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We experimentally observe polarization-locked vector solitons in a passively mode-locked fiber laser.

The vec-

tor soliton pulse is composed of components along both principal polarization axes of the linearly birefringent
laser cavity. For certain values of birefringence and pulse energy these components propagate with a con-

stant relative optical phase of +7/2, and hence the pulse has a fixed elliptical polarization state.

The linear

birefringence of the cavity is canceled by the nonlinear birefringence created by the unequal amplitudes of the

two polarization components.

This dynamic equalization of the phase velocities of the components results in
the stable propagation of an elliptically polarized vector soliton pulse.

Under different conditions we also ob-

serve the nonlinear instability of the fast principal axis as an intracavity pulse linearly polarized along the

slow axis of the cavity.

We present the experimental characterization of both the polarization-locked vector

soliton and the fast axis instability and discuss the nonlinear mechanism creating both phenomena. © 2000

Optical Society of America [S0740-3224(00)01003-1]

OCIS codes: 060.5530, 190.4370, 140.4050, 320.7090, 140.3500.

1. INTRODUCTION

The propagation of temporal solitons and solitonlike
pulses in nonlinear media has been the subject of consid-
erable theoretical and experimental research. This has
resulted in a wealth of interesting physical phenomena
and practical applications.!™ Soliton propagation is
typically addressed with a scalar theory; i.e., the vector
nature of the polarization state is ignored despite the fact
that all single-mode fiber (SMF) supports two orthogonal
polarization modes.! Furthermore, asymmetries in the
fiber waveguide caused during manufacturing, externally
applied stress, or bending lead to random birefringence
(both magnitude and principal axes orientation) in the
fiber.? Thus the polarization state of a (nonsoliton) pulse
in this environment evolves as its two components propa-
gate at differing phase velocities.® Unequal group veloci-
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ties result in a polarization-dependent splitting of the ini-
tial pulse. For typical fiber-optic communication
systemsthe random evolution of the polarization state
with propagation does not impose a significant impair-
ment if polarization-insensitive devices are used; how-
ever, pulse splitting resulting from unequal group veloci-
ties (polarization-mode dispersion) can cause significant
degradation.®

A fundamental soliton pulse propagates in fiber with-
out changes in either its pulse shape or its optical spec-
trum by means of balancing anomalous group velocity dis-
persion (GVD) with the self-phase modulation (SPM).
Optical fiber solitons were first predicted and are typi-
cally modeled as solutions to the scalar (linear polariza-
tion) nonlinear Schrodinger equation.> However, for a
complete treatment of pulse propagation in standard
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(non-polarization-maintaining) fiber, the differences in
the propagation velocities of both polarization modes as
well as nonlinear coupling mechanisms must be included.
Menyuk described the vector nature of nonlinear pulse
propagation in birefringent fiber with two coupled nonlin-
ear Schrodinger equations (CNLSE’s).” Theoretical in-
vestigations have shown that a stable pulse composed of
both polarization components can propagate as a single
vector soliton unit, overcoming their group velocity
difference.”® This effect has been experimentally
observed.'® The general term vector soliton refers to a
multidimensional entity that propagates in an invariant
or periodic manner in an otherwise destructive
environment.!’ A temporal pulse composed of orthogo-
nally polarized components with equalized group veloci-
ties is an example of a vector soliton. Since the two com-
ponents of this vector soliton pulse have a nonlinearly
induced common group velocity, we refer to this type of
vector soliton as a group-velocity-locked vector soliton.
Since the components of a group-velocity-locked vector
soliton do not necessarily have a common phase velocity,
its total polarization state evolves according to its bire-
fringent environment. In a randomly birefringent fiber
the polarization state evolution is correspondingly ran-
dom. Evangelides et al. showed that, for this case, the
Stokes vector of the pulse’s polarization state, on average,
covers the entire Poincaré sphere during the random
evolution.'> Furthermore, it has been shown that the
group-velocity-locked vector soliton is well approximated
by a linearly polarized soliton pulse provided that the
nonlinear refractive-index coefficient is properly
modified.”!?

For low-birefringence conditions in which the linear bi-
refringence is comparable with potential nonlinear bire-
fringence, the group velocity difference is assumed to be
negligible. Within this regime elliptically polarized vec-
tor soliton solutions of the CNLSE’s have been found that
maintain both their temporal and polarization state pro-
files during propagation within a Dbirefringent
environment.'®1® These stationary, single solitons solu-
tions are composed of two orthogonally polarized and op-
tically phase-locked components and form a class of vector
solitons called phase- or polarization-locked vector soli-
tons (PLVS). For these solutions the relative phase be-
tween the components is locked at = #/2, but the polariza-
tion state profile across the pulse is not uniform.
However, that profile is invariant with propagation de-
spite the birefringent environment in contrast to the
group-velocity-locked vector soliton. The elliptical polar-
ization state of the pulse in conjunction with the SPM,
cross-phase modulation (XPM), and the coherent energy
coupling (CEC, also known as four-wave mixing) creates a
nonlinear birefringence that dynamically balances the
linear birefringence. This balance, similar to that be-
tween the GVD and SPM of a fundamental soliton, en-
ables the PLVS pulse to propagate without changes to its
polarization state.

