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ABSTRACT

With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, it becomes critical to
evaluate the performance of estimators for the polarization fraction and angle. These two physical quantities suffer from a well-known
bias in the presence of measurement noise, as described in Part I of this series. In this paper, Part II of the series, we explore the
extent to which various estimators may correct the bias. Traditional frequentist estimators of the polarization fraction are compared
with two recent estimators: one inspired by a Bayesian analysis and a second following an asymptotic method. We investigate the
sensitivity of these estimators to the asymmetry of the covariance matrix, which may vary over large datasets. We present for the first
time a comparison among polarization angle estimators, and evaluate the statistical bias on the angle that appears when the covariance
matrix exhibits effective ellipticity. We also address the question of the accuracy of the polarization fraction and angle uncertainty
estimators. The methods linked to the credible intervals and to the variance estimates are tested against the robust confidence interval
method. From this pool of polarization fraction and angle estimators, we build recipes adapted to different uses: the best estimators to
build a mask, to compute large maps of the polarization fraction and angle, and to deal with low signal-to-noise data. More generally,
we show that the traditional estimators suffer from discontinuous distributions at a low signal-to-noise ratio, while the asymptotic
and Bayesian methods do not. Attention is given to the shape of the output distribution of the estimators, which is compared with a
Gaussian distribution. In this regard, the new asymptotic method presents the best performance, while the Bayesian output distribution
is shown to be strongly asymmetric with a sharp cut at a low signal-to-noise ratio. Finally, we present an optimization of the estimator
derived from the Bayesian analysis using adapted priors.
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1. Introduction

The complexity of polarization measurement analysis has been
described by Serkowski (1958) when discussing the presence of
a systematic bias in optical measurements of linear polarization
from stars, and then by Wardle & Kronberg (1974) when ad-
dressing the same issue in the field of radio astronomy. The bias
of polarization measurements happens when one is interested in

the polarization intensity P ≡
√

Q2 + U2 or in the polarization
fraction p ≡ P/I and the polarization angle ψ = 1

2
atan(U/Q)

where I, Q, and U are the Stokes parameters, quantities that be-
come systematically biased in the presence of noise. Working
with the Stokes parameters Q and U as far as possible avoids
this kind of bias.

Once a physical modelling of p and ψ is available and can
be translated into Q and U, a likelihood analysis can be per-
formed directly on the Stokes parameters. For the other cases,
where no modelling is available, Simmons & Stewart (1985)
proposed the first compilation and comparison of methods to
deal with the problem of getting unbiased polarization estimates
of the polarization fraction and angle, with their associated un-
certainties. Then Naghizadeh-Khouei & Clarke (1993) extended
the work of Simmons & Stewart (1985) to the characterization

⋆ Appendices are available in electronic form at
http://www.aanda.org

of the polarization angle uncertainties, and Vaillancourt (2006)
have proposed a method for building confidence limits on polar-
ization fraction measurements.

More recently, Quinn (2012) has suggested using a Bayesian
approach to get better polarization estimates. In all these stud-
ies, the authors have made strong assumptions: negligible or no
noise on the intensity I and no correlation between the Q and U
components, which were also assumed to have equal noise prop-
erties. Montier et al. (2015, hereafter PMA I) have quantified the
impact of the asymmetry and the correlation between the Q and
U noise components on the bias of the polarization fraction and
angle measurements. They have shown that the asymmetry of the
noise properties cannot be systematically neglected as is usually
done and that the uncertainty of the intensity may significantly
affect the polarization measurements in the low signal-to-noise
(S/N) regime.

In the context of the new generation of polarization data,
such as Planck1 (Planck Collaboration I 2011), Blast-Pol (The
Balloon-borne Large Aperture Submillimeter Telescope for

1 Planck (http://www.cosmos.esa.int/web/planck) is a project
of the European Space Agency (ESA) with instruments provided by
two scientific consortia funded by ESA member states (in particular the
lead countries France and Italy), with contributions from NASA (USA)
and telescope reflectors provided by a collaboration between ESA and
a scientific consortium led and funded by Denmark.
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f (I, p, ψ | I0, p0, ψ0,Σ) =
2|p| I2
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Polarimetry, Fissel et al. 2010), PILOT (Bernard et al. 2007),
or ALMA (Pérez-Sánchez & Vlemmings 2013), which benefit
from much better control of the noise properties, it is essen-
tial to take the full covariance matrix into account when de-
riving the polarization measurement estimates. In recent works
no correction for the bias of the polarization fraction has been
applied (e.g., Dotson et al. 2010), or only high S/N data were
used for analysis (>3) to avoid these issues (e.g., Vaillancourt
& Matthews 2012). Two issues are immediately apparent. First,
this choice of the S/N threshold may not be relevant for all mea-
surements, and the asymmetry between the orthogonal Stokes
noise components could affect the threshold choice. Second, the
question remains of how to deal with low S/N data. Using sim-
ply the measurements of the polarization parameters (we call
them the “naïve” ones) as estimators of the true values leads to
very poor performance, because they lack any information on
the noise power. Instead, we would like to perform some trans-
formation on the polarization parameters, in order to remove bias
and improve the variance.

