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Abstract—Channel polarization, originally proposed for
binary-input channels, is generalized to arbitrary discrete mem-
oryless channels. Specifically, it is shown that when the input
alphabet size is a prime number, a similar construction to that
for the binary case leads to polarization. This method can
be extended to channels of composite input alphabet sizes by
decomposing such channels into a set of channels with prime
input alphabet sizes. It is also shown that all discrete memo-
ryless channels can be polarized by randomized constructions.
The introduction of randomness does not change the order of
complexity of polar code construction, encoding, and decoding. A
previous result on the error probability behavior of polar codes
is also extended to the case of arbitrary discrete memoryless
channels. The generalization of polarization to channels with
arbitrary finite input alphabet sizes leads to polar-coding methods
for approaching the true (as opposed to symmetric) channel
capacity of arbitrary channels with discrete or continuous input
alphabets.

Index Terms—Capacity-achieving codes, channel polarization,
polar codes.

I. POLARIZATION

Channel polarization was introduced in [1] for binary
input discrete memoryless channels as a coding technique
to construct codes for data transmission. Polar codes are
capable of achieving the ‘symmetric capacity’ of any binary
input channel, using low-complexity encoding and decoding
algorithms. In terms of the block-length N , polar codes can be
encoded and decoded in complexity O(N logN) and achieve
a block error probability that decays roughly like 2−

√
N . The

latter result was shown in [2].
The aim of this note is to extend these results of [1], [2] to

DMCs with q-ary inputs for any finite integer q ≥ 2. To that
end, we recall the polarization construction and outline how
the results above were shown.

Given a binary input channel W : X → Y with X = {0, 1}
define its symmetric capacity as

I(W ) =
∑
x∈X

∑
y∈Y

1
2W (y|x) log2

W (y|x)∑
x′∈X

1
2W (y|x′)

. (1)

I(W ) is nothing but the mutual information developed be-
tween the input and the output of the channel when the input is
uniformly distributed. In [1], two independent copies of W are
first combined and then split so as to obtain two unequal binary
input channels W− and W+. The channel W 2 : X 2 → Y2

describes two uses of the channel W ,

W 2(y1, y2|x1, x2) = W (y1|x1)W (y2|x2).

The input (x1, x2) to the channel W 2 is put in one-to-one
correspondence with (u1, u2) ∈ X 2 via x1 = (u1+u2) mod 2,
x2 = u2, thus obtaining the combined channel W2 : X 2 → Y2

described by

W2(y1, y1|u1, u2) = W (y1|u1 + u2)W (y2|u2).

The split is inspired by the chain rule of mutual information:
Let U1, U2, X1, X2, Y1, Y2 be random variables corresponding
to their lowercase versions above. If U1, U2 are independent
and uniformly distributed, then so are X1, X2 and conse-
quently, on the one hand,

I(U1, U2;Y1, Y2) = I(X1, X2;Y1, Y2)
= I(X1;Y1) + I(X2;Y2) = 2I(W ),

and on the other

I(U1, U2;Y1, Y2) = I(U1;Y1, Y2) + I(U2;Y1, Y2, U1).

The split channels W− and W+ describe those that occur on
the right hand side of the equation above:

W−(y1, y2|u1) =
∑
u2∈X

1
2W (y1|u1 + u2)W (y2|u2),

W+(y1, y2, u1|u2) = 1
2W (y1|u1 + u2)W (y2|u2),

so that I(U1;Y1, Y2) = I(W−) and I(U2;Y1, Y2, U1) =
I(W+).

The polarization construction given in [1] is obtained by
a repeated application of W 7→ (W−,W+). Since both
W− and W+ are binary input channels, one can obtain
W−− := (W−)−, W−+ := (W−)+, W+− := (W+)−, and
W++ := (W+)+. After n levels of application, one obtains 2n

channels W− ···−, . . . ,W+ ···+. The main observation in [1]
is that these channels polarize in the following sense:

Proposition 1 ([1]). For any δ > 0,

lim
n→∞

#
{
s ∈ {+,−}n : I(W s) ∈ (δ, 1− δ)

}
2n

= 0. (2)

In other words, except for a vanishing fraction, all the chan-
nels obtained at level n are either almost perfect, I(W s) ≥
1− δ, or almost pure noise, I(W s) ≤ δ.