In this paper we describe in detail the experimental ob-
servation and characterization of a PLVS in an optical-
fiber laser cavity.!® Under the proper conditions we ob-
serve the formation of a PLVS pulse that propagates
without change of its polarization state within a linearly
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birefringent, passively mode-locked fiber laser cavity.
The optical phase between the orthogonally polarized
components along the principal birefringent axes of the
cavity is measured to be fixed at *#/2. The difference
between the intensities of the components, the nonlinear
birefringence, depends directly on the magnitude of linear
birefringence. These results are in qualitative agree-
ment with numerical solutions for the PLVS.2® The de-
pendence of the spectral widths of the two components of
the PLVS on birefringence and pulse-energy-dependent
behavior is also shown to be in qualitative agreement
with the numerical PLVS solutions.

The PLVS pulses are solutions of the conservative
CNLSE’s, whereas the laser is not a conservative
system.'*"1®  However, the magnitude of the perturba-
tions to the pulse from the elements of the laser cavity are
relatively small in this laser.?’ A companion paper in-
vestigates this difference through numerical simulation of
the entire laser system described here, including the sig-
nificant nonconservative effects and a direct comparison
with an analogous conservative system.2’ These results
indicate that the solutions to this nonconservative laser
system have much in common with the PLVS pulse solu-
tions of a conservative, lossless birefringent fiber. 41820
Both conservative and nonconservative results are com-
pared with the experimental measurements and are de-
scribed within the companion paper.?°

The PLVS solutions have been found to be weakly
unstable.’®"17  Therefore, for the indefinite propagation
of the PLVS pulse within the laser cavity, this fragile bal-
ance between the linear and the nonlinear birefringence
requires a stabilizing mechanism able to suppress pertur-
bative effects. Numerical analysis shows that the contri-
bution of the XPM and the CEC provides the negative
feedback mechanism necessary to prevent the growth of
random perturbations.’®'"?°  Furthermore, the damping
of perturbations is believed to be the result of the noncon-
servative effects of the laser and mode-locking mecha-
nism and is addressed by the companion paper.?

For different regions of laser cavity birefringence we
observe a second effect: the nonlinearity-induced insta-
bility of the polarization state of light linearly polarized
along the fast axis of linearly birefringent fiber. This ef-
fect has been theoretically predicted for both cw?? and
soliton propagation.?®> This instability arises when the
magnitudes of the linear and the nonlinear birefringences
are comparable and destabilizes the polarization state of
a pulse polarized along the fast axis. Conversely, a po-
larization state along the slow axis is stable. This effect
is clearly manifested in our fiber laser as a pulse with a
linear polarization state locked along the slow axis of the
cavity. Instability of the fast axis has been observed in a
single-pass transmission experiment in which the polar-
ization state of a soliton evolved away from the fast
axis.?* In contrast to a single-pass experiment, the pulse
in the laser effectively propagates an infinite distance, al-
lowing the instability to fully mature.

Here we present the experimental observation of PLVS
pulses. Before presenting the details, we briefly outline
the theoretical background, which is also fully developed
in Ref. 20. Then we describe our experiment and mea-
surement techniques, present the characterization of the
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PLVS pulse, and qualitatively compare these findings
with the predictions of the numerical solutions. We dis-
cuss the important stabilizing mechanism formed by the
XPM and the CEC effects, which suppress perturbations
to the PLVS. We then present the experimental results
illustrating the instability of the fast axis and discuss the
parameters that govern the domination of the instability.

2. THEORETICAL BACKGROUND

The full vector model describing the propagation of two
components orthogonally polarized along the principal
axes of a lossless fiber is given by the conservative
CNLSE’s”:

du u 1 é%u

i— +i6— + yu + — —
Jz gt 7 2 gt?

+ (Ju)? + Alv|®Hu + Bv?u* =0, (1a)

Jv Ju 1 d%v
i——id—— yw+ ——
oz a7 2 at?

+ (Jv|?2 + Alu|*)v + Bu?v* =0, (1b)

where u and v are the component envelopes along the
slow and the fast axes, respectively; ¢ and z are the nor-
malized time and distance; 25 and 2y are the normalized
group and phase velocity differences, and A and B are the
XPM and the CEC coefficients, respectively.

The linearly polarized fundamental soliton solutions
include

u(r,z) = Uysech(r — 8z)exp(iyz), v(7,z) =0, (2)

u(r,z) =0,

For an isotropic and conservative medium, B = 1
— A. When A = 1 (the SPM and the XPM coefficients
are equal, and CEC vanishes) and 6§ = 0, the CNLSE’s
are integrable with stationary phase-locked solutions.?’
The experimental observation of these simple hyperbolic-
secant-shaped solutions, known as Manakov solitons, is
difficult, because A # 1 for most low-loss materials.
Through engineering of the SPM and the XPM coeffi-
cients in an anisotropic waveguide (A ~ 0.95), spatial
Manakov solitons (also governed by analogous CNLSE’s
with the same solutions) have been observed.?® In isotro-
pic media such as standard SMF, A = 2/3 and rigorous
temporal Manakov solitons cannot occur.

