. In principle,
there can be an additional contribution to (1) due to incomplete
mixing of the electric field on the Poincar´e sphere that is
referred to as nonlinear polarization mode dispersion [6], [7].
However, in standard communication fiber in which the scale
length on which the field mixes on the Poincaré sphere is 100
m or less while the scale on which the Kerr nonlinearity and
chromatic dispersion act is many hundreds of kilometers, this
effect is completely negligible [7].

We next write as a sum of contributions overchannels,
obtaining

(2)

where and are the central wavenumber and
frequency of the -th channel with respect to the central
wavenumber and frequency of , and is the cor-
responding wave envelope. Substituting (2) into (1), we
find

(3)

where, consistent with our assumption that the dispersion
between channels is large, we neglect four wave mixing terms.
We now define the Stokes parameters for each of the channels
as

(4a)

(4b)

(4c)

(4d)

where we assume that contains a very large number
of individual bits. Using (3) to determine the evolution of the
Stokes parameters, we find , and we find for

that

(5)

In a highly dispersive system, the channels for which
rapidly pass through the -th channel in the time domain.
Consequently, the evolution of the -th channel is only
affected by the averaged time variation of the channels
so that we may effectively treat them as continuous waves.
This assumption is the heart of the mean field approximation.
We thus replace

(6)

from which we conclude

(7)

We can find similar expressions for and ,
so that we finally obtain

(8)

The effect of dispersion does not appear in (8); only the
nonlinearity appears, and the equations are analogous to the
equations that govern nonlinear polarization rotation of contin-
uous wave beams [10]. However, the local dispersion plays a
critical role since it must be large enough so that each channel
only affects its neighbors through its mean field. We note as
well that there is no change in , i.e., .
From (8), it follows that the only effect of combining the
Kerr effect with large dispersion is to rotate the polarization
states of the different WDM channels. In particular, there is no
change in the degree of polarization! This result is significant
because polarization scrambling which reduces the degree of
polarization of a single channel to a small value is often used to
combat fading. However, under some circumstances the signal
can repolarize. We earlier showed that polarization-dependent
loss can account for this repolarization [4], but it is important
to verify that chromatic dispersion and the Kerr effect cannot
also account for it. If the mean field approximation is valid,
i.e., (6) is an accurate approximation, then these effects lead
to no repolarization. Conversely, if chromatic dispersion and
the Kerr effect do contribute significantly to repolarization,
which can happen even in the absence of polarization mode
dispersion and other polarization effects when the mean field
approximation fails, then there is a large nonlinear interaction
between the channels which is unattractive for communication



WANG AND MENYUK: KERR NONLINEARITY AND CHROMATIC DISPERSION 2523

systems. Thus, examining the evolution of the degree of
polarization in full simulations will allow us to determine the
parameter regimes in which the mean field approximation is
valid and in which chromatic dispersion and the Kerr effect
do not contribute significantly to repolarization. We will do
that in the following sections.

It is interesting to note that even though (8) is nonlinear, a
complete analytical solution may be found

(9)

where , and are the initial
values of the Stokes vector in the channels. This result is in-
trinsically significant because the number of large-dimensional
nonlinear systems for which exact solutions can be found is
small.

When fiber loss and lumped gain at the amplifier are
introduced into the transmission line, (1) becomes

(10)

where is the loss coefficient, is the amplifier gain,
is the amplifier spacing, and is the total number of
amplifiers. Since the loss and gain occur periodically in real
systems on a length scale that is short compared to the scale
on which the nonlinearity and average chromatic dispersion
operate, they will induce periodic oscillations in the amplitude
without changing the state of polarization. Since the Stokes
vector components also periodically oscillate as a result,
in (8) will be smaller than its initial value right after an
amplifier during most of the propagation, and will
evolve more slowly than if always had this initial value.
Defining in the interval

, so that we normalize the amplitude
throughout the interval between amplifiers to its value at the
beginning of the interval, and defining from
analogous to (4), we find that

(11)

Defining now,
where is a constant,

we conclude

(12)

which has the same form as (8). If we let
then varies continuously, and

(12) can be interpreted as an evolution equation-dependent
upon this new variable. The variation of is somewhat
complicated by the exponential variation, but in most realistic
settings, the nonlinear evolution is slow compared to the
periodic evolution due to the fiber loss and lumped gain so
that it is sufficient to approximate (12)

(13)

We will validate this approximation in Section IV.
When we include the effect of polarization mode dispersion,

(1) becomes

(14)

where indicate the inverse group velocity difference
between the fast and slow axes whileis a rapidly varying
unitary matrix that takes into account the changes in orienta-
tion of the birefringent axes [8]. We solve this equation using
the coarse step method [8].