As the equality I(W−) + I(W+) = 2I(W ) leads by
induction to

∑
s∈{+,−}n I(W s) = 2nI(W ), one then con-

cludes that the fraction of almost perfect channels approaches
the symmetric capacity. This last observation is the basis of
what lets [1] conclude that polar codes achieve the symmetric
capacity.

2009 IEEE Information Theory  Workshop

978-1-4244-4983-5/09/$25.00 © 2009 IEEE 144



We give here a new proof of this proposition because it
will readily generalize to the q-ary input case we will discuss
later. Before we embark on this proof, we introduce the Bhat-
tacharyya parameter for a binary input channel W : X → Y ,
defined by

Z(W ) =
∑
y

√
W (y|0)W (y|1). (3)

The relationship between Z(W ), Z(W−), Z(W+) and I(W )
is already discussed in [1], where the following is shown:

Lemma 1 ([1]).
(i) Z(W+) = Z(W )2,

(ii) Z(W−) ≤ 2Z(W )− Z(W )2,
(iii) I(W ) + Z(W ) ≥ 1,
(iv) I(W )2 + Z(W )2 ≤ 1.

Proposition 1 was proved in [1] for the binary case (q = 2)
using Lemma 1. Unfortunately, Lemma 1 does not generalize
to the non-binary case (q ≥ 3). The following alternate proof
of Proposition 1 uses less stringent conditions that can be
fulfilled for all q ≥ 2.

Lemma 2. Suppose Bi, i = 1, 2, . . . are i.i.d., {+,−}-valued
random variables with

P (B1 = −) = P (B1 = +) = 1
2

defined on a probability space (Ω,F , P ). Set F0 = {φ,Ω}
as the trivial σ-algebra and set Fn, n ≥ 1 to be the σ-field
generated by (B1, . . . , Bn).

Suppose further that two stochastic processes {In : n ≥ 0}
and {Tn : n ≥ 0} are defined on this probability space with
the following properties:

(i.1) In takes values in the interval [0, 1] and is measur-
able with respect to Fn. That is, I0 is a constant,
and In is a function of B1, . . . , Bn.

(i.2) {(In,Fn) : n ≥ 0} is a martingale.
(t.1) Tn takes values in the interval [0, 1] and is measur-

able with respect to Fn.
(t.2) Tn+1 = T 2

n when Bn+1 = +.
(i&t.1) For any ε > 0 there exists δ > 0 such that In ∈

(ε, 1− ε) implies Tn ∈ (δ, 1− δ).
Then, I∞ := limn→∞ In exists with probability 1, I∞ takes

values in {0, 1}, and P (I∞ = 1) = I0.

Proof: See [4].
Proof of Proposition 1: Let B1, B2, . . . be i.i.d., {+,−}-

valued random variables taking the two values with equal
probability, as in Lemma 2. Define

In := In(B1, . . . , Bn) = I(WB1,...,Bn)

and
Tn := Tn(B1, . . . , Bn) = Z(WB1,...,Bn).

It is easy to check that these processes satisfy the conditions
of Lemma 2. Thus, the process In converges with probability
1 to a {0, 1}-valued random variable. This implies that

lim
n→∞

P (In ∈ (δ, 1− δ)) = 0.

Note that the distribution of (B1, . . . , Bn) is the uniform
distribution on {+,−}n. Thus,

P (In ∈ (δ, 1− δ)) =
#
{
s ∈ {+,−}n : I(W s) ∈ (δ, 1− δ)

}
2n

,

and Proposition 1 follows.
The following lemma was proved in [2].