When the linear birefringence is significantly larger
than the nonlinear birefringence, the relative optical
phase between components varies so rapidly that all
phase-dependent effects effectively average to zero with
propagation.” Thus the CEC and the phase velocity dif-
ference terms of the CNLSE’s can be ignored, resulting in
only incoherent XPM coupling between the two compo-
nents. Solutions to this case approximate Manakov soli-
tons, especially for elliptically birefringent fiber where A
can be engineered to be unity.” Within this paper this
condition is referred to as high birefringence and occurs,
for example, in SMF with pulses of peak powers of less
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than 1 W. For this case, solutions of the CNLSE’s corre-
spond to two pulses, orthogonally polarized along the bi-
refringent axes, which mutually trap each other and
propagate as a single nondispersing vector soliton
unit.51° The XPM coupling causes the central optical
frequencies of one component to increase and the other to
decrease. In conjunction with a frequency-dependent
group velocity these shifts equalize their group
velocities.” In the absence of the nonlinearity the compo-
nents of a pulse will retain their common central fre-
quency and travel at unequal group velocities resulting in
the temporal splitting of the two components. Owing to
the large phase-velocity difference between components,
the polarization state of this vector soliton pulse evolves
rapidly with propagation. Nevertheless, at any given
point, the same polarization state applies to the entire
pulse, since the two components have the same shape and
phase profile.> Standard soliton communications sys-
tems operate in this high-birefringence regime and use
group-velocity-locked vector soliton pulses. Hence these
systems are relatively immune to the detrimental pulse-
splitting effects of random and unequal group velocities
(polarization-mode dispersion), which often impair the
performance of linear (nonsoliton) communication
systems.6’27

In the low-birefringence case the linear birefringence is
comparable with the possible nonlinear birefringence (be-
cause it depends on the polarization state), and the differ-
ence between the group velocities is typically negligible
and ignored. Furthermore, since the relative optical

v(7,z) = Vysech(7r + dz)exp(iyz). (3)

phase, phase velocity difference, and CEC terms must be
retained in the CNLSE’s, the components are both inco-
herently and coherently coupled. For this case theoreti-
cal analysis has found three lowest-order (nodeless) sta-
tionary solutions of the CNLSE’s: the two fundamental
soliton solutions linearly polarized along either the fast or
the slow axes given by Eqs. (2) and (3) and a (numerical)
solution with an elliptical polarization.’*™*6 This ellipti-
cally polarized soliton is a PLVS, since it contains energy
in both components and propagates without change of its
polarization state. The components have a relative
phase of *7/2 but are not necessarily of the same func-
tional shape; thus the polarization state is not uniform
across the pulse.'*™16  Other stationary solutions of the
CNLSE found to date are of higher order'"'3'6 and have
at least one node in one or both components. In contrast
to solitons linearly polarized along the fast axis whose po-
larization state has been found to be unstable,?? the ellip-
tically polarized soliton solutions possess a weak, oscilla-
tory instability.4~17

For PLVS propagation the phase velocities of the two
components must be equal so that the polarization state
remains unchanged. This is analogous to the require-
ment of equal group velocities for a group-velocity-locked
vector soliton to avoid polarization-dependent splitting.



Collings et al.

As mentioned above, the nonlinear birefringence is cre-
ated by an unequal distribution of energy between com-
ponents and compensates the linear birefringence. This
balance effectively equalizes the phase velocities of the
components. Equivalently, because of the linear birefrin-
gence, the refractive index of the slow axis is greater than
that of the fast axis. With an asymmetric intensity dis-
tribution between axes, the nonlinear contribution to the
indices is correspondingly asymmetric. If the larger in-
tensity component is along the fast axis, the nonlinear
contribution to the index of the fast axis is greater than
that of the slow axis thereby reducing the difference be-
tween the total indices. The balance occurs when the dif-
ference between the nonlinear index contributions is
equal and opposite to the index difference created by the
linear birefringence.

The nonlinear birefringence depends on the difference
between the intensities of the components or, equiva-
lently, the ellipticity of the polarization state. Thus, with
the proper balance, the ellipticity of its polarization state
depends directly on the linear birefringence, yv. When
the profiles of both components are approximated to be
equal, this relationship can be quantized and is found to
be linear and given by

V2 = |U” = (vg), 4

where U and V are the time-integrated amplitudes of u
and v, g = 4/3q(1 — A), and ¢ is a soliton parameter
that is inversely proportional to the soliton period and
proportional to the pulse energy squared.'*'® Equation
(4) also illustrates that |V|2 = |U|? with the component
along the fast axis possessing the greater intensity. The
magnitude of the nonlinear birefringence of a pulse is lim-
ited by its energy and width (implicitly here through nor-
malization) such that a PLVS cannot exist for a linear bi-
refringence of y > (|V|?2 + |U|?g. Equivalently, this
limit occurs as |U|%2 — 0, and the polarization state ap-
proaches linear polarization along the fast axis.

