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Abstract: Based on the binary phase Fresnel zone plate (FZP), a polarization-independent metasurface
lens that is able to focus incident light with any polarization state, including circular, linear, and
elliptical polarizations, has been proposed and investigated. We demonstrate that the metasurface
lens consisting of metal subwavelength slits can operate in a wide bandwidth in the visible range,
and has a higher focusing efficiency than that of an amplitude FZP lens without phase modulation. A
multi-focus FZP metasurface lens has also been designed and investigated. The proposed lens can
provide potential applications in integrated nanophotonic devices without polarization limitations.

Keywords: metasurface; lens; polarization; Fresnel zone plate

1. Introduction

To scale-down the size and volume of traditional optical elements, a metasurface is proposed and
has been extensively studied by researchers [1–4]. A metasurface is an artificially designed 2D structure
that is made up of arrays of metallic or dielectric subwavelength antennas [5–8]. The amplitude, phase,
and polarization of the transmitted light can be controlled by varying the geometric parameters (width,
length, or orientation angle) of the antenna [1,9–11]. In addition, the wavefront of the transmitted wave
can be further manipulated in the desired manner by designing the arrangement of the antennas. Various
ultrathin metasurface devices, such as lenses [4,9,12–15], vortex phase plates [16–22], holographic
plates [6,23–26], and refraction deflectors [1,27,28], have been demonstrated. Lenses are fundamental
optical components and play important roles in practical applications. Recently, a metasurface
constructed with various meta-atoms such as V-shaped [4], rod-shaped [9,29–31], and C-shaped
resonators [10,12] has been used to design metasurface lenses, though many kinds of metalenses have
been successfully realized for micro/nano-photonic applications based on the metasurface. However,
unlike traditional optical lenses, most of the metasurface lenses are sensitive to the polarization of
the illumination wave [4,9,29,30,32,33]. With subwavelength rod antennas, a dual-polarity plasmonic
metasurface lens that can be a convex or concave lens for left-circularly polarized (LCP) light or
right-circularly polarized (RCP) light has been demonstrated [9,29]. A metasurface lens consisting
of V-shaped antennas has also been achieved for only a fixed linear polarization [4]. Based on the
spin–orbit interaction originating from the Pancharatnam–Berry (PB) phase, a spin-selected lens that
can focus photons with different spin states to two separated focal spots has been realized in the
terahertz frequency range [33]. Overall, the performance of the metasurface lens depends heavily on
the polarization of incident light in most cases.

In this paper, we have proposed a metasurface lens that is capable of eliminating the dependence
of the focusing property on the polarization of incident light. The metasurface consists of metal
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subwavelength slits that can achieve phase modulation by changing the orientation angle. Based on
the binary phase Fresnel zone plate (FZP), we design the distribution of slit antennas and demonstrate
the polarization-independent focusing. Moreover, the proposed metasurface lens can operate in a
wide bandwidth in the visible range, and its dispersion characteristic is studied. Finally, a multi-focus
metasurface lens is realized based on the proposed method. In comparison to the traditional amplitude
FZP, our method shows a much higher focusing efficiency.

To realize the polarization-independent focusing, a binary phase Fresnel zone plate (FZP)
metasurface lens is designed. As schematically shown in Figure 1a, the FZP metasurface consists of
rectangular metallic slit antennas with different rotation angles. The slits are etched on a 100 nm Au
film and the substrate is SiO2. A basic unit of the FZP metasurface lens is given in the inset of Figure 1a.
The width and length of the slit are w = 50 nm and l = 180 nm, respectively. The orientation angle θ of
the slit can be changed to create the required phase of the FZP metasurface lens. The required binary
phase distribution on the initial plane of the FZP is shown in Figure 1b. The boundaries of the FZP can
be estimated with a classical equation:

rm =

√
mλ f +

m2λ2

4
(1)