Lemma 3 ([2]). Suppose that the processes {Bn}, {In} and
{Tn}, in addition to the conditions (i.1), (i.2), (t.1), (t.2) and
(i&t.1) in Lemma 2, also satisfy

(t.3) For some constant κ, Tn+1 ≤ κTn when Bn+1 = −.
(i&t.2) For any ε > 0 there exists δ > 0 such that In > 1−δ

implies Tn < ε.
Then, for any 0 < β < 1/2

lim
n→∞

P (Tn ≤ 2−2βn) = I0. (4)

Note that in the proof of Proposition 1 the random variable
Tn denotes the Bhattacharyya parameter of a randomly chosen
channel after n steps of polarization. Therefore, Lemma 3
states that after n steps of polarization, almost all ‘good’
channels will have Bhattacharyya parameters that are smaller
than 2−2nβ for any β < 1/2, provided that n is sufficiently
large. Since the Bhattacharyya parameter is an upper bound
to the error probability of uncoded transmission, this implies
that , at any fixed coding rate below I0 = I(W ), the block
error probability Pe of binary polar codes under successive
cancellation decoding will satisfy

Pe ≤ 2−N
β

for all β < 1/2, (5)

when the block-length N = 2n is sufficiently large.

II. POLARIZATION FOR q-ARY INPUT CHANNELS

In this section we will show how the transformation
(u1, u2) 7→ (x1, x2) (and consequently W 7→ (W−,W+))
and the definition of Z(W ) can be modified so that the
hypotheses of Lemmas 2 and 3 are satisfied when the channel
input alphabet is not binary. This will establish that the new
transformation satisfies equation (2), leading to the conclusion
that q-ary polar codes achieve symmetric capacity. That the
error probability behaves roughly like 2−

√
N will also follow.

To that end, let q denote the cardinality of the channel input
alphabet X and define

I(W ) ∆=
∑
x∈X

∑
y∈Y

1
q
W (y|x) log

W (y|x)∑
x′∈X

1
qW (y|x′)

as the symmetric capacity of a channel W . We will take the
base of the logarithm in this mutual information equal to q,
so that 0 ≤ I(W ) ≤ 1.

For any pair of input letters x, x′ ∈ X , we define the
Bhattacharyya distance between them as

Z(W{x,x′}) =
∑
y∈Y

√
W (y|x)W (y|x′). (6)

Here, the notation W{x,x′} should be interpreted as denoting
the channel obtained by restricting the input alphabet of W
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to the subset {x, x′} ⊂ X . We also define the average
Bhattacharyya distance of W as

Z(W ) =
∑

x,x′∈X ,x 6=x′

1
q(q − 1)

Z(W{x,x′}). (7)

The average Bhattacharyya distance upper bounds the error
probability of uncoded transmission:

Proposition 2. Given a q-ary input channel W , let Pe denote
the error probability of the maximum-likelihood decoder for a
single channel use. Then,

Pe ≤ (q − 1)Z(W ).

Furthermore, I and Z are complementary, in the sense that
one of them being close to 0 implies the other to be close to
1, and vice versa.

Proposition 3. We have the following relationships between
I(W ) and Z(W ).

I(W ) ≥ log
q

1 + (q − 1)Z(W )
(8)

I(W ) ≤ log(q/2) + (log 2)
√

1− Z(W )2 (9)

I(W ) ≤ 2(q − 1)(log e)
√

1− Z(W )2. (10)

Proof of both these propositions can be found in [4].

A. Special case: Prime input alphabet sizes

We will see that when the input alphabet size q is a prime
number, polarization can be achieved by similar constructions
to the one for the binary case. For this purpose, we will equip
the input alphabet X with an operation ‘+’ so that (X ,+)
forms a group. (This is possible whether or not q is prime.) We
will let 0 denote the identity element of (X ,+). In particular,
we may assume that X = {0, . . . , q−1} and that ‘+’ denotes
modulo-q addition. Note that when q is prime, this is the only
group of order q.