3. EXPERIMENT

The fiber laser (described in Ref. 21) and the experimen-
tal setup are shown in Fig. 1. The laser consists of two
lengths of standard SMF and a 17-cm piece of (single spa-
tial mode) Er/Yb fiber providing gain.2! The round-trip
cavity is approximately 430-cm in length, which corre-
sponds to a 48-MHz repetition rate. The mode locking is
started and stabilized by a semiconductor passive satu-
rable absorber known as a saturable Bragg reflector.?®
The saturable Bragg reflector is butt coupled to one end of
the linear cavity acting as a saturable high-reflecting mir-
ror. The solitonlike pulse shaping occurring within the
cavity dominates the characteristics of the steady-state

FPC FPC1 FPC2
OO0

Fig. 1. Schematic of the fiber laser cavity and output diagnos-
tics. FPC, fiber polarization controller; PSA, polarization-state
analyzer; WDM, wavelength division multiplexer; RFSA, radio-
frequency spectrum analyzer; OC, output coupler.
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Fig. 2. Polarization-independent optical spectrum of the PLVS

(curve) and sech?(v) function fit (circles) versus frequency, v, plot-
ted on both log (a) and linear (b) scales.

pulse.?! The average GVD of the cavity, consisting of 396
cm of SMF (+17 ps/nm/km) and 34 cm of Er/Yb (—=9.5 ps/
nm/km), is +14.5 ps/nm/km (anomalous). Mode locking
produces stable 350—800-fs pulses (full-width at half-
maximum) for pulse energies (controlled by variation of
the pump power) of 160—-65 pJ. We estimate the total
saturated gain and loss per round trip to be <3%. The
saturated reflectivity of the saturable Bragg reflector is
approximately 99.5% with <0.5% saturation induced
modulation of the absorption. We estimate that
polarization-state-dependent interactions between the
saturable Bragg reflector and pulse are small and do not
significantly impact the polarization state of the pulse.
When the saturable Bragg reflector is replaced with a
standard dielectric high reflector, the laser operates in cw
mode.

The soliton period, assuming a linearly polarized pulse,
is given by!

’IT’TO2

29 = —— 5

© 2l ®

where 7 is the pulsewidth and B, is the GVD. For the
shortest pulse (350 fs, full-width at half-maximum), z,
= 3.5m, which is roughly equivalent to the round-trip
length of the cavity. For the longest pulse, z, ~ 20 m.
Also, the perturbations to the pulse (i.e., from gain, loss,
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GVD) are small. For these reasons the solitonlike pulse
does not significantly respond to the local perturbations.??
Therefore we approximate this system as a uniform me-
dium with parameters characteristic of the average
cavity.2®3?  This assumption is further supported by the
relatively small sidebands in the optical spectrum (<0.1%
of total energy; see Fig. 2).31:32

To allow for adjustment of the linear birefringence of
the cavity, a portion of the cavity fiber is wrapped around
two 5.5-cm-diameter fiber polarization control paddles
with three wraps each (see Fig. 1). For SMF fiber each
paddle provides approximately 7/2 (\/4-wave plate) total
linear retardation at 1550 nm with the fast axis in the
bend plane of the fiber.?®> We measure the azimuthal
angles, #; and 65, of the two paddles and the directions of
their fast axes relative to an arbitrary constant reference
(e.g., the table). The remainder of the cavity is mechani-
cally secured such that the magnitude and the principal
axes of the residual birefringence (owing to imperfections
in the fiber, bends, strains, etc.) of the remainder of the
cavity are also constant. Typically, the residual birefrin-
gence is less than 7/4. Therefore the total cavity bire-
fringence is dominated by the birefringence present in the
paddles and is variable from 0 to roughly 27 by proper ad-
justment of #; and 6. Approximately 60% of the cavity
fiber is contained within the fiber polarization controller
paddles, and, as stated above, these lengths are consider-
ably shorter than the soliton period of the intracavity
pulse. Therefore we characterize the total cavity bire-
fringence by its average. This assumption is experimen-
tally justified below.

4. CAVITY BIREFRINGENCE
MEASUREMENT

Since the cavity retardance is typically <27 per round
trip and the polarization beat length! is comparable with
the nonlinear length, the laser is in the low-birefringence
regime. For most values of total cavity birefringence, the
polarization state of the steady-state intracavity pulse
evolves during propagation, owing to the linear birefrin-
gence. However, since the pulse does not suffer
polarization-dependent splitting from the negligible
group velocity difference and is composed of components
along both principal axes, it is by definition a group-
velocity-locked vector soliton. The output pulse train
then consists of a series of pulses with a polarization state
evolving from one pulse to the next. The change in the
polarization state between adjacent pulses in the train is
the round-trip evolution of the polarization state of the in-
tracavity group-velocity-locked vector soliton pulse.

We characterize the rate of this evolution by passing
the output through a linear polarizer and detecting the
transmitted intensity with a polarization-insensitive fast
photodiode.?* A fiber polarization controller is inserted
before the polarizer (see Fig. 1) to null any residual bire-
fringence present in the fiber between the output coupler
and the linear polarizer so that the polarization state in-
cident on the polarizer coincides with that at the output
coupler (see Appendix A). Figure 3 depicts how this
polarization-state evolution is mapped into an amplitude
modulation of the pulse train by the linear polarizer.

Collings et al.