III. B ASIC NUMERICAL MODEL

In our simulations, we used standard split-step methods to
solve (1). In each channel, we used synchronous phase mod-
ulation and in some cases synchronous amplitude modulation
of nonreturn-to-zero (NRZ) signals, much as described by
Berganoet al. [3], to both polarization scramble the signals
and minimize pulse distortion. The functional form that we
used for the initial field at the entry to the fiber is

(15a)

(15b)

when the signal has no amplitude modulation and

(16a)

(16b)

when the signal is amplitude-modulated, where
and .

Here, we let and , where
and are constant coefficients, while in the time
slots of the marks and in the time slots of the spaces
except when making a transition from a space to a mark or
from a mark to a space. When making a transition from a
space to a mark, we set ,
where is the boundary between the space and the mark and

ps for a 5 Gb/s signal and ps for a 10 Gb/s
signal. When making a transition from a mark to a space, we
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define . The coefficients
and give the strength of the phase modulation. For all the

simulations in this paper, we set and so
that the difference nearly equals to 2.405, the first zero
of the zeroth Bessel function. With this choice, setting ,
an ideal square pulse would be completely depolarized. In our
simulations, since the pulses are never perfectly square, even
without amplitude modulation, there is always a small residual
degree of polarization like in the experiments of Berganoet al.
The sum was chosen consistent with the experiments
of Bergano et al. [3]. The phase modulation frequency
corresponds to the bit rate, and and describe the relative
phase between the phase modulation and the data bits. By
varying , , , and , we can adjust the degree of
polarization to any desired value. We used a 64 bit pattern in
each channel, chosen so that the number of marks and spaces is
identical and so that strings of marks of varying sizes are in the
pattern. We experimented with a number of different strings
in several cases and verified that our results are insensitive to
this choice. We used 8192 node points for each channel in all
cases which experimentation showed was adequate.

We chose the system parameters as follows: the central
wavelength 1.58 m, the Kerr coefficient

m W, and a total fiber length km.
For our basic simulations, we used a dispersion map with
a map length of 1000 km like that of Berganoet al. [3],
but we also investigated the effect of shortening the map,
and we will report these results in Section IV. In every map
period, there is a span of length that consists of standard
fiber with dispersion value and a span of length
that consists of dispersion-shifted fiber with dispersion value

. We chose the lengths of these two portions so that
. At the central frequency m, we

choose the corresponding dispersion values so that they are in
the ratio 8.5 : 1, and the net cumulative dispersion is zero.
Typical experimental systems that model undersea systems
would have a value of ps/nm-km and
ps/nm-km, but we often varied these values significantly in our
simulations to compare our results to the mean field approach.
We note that values in terrestrial systems are often substantially
higher. When , third-order dispersion implies that
the net dispersion is nonzero. In our simulations, we used

ps/nm2-km. In our basic simulations, we did
not use amplitude modulation, and the signaling rate is 5 Gb/s,
corresponding to a bit period of 200 ps. The channel spacing
is 0.5 nm.

In Fig. 1, we show a two-channel simulation. We note
that because , and and are different for
the two channels, the two channels have slightly different
values of and and hence slightly different degrees
of polarization. The degree-of-polarization is nonzero in this
case because . Fig. 1(a) shows the theoretically
predicted result from (9), and Fig. 1(b) shows the evolution of
the Stokes parameters with standard values of the dispersion.
There are significant quantitative discrepancies between the
mean field theory and the simulation, and these discrepancies
only completely disappear when the local dispersion becomes
quite large as shown in Fig. 1(c). Nonetheless, the Stokes

(a)

(b)

(c)

Fig. 1. Evolution of the Stokes vector components as a function of distance
in a 5-Gb/s system. The dispersion map length is 1000 km, and the channel
spacing is 0.5 nm. The solid lines are the Stokes components of channel one;
the dashed lines are the Stokes components of channel two. (a) Analytical
result. (b) Simulation result,D1 = �2 ps/nm-km,D2 = 17 ps/nm-km.
(c) Simulation result,D1 = �20 ps/nm-km,D2 = 170 ps/nm-km. Other
simulation parameters are� = 1550 nm for channel one,� = 1550:5 nm
for channel two; x = 0:7� and y = 0 for channel one, x = 0 and
 y = 0:7� for channel two; the peak power in thex-polarization is 0.24
mW for channel one and is 0.2 mW for channel two; the peak power in the
y-polarization is 0.2 mW for channel one and 0.24 mW for channel two.