As in the binary case, we combine two independent copies
of W , by choosing the input to each copy as

x1 = u1 + u2, x2 = u2. (11)

We define the channels W− and W+ through

W−(y1, y2 | u1) =
∑
u2∈X

1
q
W2(y1, y2 | u1, u2)

W+(y1, y2, u1 | u2) =
1
q
W2(y1, y2 | u1, u2),

(12)

where again W2(y1, y2 | u1, u2) = W (y1 | u1 + u2)W (y2 |
u2).

The main result of this section is the following:

Theorem 1. The transformation described in (11) and (12)
polarizes all q-ary input channels in the sense of Proposition 1,
provided that q is a prime number. The rate of polarization
under this transformation is the same as in the binary case,
in the sense that the block error probabilities of polar codes
based on this transformation satisfy (5).

To prove Theorem 1 we first rewrite Z(W ) as

Z(W ) =
1

q − 1

∑
d6=0

Zd(W ),

where we define

Zd(W ) ∆=
1
q

∑
x∈X

Z(W{x,x+d}), d 6= 0.

We also define

Zmax(W ) ∆= max
d6=0

Zd(W ).

Proof of Theorem 1: The proof is similar to the one
for the binary case: Let B1, B2, . . . be i.i.d. {+,−}-valued
random variables taking the two values with equal probability.
Define the random processes

In := In(B1, . . . , Bn) = I(WB1,...,Bn)

and
Tn := Tn(B1, . . . , Bn) = Zmax(WB1,...,Bn),

with I0 = I(W ) and T0 = Zmax(W ). It is possible to show
that {In} and {Tn} satisfy the conditions of Lemmas 2 and 3,
the details of which may be found in [4]. Theorem 1 follows
from this claim.

B. Arbitrary input alphabet sizes

The proof of Theorem 1 depends critically on the assump-
tion that q is a prime number, and does not extend trivially
to the case of composite input alphabet sizes. In fact, it is
possible to find channels that the transformation given in the
previous section will not polarize:

Example 1. Consider the quaternary-input channel W :
{0, 1, 2, 3} → {0, 1} defined by the transition probabilities
W (0 | 0)= W (0 | 2) = W (1 | 1) = W (1 | 3) = 1, with
I(W ) = log 2. If W is combined/split using the transforma-
tion described in (11) and (12), where + denotes modulo-
4 addition, then the channels W+ and W− are statistically
equivalent to W . Therefore I(W−) = I(W ) = I(W+).

For the general case, our first attempt at finding a polarizing
transformation is to let

x1 = u1 + u2

x2 = π(u2)

where ‘+’ denotes the group operation, and π is a fixed
permutation on X . In this case one can compute easily that

Z(W+) =
1

q(q − 1)

∑
x,x′:x 6=x′

Z(W{π(x),π(x′)})

1
q

∑
u

Z(W{u+x,u+x′}).

To be able to mimic the proof of Proposition 1 one would want
that Z(W+) = Z(W )2. However, as the value of the inner
sum above may depend on (x, x′), the equality Z(W+) =
Z(W )2 will not necessarily hold in general.
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As we will see, however, the average value of the above
Z(W+) over all possible choices of π is Z(W )2. For this
reason, it is appropriate to think of a randomized channel
combining/splitting operation, where the randomness is over
the choice of π. To accomodate this randomness, again let
(U1, U2) denote the independent and uniformly distributed
inputs, and let Π be chosen uniformly at random from the set
of permutations PX , independently of (U1, U2), and revealed
to the receiver. Set

(X1, X2) = (U1 + U2,Π(U2)). (13)

Observe that

I(U1, U2;Y1, Y2,Π) = 2I(W )
= I(U1;Y1, Y2,Π) + I(U2;Y1, Y2, U1,Π),

and that we may define the channels W− : X → Y2 × PX
and W+ : X → Y2 × X × PX so that the terms on the right
hand side equal I(W−) and I(W+):

W−(y1, y2, π | u1) =
∑
u2∈X

1
q · q!

W2(y1, y2 | u1, u2)

(14)

W+(y1, y2, u1, π | u2) =
1

q · q!
W2(y1, y2 | u1, u2), (15)

where W2(y1, y2 | u1, u2) = W (y1 | u1 + u2)W (y2 | π(u2)).