(a

e

BN ZOJOXNNDOZ,/ZOOXNN

(©)

L ]
Frt " Time VA '
A A
(d)
6 A 1
Frequency  ©

Fig. 3. (a) Schematic of polarization-independent output pulse
train of frequency 1/7c. b) Schematic of the polarization states
of the pulses of (a). (c) Schematic of the pulse train of (a) when
passed through a linear polarizer aligned along a 45-deg angle or
parallel with the polarization state of the leftmost pulse. The
period of the intensity modulation of the pulse train is 97c or
1/A. (d) Schematic of the frequency spectrum of (c¢) consisting of
a component at the repetition frequency of the pulse train (1/7,)
with sidebands of separation A.

To demonstrate this mapping analytically, let E(z)
and E,(z) be the electric fields along the principal bire-
fringent axes of the cavity at the center of the pulse (in
normalized units of length) as it propagates through the
cavity (neglecting nonlinear effects),

E(z) = Egexp(iyz), (6a)
Ey(z) = Egexp(—iyz). (6b)

A linear polarizer of azimuthal angle 6 [relative to the azi-
muthal angle of E(z)] sums the projections of E;(z) and
Ey(z) along 6. The resulting field is

E(z) = cos bE(z) + sin OE,(z). (7
The photodiode detects the intensity 1(¢),
I(z) = |[E(2)|? = E*[(cos 6)? + (sin )2
+ 2 cos 0sin O cos(2yz)], (8)
I(z) = E,*[1 + 2 cos 6sin 6 cos(2yz)]. 9

Thus the signal current from the photodiode [see Fig. 3(c)]
consists of a pulse train with an amplitude modulation of
frequency A = yc/nm, designated the polarization evolu-
tion frequency (PEF), where c is the speed of light and n is
the refractive index. Monitored with a rf spectrum ana-
lyzer, this signal consists of frequency components at the
cavity repetition rate and its harmonics, each possessing
sidebands with separations of A [see Fig. 3(d)]. The prod-
uct of the PEF and the round-trip period of the cavity is
the number of round trips required for the pulse to un-
dergo a full evolution (a total of 27 retardance). Hence
the magnitude of the total round-trip cavity birefringence
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is B = 27wA 1, = 2[,y (in radians) where 7, and [, are the
round-trip cavity length and period, respectively, which is
easily measured by determination of A. For a cavity bi-
refringence of larger than 7 the PEF is aliased below
1/(27,), since the polarization state is sampled only once
per round trip.

The general structure of the PEF as a function of the
birefringence during cw and mode-locked operation (when
the output polarization state is evolving and not locked) is
well understood with a simple linear birefringence Jones
matrix formalism.3* All measurements of the cavity bi-
refringence magnitude are performed during cw opera-
tion to avoid any nonlinear contribution to the evolution.

To determine the azimuthal angles of the principal bi-
refringent axes of the average cavity, we null the magni-
tude of the PEF components by rotating the angle of the
linear polarizer. When the modulation or PEF compo-
nents vanish, the angle of the polarizer is aligned with a
principal axis [e.g., # = 0 or 90 deg in the example of Eq.
(9)]. This measurement does not reveal whether the par-
ticular axis is fast or slow. The ability to null the PEF
components indicates that the nonlinearity of the pulse
does not significantly respond to the local birefringence
but rather to the average of the total cavity. If the non-
linearity did respond to the local birefringence, or more
accurately to the local polarization state, eigenvalues of
the system (the principal axis) could not be defined, be-

180

0 45

90
o, (deg.)

Fig. 4. Plot of PEF versus 6; and 6, for (a) high and (b) low pulse energies. The color gradient represents the PEF magnitude (nor-
malized by 1/27,) with black and white indicating regions of locked linearly and elliptically polarized output, respectively.
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cause of the nonlinear birefringence causing local
polarization-state-dependent changes. This justifies av-
eraging the total cavity birefringence as well as treating
the pulse as two linearly polarized components along the
principal axes of the average cavity.

5. POLARIZATION-STATE LOCKING

We observe that, for some values of 6; and 6,, the
polarization-state evolution ceases and all of the pulses in
the train possess a common polarization state.?* Conse-
quently, the PEF components vanish for all orientations
of the polarizer. Figure 4 plots the PEF as a function of
0, and #,. The polarization-state locking occurs when
the laser is mode locked for nonzero amounts of birefrin-
gence; whereas polarization-state evolution occurs for the
same amount of birefringence under linear (cw) opera-
tion. Since the polarization state of the output pulse
train is constant, we measure that state with a
polarization-state analyzer. A fiber polarization control-
ler is inserted before the polarization-state analyzer (see
Fig. 1) to compensate for the residual birefringence
present in the fiber between the output coupler and the
polarization-state analyzer such that the polarization
state measured by the polarization-state analyzer is con-
sistent with that at the output coupler (see Appendix A).
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We observe two distinct types of locked output, one lin-
early and one elliptically polarized. In Fig. 4(a) the re-
gions where the linearly and the elliptically polarized
locking occur are denoted by black and white, respec-
tively. As is shown below, the elliptically polarized lock-
ing corresponds to the formation of a PLVS within the
cavity and the linearly polarized locking results from a
principal axis instability.