where rm is the radius of the m-th zone boundary, λ is the wavelength of incident light, and f is the
focal length. To make the light emerging from the FZP metasurface constructively interfere at the focal
point, the light transmitted from adjacent zones should have a relative phase shift ±π. The phase of
the cross-polarized wave generated by the slit antennas is calculated using commercial software FDTD
Solutions. Figure 1c shows the phase profiles of the transmitted light as a function of the orientation
angle θ for the left-circularly polarized (LCP) light and right-circularly polarized (RCP) incident light.
It can be seen that the phase modulation follows the function Φ = 2σ±θ, where σ = ±1 represents LCP
light and RCP incident light, respectively [9,33]. Here, to satisfy the ±π phase shift, we choose two slit
antennas with rotation angles 45◦ and 135◦ as the building block of the metasurface. The phase delays
for θ = 45◦ and θ = 135◦ of slits are –π/2 and π/2, respectively, for LCP light, and are opposite for RCP
light, as indicated by the black dotted circles in Figure 1c. Therefore, by arranging the slits with θ = 45◦

and θ = 135◦ in the odd zones and even zones of the FZP, respectively, we can obtain the binary phase
distribution of the FZP. As the π phase difference between θ = 45◦ and θ = 135◦ slits for LCP light is
equivalent to the –π phase difference for RCP light, the required binary phase distribution of the FZP
can be realized simultaneously for both the LCP and RCP incident light. Considering that an arbitrarily
polarized light can be regarded as the combination of LCP and RCP light, the transmitted wave can be
focused by the metasurface lens as well. Then, the polarization-independent FZP metasurface lens can
be achieved.

Based on the simulation with FDTD Solutions, the focusing properties of the FZP metasurface
lens proposed in Figure 1 are studied. In the simulation, the diameter of the FZP is D = 11.6µm, and
the focal length is designed to be f = 8µm. The metasurface is located at the plane z = 0. The period
of slit antennas is set as 200 nm to avoid coupling between the adjacent slits. The dielectric constant of
gold is ε = −4.723 + 2.388i and the permittivity of the SiO2 substrate is taken as 2.133. In the x, y, and
z directions, perfectly matched layer boundaries are added to absorb the scattered light. The plane
wave with wavelength 633 nm illuminates the sample from the glass substrate side. Figure 2a,b show
the intensity distributions at the x–z plane of the metasurface under the incidence of LCP and RCP
light, respectively. The inset is the intensity distribution in the x–y plane at the focal plane (z = 8 µm).
We observe that a clear focal spot appears at z = 8.09 µm in the two cases, which is basically in
accordance with the designed position z = 8 µm. The slight difference is caused by the limited number
of slit antennas and the simulation accuracy, which restricts the FZP from ideal performance. The
intensity distributions in the focal plane further verify that the transmitted fields are indeed focused
into a point by the sphere metasurface lens. Under the incidence of x-linearly polarized (XLP) and
y-linearly polarized (YLP) light, the normalized intensity distributions at the x–z plane are shown
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in Figure 2c,d, respectively. We see that the metasurface also converges the transmitted wave into a
focus at z = 8.09 µm, because the linearly polarized light is the combination of LCP and RCP light.
The results indicate the polarization-independence feature of the designed FZP metasurface lens. For
a quantitative analysis of the focusing effect, the intensity profiles along the lines x = 0 and y = 0
through the focus are shown in Figure 2e,f. As can be seen from the figures, the curves match each
other exactly, which further prove the polarization-independent focusing feature. The full-width at
half-maximum (FWHM) of the focus spot is 552 nm, less than the incident wavelength of 633 nm, and
the depth of focus (DOF) is approximately equal to 2080 nm. For arbitrary linearly polarized light (45◦)
or elliptically polarized incident light, the normalized intensity distributions in Figure 2g,h show that
the transmitted light is both focused at the desired position z = 8.09 µm.Nanomaterials 2020, 10, x FOR PEER REVIEW 3 of 9 
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Figure 1. Schematic diagram of the Fresnel zone plate (FZP) metasurface lens designed for
polarization-independent focusing (a), where the inset is a metallic rectangular slit. (b) Phase
distributions of the binary phase FZP on its initial plane with f = 8µm for λ = 633nm. (c) Phase
modulation realized by changing the orientation angles of the slits for left-circularly polarized (LCP)
(blue) and right-circularly polarized (RCP) (red) light.