Theorem 2. The transformation described in (13), (14), and
(15) polarizes all discrete memoryless channels W in the sense
of Proposition 1.

Proof: As in the binary case, we will let B1, B2, . . . be
i.i.d., {+,−}-valued random variables taking the two values
with equal probability, and define

In := In(B1, . . . , Bn) = I(WB1,...,Bn),

Tn := Tn(B1, . . . , Bn) = Z(WB1,...,Bn),

with I0 = I(W ) and T0 = Z(W ). One can check that the
processes {In} and {Tn} satisfy the conditions of Lemma 2,
and the theorem follows.

As Z(W ) upper bounds the error probability of uncoded
transmission (cf. Proposition 2), in order to bound the error
probability of q-ary polar codes in the form in (4) it suffices
to show that the hypotheses of Lemma 3 hold. Since (i&t.2)
is already implied by (9), it remains to show (t.3):

Proposition 4. For the transformation described in (13), (14),
and (15), we have

Z(W ) ≤ Z(W−)

≤ min
{
qZ(W ), 2Z(W ) + (q − 1)Z(W )2

}
.

We have seen that choosing the transformation W 7→
(W−,W+) in a random fashion from a set of transformations
of size q! yields Z(W+) = Z(W )2, leading to channel
polarization. In particular, for each W there is at least one

transformation with Z(W+) ≤ Z(W )2. Therefore, random-
ness is needed only in order to find such transformations at
code construction stage, and not for encoding/decoding.

In a channel polarization construction of size N , there are
(2N − 1) channels (W , W−, W+, W−−, W−+, etc.) in
the recursion tree of code construction. For each channel
W̃ residing in any one of the (N − 1) internal nodes of
this tree, we need to find a suitable permutation π such that
Z(W̃+) ≤ Z(W̃ )2. Thus, the total complexity of finding the
right permutations scales as q!(N−1), in the worst case where
all q! permutations are considered. Recall that polar code
construction also requires determining the frozen coordinates,
which is a task of complexity Ω(N) at best. So, the order
of polar code construction complexity is not altered by the
introduction of randomization.

III. COMPLEMENTARY REMARKS

A. Reduction of randomness

The transformation (u1, u2) 7→ (x1, x2) described above
uses a random permutation to satisfy Z(W+) = Z(W )2. This
amount of randomness — over a set of size q! — is in general
not necessary, randomization over a set of size (q − 1)! is
sufficient:

Theorem 3. If the random permutation Π that defines (13) is
chosen uniformly over the set of permutations for which 0 is
a fixed point, the resulting transformation yields Z(W+) =
Z(W )2 and thus is polarizing.

A more significant reduction in randomness can be attained
when the input alphabet X can be equipped with operations
(+, ·) to form an algebraic field — this is possible if and only
if q is a prime power. A random variable taking only q − 1
values is sufficient in this case. (We have already seen that no
randomization is needed when q is prime.) To see this, pick
R to be uniformly distributed from the non-zero elements X∗
of X , reveal it to the receiver and set

(x1, x2) = (u1 + u2, R · u2). (16)

As was above we have

2I(W ) = I(U1, U2;Y1, Y2, R)
= I(U1;Y1, Y2, R) + I(U2;Y1, Y2, U1, R)
= I(W−) + I(W+)

provided that we define W− : X → Y2 ×X∗ and W+ : X →
Y2 ×X × X∗ as

W−(y1, y2, r|u1) =
1

q(q − 1)

∑
u2∈X

W (y1|u1 + u2)W (y2|r · u2), (17)

W+(y1, y2, u1, r|u2) =
1

q(q − 1)
W (y1|u1 +u2)W (y2|r ·u2).

(18)
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Theorem 4. The transformation described in (16), (17),
and (18) polarizes all q-ary input channels in the sense of
Proposition 1, provided that q is a prime power.

Proof: One can check that Z(W+) = Z(W )2, from
which the theorem follows via Lemma 2 along the path as
Proposition 1.