6. POLARIZATION-LOCKED VECTOR
SOLITONS

To characterize the pulse within the elliptically locked re-
gion, we fix #; and measure the polarization state of the
output with the polarization-state analyzer as a function
of 6, across the elliptically polarized locking region.
However, first we replace the saturable Bragg reflector
with a high reflector and operate the laser in cw mode.
Using a sensitive rf spectrum analyzer and environmen-
tal perturbations (i.e., tapping the table), which cause
transient mode beating that manifests the PEF, we mea-
sure the PEF and hence the birefringence. We also de-
termine the angles of the principal cavity axes as a func-
tion of 6y. This measurement reveals that the
elliptically polarized locking region is centered about a
point of zero birefringence. Estimating the total birefrin-
gence from the known birefringence of the individual cav-
ity elements verifies that the total birefringence is indeed
zero and not 2.

With the laser mode locked, we measure the complete
polarization state (all Stokes parameters) of the output as
a function of 6, with the polarization-state analyzer. The
elliptically locked output is either left or right handed, de-
pending on the direction (in #; and 6, space) in which the
locking region was entered. The amplitude and relative
phase of the components along the principal axes are de-
termined by projection of the total measured polarization
state onto the previously measured principal axes. The
difference between the intensities of the components and
their relative phase are plotted in Fig. 5 as a function of
the measured total cavity birefringence for both types of
elliptical polarization handedness. The linear depen-
dence of this difference on birefringence, characteristic of
a PLVS as shown by Eq. (4), is clearly present. Further-
more, the measured relative phase is approximately con-
stant at +7/2 or — /2, also characteristic of a PLVS. Fi-
nally, the ellipticity and intensity difference is essentially
equal for both types of handedness, providing strong evi-
dence that the compensation mechanism is indeed the
nonlinear birefringence.

The relative phase between components [see Fig. 5(b)]
is approximately constant at either + /2 or —7/2 over the
entire locking region. The locking is equally stable with
both phase values. When the birefringence is varied so
that the output polarization becomes unlocked before re-
turning to the locking region, the relative phase can as-
sume either value. For a given birefringence both polar-
ization states with *=7/2 relative phases have the same
ellipticity (but opposite handedness) and hence the same
intensity difference. Since the intracavity pulse is made
up of two components and maintains a fixed relative op-
tical phase and polarization state despite the linear bire-
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fringence, this intracavity pulse is a PLVS. In contrast,
the polarization state of a linear pulse would evolve.

As can be seen in Fig. 5(b), the relative phase deviates
from the expected value of =7/2 at large values of cavity
birefringence. We believe this deviation to be an artifact
of the location of the output coupler relative to the loca-
tion of the majority of the “lumped” birefringence at the
opposite end of the cavity (see Fig. 1). Since the balance
struck between the average linear and nonlinear birefrin-
gences, and the nonlinear birefringence is effectively dis-
tributed throughout the cavity, local deviation of the rela-
tive optical phase away from *#/2 occurs. Furthermore,
this deviation is expected to be greater with increasing to-
tal linear birefringence and intensity difference as evi-
dent in Fig. 5(b).

The region of cavity birefringence over which the PLVS
is observed is power dependent, characteristic of a nonlin-
ear locking mechanism. The intracavity pulse energy is
controlled when the pump power is varied. Figure 6
plots the location of the edge of the PLVS locking region
versus pulse energy and cavity birefringence. At this
edge, the normalized intensity difference is typically
within 5% of unity. This dependence is in agreement
with Eq. (4), since higher levels of birefringence cannot be
compensated once the normalized intensity difference
reaches unity. Thus the maximum birefringence that
may be compensated, and for which a PLVS can exist, is
dependent on the square of the pulse energy. Experi-
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Fig. 5. (a) Intensity difference between the components for both
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optical phases versus total round-trip cavity retardance, 8.
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Fig. 7. Measured optical spectral widths of component along the
fast axis (circle) and slow axis (square) versus total cavity retar-
dance.

mentally, the location of the edge of the PLVS locking re-
gion displays this form of dependence as indicated by the
solid curve in Fig. 6.

In Fig. 2 the shape of the (polarization insensitive) in-
tensity optical spectrum as a function of frequency v, is
compared with that of a sech?(v) function with excellent
agreement over 4 orders of magnitude. The numerical
PLVS solutions of the CNLSE’s possess a nonconstant po-
larization state across the pulse shape as the spectral and
corresponding temporal widths of each components di-
verge with increasing birefringence.'*'® For zero bire-
fringence, the polarization state is circular and the two
profiles are identical. For increasing birefringence the
component along the fast axis of higher intensity becomes
short in time and spectrally wider.!*'® This behavior is
also present in the experimental PLVS. Replacing the
photodiode with a polarization-insensitive optical spec-
trum analyzer allows for measurement of the optical spec-
tra of each component by alignment of the polarizer with
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a principal axis of the cavity. The measured spectral
widths for both components are plotted in Fig. 7. As ex-
pected, near zero birefringence, the two components are of
comparable widths. With increasing cavity retardance,
the component along the fast axis maintains a wider spec-
tral width, also in agreement with theory.'16-2°

7. STABILIZATION MECHANISM

The boundary of the polarization-locking region is hyster-
etic. Figure 8 illustrates this hysteresis with a plot of the
PEF (PEF = 0 indicates PLVS) versus both increasing
and decreasing 6;(0, fixed). Near this boundary the la-
ser is actually tri stable with three possible states of op-
eration: unlocked (polarization evolving) and locked
(PLVS) with =7/2 relative optical phases. This hyster-
esis suggests the important role that stability plays in the
formation of the intracavity PLVS.