The frequency response of the FZP metasurface lens is analyzed by illuminating the FZP
metasurface lens with two different wavelengths of 532 and 730 nm. The normalized intensity
distributions in Figure 3a–d show that the focusing is still polarization-independent but the focal
lengths change slightly for these two wavelengths. The intensity profiles along the x-axis at the focal
planes are presented in Figure 3e, and the intensity profile curve for 633 nm is also presented for
comparison. At these three wavelengths, the FWHMs of the focus spot remain almost unchanged.
Therefore, we conclude that the proposed lens could operate in a broadband manner with good focusing
performance. The intensity profiles along the z-axis for different wavelengths are shown in Figure 3f.
The focal length decreases with the increase in the incident light wavelength. The corresponding focal
lengths for the 532 and 730 nm incident light are 9.7 and 6.7 µm, respectively.
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Figure 2. (a–d) Simulated intensity distributions at the x–z plane under LCP, RCP, x-linearly polarized
(XLP), and y-linearly polarized (YLP) incidence, respectively, and the inset shows the intensity
distribution in the x–y plane at z = 8.1 µm. The scale bar is 2 µm. (e) and (f) Transversal and longitudinal
intensity profiles through the focus. (g) and (h) Intensity distributions generated by linearly polarized
light (45◦) or elliptically polarized incident light.

There are a few previous studies that have investigated the polarization-independent metasurface
lens made up of subwavelength holes or rings. The phase of the transmitted wave or reflection wave
can be manipulated by varying the diameters of the holes or rings [34,35]. As the isotropic characteristic
of the hole or ring, they are insensitive to the polarization of incident light. It is no wonder that
the metasurfaces can realize polarization-independent focusing by combining such holes or rings to
achieve the desired phase profiles. Our design is based on the rectangular slit, which is anisotropic,
and the phase of the transmitted light depends on the incident polarization. In contrast to the slit
metasurface lens utilizing the phase profile of the traditional sphere lens [34], this design is able to
realize polarization-independent focusing due to the benefit of binary phase modulation. Without
the binary phase modulation, the slit antennas are distributed in either odd or even zones, which is
in analogy with the traditional amplitude FZP. The amplitude FZP lens has the same radius, focal
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length, and geometry of slit antennas as the binary phase FZP metasurface lens. Figure 4a–d show the
simulated intensity distributions generated by the even- type and odd-type FZP, respectively, under
LCP and RCP incidence. The corresponding normalized intensity profiles along the z-axis and along
the x-direction are compared in Figure 4e,f. It is noted that the peak intensity of the amplitude FZP
lens is about one quarter of that of the binary phase FZP metasurface lens, which is due to the fact that
only half-zone nanoslits constructively interfere at the focus. We have also calculated the focusing
efficiency by defining it as the ratio of the power integration of the focus (with a radius of just three
times the FWHM spot size) to the incident power [36]. For the binary phase FZP metasurface lens,
the focusing efficiency is calculated to be 4.1%. For the even- type and odd-type FZP, the focusing
efficiency is both 1.1%. Therefore, we concluded that the binary phase FZP metasurface lens considered
here has a higher focusing efficiency (about 4 times) than the amplitude FZP lens, as shown in Figure 4.
The proposed FZP metasurface lens has a much smaller volume than the traditional optical lenses
and can eliminate the dependence of focus on the polarization of incident light. The binary phase
modulation method avoids complex constraints of design. The metasurface lens can operate in a wide
bandwidth in the visible range. However, the focusing efficiency of the metasurface is lower than
those of traditional optical lenses. The efficiency could be significantly improved by enabling the lens
to work in the reflecting mode [6]. Thus, in principle, the efficiency of the metasurface lens can be
improved to the level of practical applications.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 9 
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Figure 4. Intensity distributions generated by the even-type (a,b) and odd-type FZP (c,d), respectively,
under LCP (a,c) and RCP (b,d) incidence. The corresponding normalized intensity profiles along the
x-axis (e), and along the z-direction (f).