Fig. 2. Evolution of the degree of polarization as a function of distance with
D1 = �2 ps/nm-km,D2 =17 ps/nm-km. Other parameters are the same
as in Fig. 1.

parameters still oscillate around their initial values in Fig. 1(b),
although with somewhat different frequencies and amplitudes
than in Fig. 1(a). There are no long-term drifts in the Stokes
parameters from the theoretically-predicted values. Thus, we
would anticipate that there is little change in the degree of
polarization of the channels, and this expectation is borne out
as shown in Fig. 2 where we show the degree of polarization,

, for each channel over 10 000 km.
The change is only about 0.02. In particular, if the degree-
of-polarization is initially near zero for both channels, which
we obtain by setting in this case, then they undergo
little repolarization as shown in Fig. 3.
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Fig. 3. Parameters are the same as in Fig. 1 except that the peak power in
both thex- andy-polarization is 0.2 mW for both channels.

(a)

(b)

(c)

Fig. 4. Evolution of the Stokes vector components as a function of distance
in a 5-Gb/s system. The dispersion map is 1000 km and the channel spacing is
0.5 nm. The solid lines are the Stokes components of channel one, the dashed
lines are the Stokes components of channel two, and the dash-dotted lines are
the Stokes parameters of channel one. (a) Analytical result. (b) Simulation
result, D1 = �2 ps/nm-km,D2 = 17 ps/nm-km. (c) Simulation result,
D1 = �20 ps/nm-km,D2 = 170 ps/nm-km. Other simulation parameters are
 x = 0:7�;  y = 0 for channel one; x = 0;  y = 0:7� for channel two;
 x = 0:4�;  y = 0 in channel three; the peak power in thex-polarization is
0.24 mW for channel one, 0.2 mW for channel two, and 0.23 mW for channel
three; the peak power in they-polarization is 0.2 mW for channel one, 0.24
mW for channel two, and 0.23 mW for channel three. Other parameters are
the same as in Fig. 1.

As the number of channel increases, the agreement between
the mean field theory and simulation improves somewhat
because the presence of multiple channels leads to better
averaging over the different channels. In Fig. 4, we show
the evolution with three channels. The oscillation periods of
the Stokes parameters are reduced with respect to the case
with two channels because we kept the power in each channel
nearly the same as in the two-channel case. In Fig. 5, we show
the evolution of the Stokes parameter with seven channels.
We only show one of the Stokes parameters because the figure

(a)

(b)

(c)

Fig. 5. Evolution of the Stokes vector componentS1 of seven channels as
a function of distance in a 5-Gb/s system. The dispersion map length is 1000
km and the channel spacing is 0.5 nm. (a) Analytical result. (b) Simulation
result,D1 = �2 ps/nm-km,D2 = 17 ps/nm-km. (c) Simulation result,
D1 = �10 ps/nm-km,D2 = 85 ps/nm-km. The channels are centered around
� = 1550 �m. Other parameters are: x = 0;  y = 0 for all channels.

would be too busy if we included all three. Finally, in Fig. 6,
we show the evolution of the degree of polarization of all
seven channels. The worst channel changes by less than 0.03.

In Fig. 6, we also show the effect of adding a moderate
polarization mode dispersion of 0.1 ps/km1/2. We observe a
slight increase in the repolarization in all of the channels.
This increase occurs because even moderate polarization mode
dispersion changes the polarization state slightly from what it
would have been across the spectrum of the channel. As a con-
sequence, the Stokes vectors are slightly shifted as a function
of frequency from their values in the absence of polarization
mode dispersion. We note that this increased repolarization is
too small to affect our conclusions when repolarization due
purely to nonlinearity and chromatic dispersion becomes too
large to be tolerated, indicating an unacceptable parameter
regime.

IV. EFFECTS OFPARAMETER VARIATION

A. Increasing the Data Rate

In Fig. 7, we show the evolution of a two-channel system
when the signaling rate is increased to 10 Gb/s, corresponding
to a bit period of 100 ps. In this case, the channel spacing is 1
nm. We see that the agreement between the mean field theory



2526 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 12, DECEMBER 1999

(a)

(b)

Fig. 6. Evolution of the degree of polarization as a function of distance
with D1 = �2 ps/nm-km,D2 = 17 ps/nm-km. The peak power in thex-
and y-polarization is 0.2 mW for all channels. (a) PMD= 0 ps/km1/2. (b)
PMD = 0:1 ps/km1/2.