The existence of the PLVS depends on the delicate bal-
ance of the linear and the nonlinear birefringence as well
as the gain and the loss. Its stability requires the sup-
pression of both amplitude and phase perturbations. A
change in a component’s amplitude translates into a con-
stant drift in the components’ relative phase through the
unbalanced linear and nonlinear birefringences, resulting
in polarization evolution. Likewise, a perturbation to the
relative phase causes energy transfer between compo-
nents through the CEC. This, in turn, results in an am-
plitude perturbation. Therefore, since the PLVS is stable
in the cavity, a mechanism stabilizing the PLVS against
perturbations must be present.?’

The combined action of the CEC, SPM, and XPM pro-
vides such a negative feedback mechanism. The CEC
transfers energy between components with a direction
and magnitude that depend on the relative phase. For a
relative phase of =#/2 and for the proper balance be-
tween the nonlinear and the linear birefringences, the net
energy transfer is zero. Thus, provided that the amount
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Fig. 8. PEF versus 6, (circles, 0, increasing; triangles, 6; de-
creasing; 6, held constant) illustrating hysteresis at the bound-
ary of the PLVS locking region. Elliptical polarization locking
(PLVS) is represented as PEF ~ 0 as the data sets are verti-
cally offset in the PLVS region for clarity.
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Fig. 9. Schematic of the amplitudes of the two components
(dashed and solid curves) and relative phase between compo-
nents illustrating the interplay and the oscillation between am-
plitude and relative phase perturbations as a function of propa-
gation distance.

of nonlinear birefringence is correct to compensate the
linear birefringence, a relative phase of +7/2 represents a
stationary point, in agreement with the experimentally
observed relative phase of the PLVS. Perturbations
away from this stable point are corrected by the interac-
tion of the SPM, XPM, and CEC. A relative phase per-
turbation causes a nonzero net energy transfer by means
of the CEC from the component lagging in phase to the
component advanced in phase. With a higher intensity,
this advanced component suffers a larger nonlinear phase
shift than the lagging component (the SPM coefficient is
larger than the XPM coefficient). The increased nonlin-
ear phase shift, equivalent to a decrease of the phase ve-
locity of the advanced component, corrects the initial
phase perturbation.

An amplitude perturbation causes the component with
the increased intensity to lag in phase, owing to its in-
creased nonlinear phase shift. Energy is then trans-
ferred through the CEC, as before, to the advanced com-
ponent, which is the component with the decreased
amplitude, and the perturbation is corrected. Thus,
these combined actions form a negative feedback system
by providing a restoring force toward a relative phase of
+7/2, which balances the nonlinear and the linear bire-
fringences.

This mechanism, however, provides only a restoring
force and offers no damping of perturbations. Under
these circumstances, initial perturbations oscillate about
the central stationary point. The initial disturbance
evolves from perturbations in the relative phase to the
amplitudes as depicted in Fig. 9. This behavior is analo-
gous to an oscillating pendulum transferring the initial
perturbation between displacement and velocity. Nu-
merical simulations of this conservative case exhibit this
oscillatory behavior.!® However, since the experimen-
tally observed PLVS are stationary and stable, perturba-
tions must be damped and dispersed. We conjecture that
the nonconservative and dissipative effects of the laser
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are responsible for the suppression of these oscillations.
Numerical simulations of this laser incorporating the
saturable gain, loss, gain bandwidth, and saturable ab-
sorption show polarization locking with stable, nonoscil-
latory behavior.20-30

8. FAST AXIS INSTABILITY

Linear polarization along the fast axis has been shown to
become unstable when the nonlinear birefringence is com-
parable with the linear birefringence (low-birefringence
regime).?%2627  For example, with light linearly polarized
along the fast axis, the nonlinear refractive-index contri-
bution can increase the total index of the fast axis such
that it is comparable with that of the slow axis. Under
these circumstances the fiber can become effectively iso-
tropic. However, in an isotropic nonlinear medium,
small, random variations in the state of polarization
cause further polarization-state evolution (rotation) re-
sulting in the instability of the polarization state of a soli-
ton polarized along the fast axis.

However, if the optical field is linearly polarized along
the slow axis, the nonlinearity increases the total index of
the slow axis and results in an effectively larger total bi-
refringence. Small, random variations to the linear bire-
fringence are now less likely to significantly alter the to-
tal (linear and nonlinear) birefringence of the fiber, and
the light continues to propagate linearly polarized along
the slow axis.