It is also easy to check that the hypotheses of Lemma 3
remains valid with, and thus the bound on the error probabil-
ity (4) holds for this particular polarization scheme too.

When the field is of odd characteristic (i.e., when q is
not a power of two), a further reduction is possible: since∑
u′ Z(W{u′,u′+d}) is invariant under d→ −d, one can show

that the range of R can be reduced from X∗ to only half of
the elements in X∗, by partitioning X∗ into two equal parts in
one-to-one correspondence via r 7→ −r, and picking one of
the parts as the range of R. It is easy to show that choosing R
uniformly at random over this set of size (q − 1)/2 will also
yield Z(W+) = Z(W )2.

B. A method to avoid randomness

When the input alphabet size q is not prime, an alternative
multi-level code construction technique can be used in order to
avoid randomness: Consider a channel W with input alphabet
size q =

∏L
i=1 qi, where qi’s are the prime factors of q. When

the input X to W is uniformly distributed on X , one can write
X = (U1, . . . , UL), where Ui’s are independent and uniformly
distributed on their respective ranges Ui = {0, . . . , qi − 1}.
Defining the channels W (i) : Ui → Y × U1 × . . . × Ui−1

through

W (i)(y, ui−1
1 | ui) =

∏
j 6=i

q−1
j

∑
uLi+1

W (y|(uL1 )),

it is easily seen that

I(W ) = I(X;Y ) = I(UL1 ;Y )

=
∑
i

I(Ui;Y, U i−1
1 ) =

∑
i

I(W (i)).

Having decomposed W into W (1), . . . ,W (L), one can po-
larize each channel W (i) separately. The order of successive
cancellation decoding in this multi-level construction is to
first decode all channels derived from W (1), then all channels
derived from W (2), and so on. Since the input alphabet size
of each channel is prime, no randomization is needed.

C. Equidistant channels

A channel W is said to be equidistant if Z(W{x,x′}) is
constant for all pairs of distinct input letters x and x′. These
are channels with a high degree of symmetry. In particular,
if a channel W is equidistant, then so are the channels W+

and W− created by the deterministic mapping (u1, u2) 7→
(u1 + u2, u2). By similar arguments to those in Section II-A,
it follows that this mapping polarizes equidistant channels,
regardless of the input alphabet size.

D. How to achieve channel capacity using polar codes

In all of the above, the input letters of the channel under
consideration were used with equal frequency. This was suf-
ficient to achieve the symmetric channel capacity. However,
in order to achieve the true channel capacity, one should be
able to use the channel inputs with non-uniform frequencies in
general. The following method, discussed in [3, p. 208], shows
how to implement non-uniform input distributions within the
polar coding framework.

Given two finite sets X and X ′ with m = |X ′|, any
distribution PX on X for which mPX(x) is an integer for
all x can be induced by the uniform distribution on X ′ and a
deterministic map f : X ′ → X .

Given a channel W : X → Y , and a distribution PX
as above, we can construct the channel W ′ : X ′ → Y
whose input alphabet is X ′ and W ′(y|x′) = W (y|f(x′)).
Then, I(W ′) is the same as the mutual information developed
between the input and output of the channel W when the
input distribution is PX . Consequently, a method that achieves
the symmetric capacity of any discrete memoryless channel,
such as the channel polarization method considered in this
paper, can be extended to approach the true capacity of
any discrete memoryless channel by taking PX as a rational
distribution approximating the capacity achieving distribution.
(In order to avoid randomization, one may use prime m in the
constructions.)

E. Channels with continuous alphabets

Although the discussion above has been restricted to chan-
nels with discrete input and output alphabets, it should be clear
that the results hold when the output alphabet is continuous,
with minor notational changes. In the more interesting case
of channels with continuous input alphabets — possibly with
input constraints, such as the additive Gaussian noise channel
with an input power constraint — we may readily apply the
method of Section III-D to approximate any desired contin-
uous input distribution for the target channel, and thereby
approach its capacity using polar codes.
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