Moreover, based on the proposed method, the multi-focus FZP metasurface lens can be realized.
The metasurface is divided into two regions, with one area corresponding to focal length f 1 and the
other corresponding to focal length f 2. The two types of nanoslit arrays are alternately arranged
in the designed region. A multi-focus FZP metasurface lens with two focal lengths, f 1 = 6 µm and
f 2 = 9 µm, is designed for λ = 633 nm light. Figure 5a,b show the simulated field distributions at the
x–z plane for LCP light and RCP light, respectively. The upper and lower panels in Figure 5a show the
intensity distributions at two focal planes. Two focuses at z = 5.97 and 9.22 µm are obtained for 633 nm
illumination at both polarizations, which is as expected in the original design. The ratio of the peak
intensity at the center of the two focal spots is about 1:0.75. Figure 5c–f show field distributions at the
x–z plane for LCP light and RCP light at 532 and 730 nm, respectively. The transversal and longitudinal
intensity profiles in the corresponding focal planes are presented in Figure 5g,h, respectively. We can
obtain that the FWHMs are 423 and 581 nm at the two focal planes of f 1 = 6 µm and f 2 = 9 µm for the
633 nm incident light, respectively. The focal lengths of the multi-focus lens decrease with the increase
in the incident light wavelength. Focal points can be clearly observed for the two cases, showing little
dependence on the incident polarizations. The multi-focus FZP metasurface lens has the advantages of
polarization-independence and broadband performance as well.



Nanomaterials 2020, 10, 1467 7 of 9

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 9 

 

 

Figure 5. Intensity distributions generated by multi-focus FZP metasurface lens for LCP (a,c,e) and 

RCP incident light (b,d,f) at 633 (a,b), 532 (c,d), and 730 nm (e,f). The upper and lower panels show 

the intensity distributions at two focal planes. The transversal (g) and longitudinal (h) intensity 

profiles in the corresponding focal planes. 

2. Conclusions 

In conclusion, we have demonstrated the polarization-independent metasurface lens based on 

the binary phase FZP. The metasurface lens can focus the incident light with any polarization state. 

The design of the lens is based on the phase modulation of the metal subwavelength slits. In 

comparison to the traditional amplitude FZP, our proposed metasurface lens has a much higher 

(about 4 times) focusing efficiency. Moreover, the metasurface lens can operate in a wide bandwidth 

in the visible range. In addition, a multi-focus FZP metasurface lens is realized. The method and the 

results in this paper may play important roles in designing polarization-independent metasurface 

devices.  

Author Contributions:  This manuscript was written by J.B., J.T., and X.L. The simulation was carried out by 

J.B., J.T., and X.L. The analyses and discussions of these obtained results were carried out by J.B. and X.L. All 

authors read and approved the final manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China (NSFC) (11804199, 

11704231) and Natural Science Foundation of Shandong Province, China (ZR2019PA017). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with 

phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. 

Figure 5. Intensity distributions generated by multi-focus FZP metasurface lens for LCP (a,c,e) and
RCP incident light (b,d,f) at 633 (a,b), 532 (c,d), and 730 nm (e,f). The upper and lower panels show the
intensity distributions at two focal planes. The transversal (g) and longitudinal (h) intensity profiles in
the corresponding focal planes.

2. Conclusions

In conclusion, we have demonstrated the polarization-independent metasurface lens based on
the binary phase FZP. The metasurface lens can focus the incident light with any polarization state.
The design of the lens is based on the phase modulation of the metal subwavelength slits. In comparison
to the traditional amplitude FZP, our proposed metasurface lens has a much higher (about 4 times)
focusing efficiency. Moreover, the metasurface lens can operate in a wide bandwidth in the visible
range. In addition, a multi-focus FZP metasurface lens is realized. The method and the results in this
paper may play important roles in designing polarization-independent metasurface devices.
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