In our laser the instability of the fast axis is manifested
as a locked output polarization, linearly polarized along
the slow axis. This locking is depicted as the black re-
gions in Fig. 4. However, the measurement of the cavity
principal axes (as described in Appendix A) does not re-
veal which axis is fast and which is slow. Within the
PLVS region the identity of the measured axes is deter-
mined, since the higher-intensity component must be
along the fast axis for the nonlinear and the linear bire-
fringence to cancel each other. Beginning within the
PLVS locking region, #; and 6, are varied along a trajec-
tory toward a linearly polarized locking region while the
angles of the fast and the slow axes are tracked. With
this method, the fast and the slow axes can be identified
for all #, and 6,. Figure 10 shows a plot of the angle of
the slow axis, the angle of linearly polarized locked out-
put, and birefringence magnitude as a function of 6,
showing that, within the linearly polarized locked re-
gions, the output polarization is aligned with the slow
principal axis of the cavity. The linearly polarized out-
put can be nulled by a crossed polarizer to 35 dB, again
indicating that the polarization state varies by less than
0.04% across the pulse shape. Note that this measure-
ment does not determine the degree of linearity of the
output polarization state but simply the uniformity of the
polarization state across the pulse.

The region of birefringence where the linearly polarized
locking occurs is pulse energy dependent as shown in Fig.
11. For a large pulse energy the region is larger and cen-
tered about a larger birefringence. As the pulse energy
decreases, both the center of the region and its size de-
creases. This behavior can be understood when we com-
pare the magnitudes of the linear and the nonlinear bire-
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Fig. 11. Plot of the linearly polarized locking region versus in-
tracavity pulse energy and round-trip birefringence, 8.

fringences. For the case of a large pulse energy and/or
small linear birefringence the nonlinear birefringence is
larger than the linear birefringence. Since the nonlinear
birefringence is polarization-state dependent, it can sig-
nificantly enhance or overcompensate the linear birefrin-
gence depending on its local polarization state. Thus the
evolution of the polarization is due to both the linear and
the nonlinear birefringence with neither axis being
stable. In this regime the PEF depends significantly on
pulse energy, since both the linear and the nonlinear bi-
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refringences are contributing to the evolution of the polar-
ization state. If the birefringence is increased or the
pulse energy is decreased, so that the linear birefringence
is significantly larger, the nonlinear birefringence is not
large enough to significantly increase the total birefrin-
gence when the polarization is aligned with the slow axis.
Hence the slow axis is no longer stable. Since the non-
linear birefringence is related to the pulse energy through
the peak power, the magnitudes of linear birefringence
where the stability transitions occur are naturally pulse
energy dependent, specifically, decreasing with pulse en-
ergy. This dependence is confirmed in Fig. 11.

Linearly polarized locking also occurs where the net
cavity birefringence is greater than 7 but less than 27;
however, in these regions the linearly polarized output is
aligned along the fast axis. We conjecture that since the
nonlinear effects of the pulse can respond only to the av-
erage birefringence of the cavity, a fast axis with a bire-
fringence of 27 — € (where 7 < € < 27), can appear to
the nonlinear pulse as an effective slow axis with a bire-
fringence magnitude of e. Thus the relative phase be-
tween components can slip by 27 each round trip. To
achieve ~27 of average cavity birefringence within the
cavity, the fiber polarization controller paddles must
dominate the total cavity birefringence, since each offers
only a retardation of 7 (round trip). Therefore the large
birefringence is lumped into approximately half the cav-
ity with the 27 phase slip occurring on a short length
scale with respect to that of the nonlinearity.

9. CONCLUSION

In conclusion, we have experimentally observed
polarization-locked temporal vector solitons in an optical-
fiber laser. The perturbations of the laser are small and
occur over lengths short in comparison with the soliton
period such that the pulse samples only the averaged
characteristics of the cavity. With these small perturba-
tions the system approaches a conservative system.
Measurements reveal a +7/2 relative phase between the
orthogonally polarized components of the pulse. The in-
tensity difference, pulse energy dependence, and differ-
ence of spectral widths of the experimental pulses agree
with theoretical predictions for the PLVS. The interac-
tion of the SPM, XPM, and CEC provides a stabilizing
mechanism supplying phase-sensitive negative feedback
for perturbation correction. In addition, the instability of
the fast axis is clearly observed as the locking of the po-
larization along the slow axis.

APPENDIX A: NULLING THE
BIREFRINGENCE BETWEEN THE OUTPUT
COUPLER AND POLARIZATION-

STATE ANALYZER/POLARIZER

To null or compensate all residual birefringence between
the output coupler and the polarization-state analyzer
and the linear (primary) polarizer (see Fig. 1), all fiber is
fastened to the optical table to prevent any movement and
change of its birefringence. Also, a bulkhead-style fer-
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rule connector fastened to the optical table is used to
couple the connector coated with the output coupler with
the uncoated connector. This coupling assembly allows
the output coupling connector to be removed without dis-
turbing the position and the birefringence of any of the fi-
ber between the output coupler, polarization-state ana-
lyzer, and polarizer. The free-space output from a second
laser source is passed through a second linear polarizer
(launch polarizer) and coupled into the uncoated connec-
tor. Fiber polarization controller #1 is adjusted until the
polarization state at the polarization-state analyzer cor-
responds to that created by the launch polarizer. The
launch polarizer is rotated and fiber polarization control-
ler #1 adjusted in an iterative manner until the polariza-
tion state at the polarization-state analyzer corresponds
to that at the launch polarizer in both linearity and azi-
muthal angle for all angles of the launch polarizer. We
adjust fiber polarization controller #2 with the same pro-
cess, analyzing the polarization state with the primary
polarizer.
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