(a)

(b)

(c)

Fig. 7. Evolution of the Stokes vector components as a function of distance
for a 10-Gb/s system. The dispersion map length is 1000 km, and the channel
spacing is 1 nm. The solid lines are the Stokes components of channel one;
the dashed lines are the Stokes components of channel two. (a) Analytical
result. (b) Simulation result,D1 = �2 ps/nm-km,D2 = 17 ps/nm-km. (c)
Simulation result,D1 = �10 ps/nm-km,D2 = 85 ps/nm-km. Channel one
is at� = 1550 �m, and channel two is at� = 1551 �m. Other parameters
are the same as in Fig. 1.

(a)

(b)

(c)

Fig. 8. Evolution of the Stokes vector components as a function of distance
with gain and loss added. The system parameters are the same as in Fig. 1.

and simulations at a typical dispersion value is better at this
data rate than it was at 5 Gbits/sec. Moreover, at dispersion
values of ps/nm-km, ps/nm-km, the
agreement is already complete. The wider channel spacing
required to avoid intersymbol interference and the smaller bit
period lead to better averaging. As before, when we increase
the number of channels, we find that agreement improves.

B. Adding Gain and Loss

We add gain and loss to our basic model by assuming a
loss coefficient db/km and an amplifier spacing of 50
km. As shown in Fig. 8, the results are essentially identical to
Fig. 1, except that the oscillations are stretched out by a factor

as predicted by (13). We have left out the bars above
the Stokes vector in Fig. 8.

C. Adding Amplitude Modulation

We now add amplitude modulation to our basic model as
shown in (15). The results are shown in Fig. 9. The behavior
is similar to that shown in Fig. 1. At realistic values of the
dispersion, shown in Fig. 9(b) the mean field theory differs
quantitatively from the actual simulation, but shows no large
drifts, and when the dispersion is 20 times larger, as shown in
Fig. 9(c), the results become identical. We conclude that the
detailed pulse shape is not important in the evolution of the
polarization states.
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(a)

(b)

(c)

Fig. 9. Evolution of the Stokes vector components as a function of distance
with amplitude modulation added. The system parameters are the same as
in Fig. 1. The dispersion map is 1000 km, and the channel spacing is 0.5
nm. The amplitude modulation is added. The solid lines are the Stokes
components of channel one; the dashed lines are the Stokes components of
channel two. (a) Analytical result. (b) Simulation result,D1 = �2 ps/nm-km,
D2 = 17 ps/nm-km. (c) Simulation result,D1 = �20 ps/nm-km,D2 = 170

ps/nm-km. The other parameters are the same as Fig. 1.

D. Changing Channel Spacing

Increasing the channel spacing while keeping the dispersion
map fixed increases the relative velocity of the channels and
is nearly equivalent to increasing the magnitude of the local
dispersion values by the same factor. In Fig. 10, we show the
result of setting the channel spacing to 2.5 nm. Agreement
between the theory and the simulation is almost complete.

However, when we reduce the channel spacing we find
large changes in the polarization evolution due to the nonlinear
interaction between channels. Phase modulation expands the
spectral width of each channel, leading to channel crosstalk.
Simulations indicate that the channel spacing is limited to
0.3 nm before these effects become intolerably large. From
a purely theoretical standpoint, these results imply that the
mean field approach can only be used for channel spacing of
0.3 nm or more.

E. Reducing the Map Length

In this case, the averaging becomes worse because the
channels move back and forth through each other with a
smaller period. Consequently, the agreement between the
mean field theory and simulation deteriorates as shown in
Fig. 11. While there is improvement as the number of channels

(a)

(b)

(c)

Fig. 10. Evolution of the Stokes vector components as a function of distance
with variation of the channel spacing. (a) Analytical result. (b) Simulation
result. Channel one is at� = 1550 nm, and channel two is at� = 1552:5

nm. (c) The channel spacing is 0.3 nm. Other parameters are the same as
in Fig. 1.

increases, significant differences remain with up to seven
channels. In Fig. 12, we show the degree of polarization for
each channel in a seven channel system. We see that there is
a nonnegligible repolarization in some cases, amounting to a
change in the degree of polarization of nearly 0.1 in the worst
case. Thus, the mean field approach fails in this case.

F. Adding Filtering

In soliton WDM systems, in-line Fabry–Perot filters are
sometimes added to reduce the timing jitter due to the Gor-
den–Haus effect and soliton collisions [9]. Here, we examine
its effect on the polarization state of a polarization-scrambled,
NRZ WDM signal. When the filter acts on each channel, the
effect is to disturb the phase relationship between the different
frequency components which make up the channel’s signal so
that the signal will repolarize. The transmission function
of the filter may be written

(17)

where is the reflectivity, is the central frequency
of the filter which is centered on one of the channels, and the
the free spectral range is chosen equal to the channel
spacing. As shown in Fig. 13, there is a large amount of
repolarization, virtually ruling out the use of in-line filters
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(a)

(b)

(c)

Fig. 11. Evolution of the Stokes vector components as a function of distance
in a 5-Gb/s system. The dispersion map length is 200 km. (a) Analytical
result. (b) Simulation result,D1 = �2 ps/nm-km,D2 = 17 ps/nm-km. (c)
Simulation result,D1 = �20 ps/nm-km,D2 = 170 ps/nm-km. The other
parameters are the same as in Fig. 1.

Fig. 12. Evolution of the degree of polarization of seven channels as a
function of distance withD1 = �2 ps/nm-km,D2 = 17 ps/nm-km. The
dispersion map length is 200 km. Other system parameters are the same as
in Fig. 6.

Fig. 13. Evolution of the degree of polarization of two channels as a function
of distance withD1 = �2 ps/nm-km,D2 = 17ps/nm-km. The Fabry–Perot
filter is added. Other parameters are the same as in Fig. 1.

in real systems with an NRZ pulse format. From a purely
theoretical standpoint, the mean field approach would have to
be modified before it could be used with filters.

V. CONCLUSION

In this paper, we have investigated the range of validity of
a mean field approach in which we follow only the Stokes
parameters of WDM channels and ignore their detailed tem-
poral behavior in determining the evolution of the polarization
properties of each channel. The parameters that we used cor-
respond closely to those used by Bergano,et al. [3] in system
experiments. When the mean field approach fails, it indicates
that there is a large nonlinear interaction among neighboring
channels that would be bad for communication systems.

We began by deriving the basic equations governing the
mean field approach, and we showed that this approach is
expected to become exact in the limit of large local dispersion.
We then compared the mean field approach to complete simu-
lations. We found for typical parameters and only two channels
that this approach does not yield exact quantitative agreement
with the simulations. However, the qualitative agreement is
good, and, in particular, there is little repolarization consistent
with its predictions. We verified that as the local dispersion
increases, its predictions ultimately become exact. We also
showed that as the number of channels increases, the data
rate increases, or the channel spacing increases, its predictions
improve. As theoretically expected, we found that including
realistic gain and loss only changes the rate of evolution of
the Stokes parameters and has no effect on the mean field
approach’s validity. We also found that including amplitude
modulation leads to changes in the approach’s predictions, but
it does not affect the intersymbol interference or the qualitative
behavior. Finally, we found that significantly reducing the
channel spacing, shortening the dispersion map, or adding
filters leads to a deterioration in the approach’s predictions.
In both cases, the signals suffered a significant amount of
repolarization, and the mean field approach fails. Our results
indicate that communication systems should not operate in
these regimes. We further showed that our conclusions are not
affected by moderate polarization mode dispersion.

Our results serve three purposes. First, they demonstrate
that the Kerr effect and chromatic dispersion induce little
repolarization for typical system parameters. Thus, the re-
polarization that is sometimes observed experimentally must
be due to something else. In earlier work, we showed that
polarization-dependent loss can account for the observed re-
polarization [4]. Second, they determine when the nonlinear
channel interactions become sufficiently strong to induce sig-
nificant polarization effects. These regimes should be avoided
in practice. Given the current trend toward denser channel
spacing, this limit is an important one. Third, given the
large number of channels that are used in current WDM
systems, an unrealistically large amount of CPU time would
be required to study these systems using standard simulation
methods. There is a clear need for effective reduced models,
and the mean field approach offers the prospect of vast
computational savings. Our results indicate that the mean field
approach captures the essential behavior of the system for
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typical parameters, particularly as the number of channels
increases, and is therefore a useful approximation. At the same
time, it does not yield exact quantitative agreement with full
simulations for typical parameters and can fail, for example,
when the channel spacing becomes too small or the dispersion
map period becomes too short. Thus, it should be used with
caution and carefully validated.

In future work, we will extend our model to include the
effects of polarization mode dispersion and amplifier sponta-
neous emission noise along with polarization-dependent loss
and polarization-dependent gain. By comparing the results
of the extended model to those presented here, we will
ultimately be able to assess the real penalties that these
different polarization effects introduce into real systems.
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