This work is the second in a series on “Polarization mea-
surement analysis”. Its aim is to describe how to recover the
true polarization fraction p0 and polarization angle ψ0 with their
associated uncertainties from a measurement (p, ψ), taking the
full covariance matrix Σ into account. We compare the perfor-
mance of the various estimators that are available and study the
impact of the correlation and ellipticity of the covariance ma-
trix on these estimates. We stress that we adopt a frequentist
approach to investigate the properties of these estimators, even
when dealing with the method inspired by the Bayesian analy-
sis. This means that the estimators are defined as single-value
estimates, instead of considering the probability density func-
tion (PDF) as the proper estimate, as is usually done in Bayesian
methods. The performance of these estimators will be evaluated
using three main criteria: the minimum bias, the smallest risk
function, and the shape of the distribution of the output esti-
mates. The choice of the most appropriate estimator may vary
with the application at hand, and a compromise among them
may be chosen to achieve good overall performance. Throughout
this work we make the following two assumptions: i) circular
polarization is assumed to be negligible; and ii) the noise on
Stokes parameters is assumed to be Gaussian. We also define
four regimes of the covariance matrix to quantify its asymme-
try in terms of effective ellipticity (εeff) as described in PMA I:
the extreme (1 < εeff < 2), the low (1 < εeff < 1.1), the tiny
(1 < εeff < 1.01), and the canonical (εeff = 1) regimes.

The paper is organized as follows. We first review in Sect. 2
the expression and the limitations of the polarization estimators,
which are extended to take the full covariance matrix into ac-
count. In Sect. 3, we discuss the meaning of the polarization un-
certainties and present the different uncertainty estimators. We
then compare the performance of the estimators of the polariza-
tion fraction in Sect. 4 and of the polarization angle in Sect. 5.
In Sect. 6, we discuss some aspects of the problem when the to-
tal intensity I is not perfectly known. We conclude with general
recipes in Sect. 7.

2. Polarization estimators

Early work on polarization estimators was based on the Rice
(1945) distribution, which provides the probability of finding
a measurement p for a given true value p0 and the noise es-
timate σp of the Q and U Stokes parameters. The noise val-
ues of the Stokes parameters were assumed to be equal (σp =

σQ/I0 = σU /I0), and the total intensity was assumed to be per-
fectly known, I = I0. Since we would like to include the full co-
variance matrix, we used the generalized expression of the PDF
from PMA I, which provides the probability of getting the mea-
surements (I, p, ψ), given the true values (I0, p0, ψ0) and the
covariance matrix Σ. Following the notations of PMA I, the ex-
pression of the PDF in 3D, including the intensity terms, denoted
f (I, p, ψ|I0, p0, ψ0, Σ), is given by Eq. (1), where Det(Σ) = σ6,
and the PDF in 2D, f2D(p, ψ|I0, p0, ψ0, Σp), by Eq. (2) when the
intensity I0 is assumed to be perfectly known. We introduced
the covariance matrix reduced in 2D,

Σp =
1

I2
0

(

σ2
Q
σQU

σQU σ2
U

)

=
σ2

p,G
√

1 − ρ2
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ε ρ
ρ 1/ε

⎫

⎪

⎪

⎪

⎭
, (3)

where ε = σQ/σU is the ellipticity and ρ = σQU/σQσU is the
correlation between the Q and U noise components, leading to
an effective ellipticity given by

εeff =

√

√

1 + ε2 +
√

(ε2 − 1)2 + 4ρ2ε2

1 + ε2 −
√

(ε2 − 1)2 + 4ρ2ε2
· (4)

With these notations, we have Det(Σp) = σ4
p,G

and

σ2
p,G =

σ2
Q

I2
0

√

1 − ρ2

ε
, (5)

which represents the equivalent radius of a circular Gaussian dis-
tribution with the same integrated area as the elliptical one. We
also define σp = σQ/I0 = σU /I0 when εeff = 1. Finally the PDFs
of p and ψ, fp, and fψ are obtained by marginalization of f2D

over ψ and p, respectively. The expressions for the 1D PDFs fp

and fψ depend on the full set of initial parameters (I0, p0, ψ0) in
the general case, unlike the case under the canonical simplifica-
tions (see Appendix C of PMA I for fully developed analytical
expressions).

We describe below the various estimators of the polarization
fraction and angle listed in Table 1. We stress that most of the
expressions derived in this work have been obtained when re-
stricting the analysis in the 2D case, assuming furthermore that
the true intensity I0 is perfectly known, except for the Bayesian
estimator where we present a 3D development (see Sect. 6).

2.1. Maximum likelihood estimators

The maximum likelihood (ML) estimators are defined as the val-
ues of p0 and ψ0 that maximize the PDF calculated at the polar-
ization measurements p and ψ. When computed using the 2D
PDF f2D to fit p0 and ψ0 simultaneously, this estimator gives
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Table 1. List of the acronyms of the estimators used in this work.

Acronym Description Parameters

ML Maximum likelihood p/ψ
MP Most probable in 1D p/ψ
MP2 Most probable in 2D p & ψ
AS Asymptotic p
MAS Modified asymptotic p
MAP Maximum a posteriori p/ψ
MAP2 Maximum a posteriori in 2D p & ψ
MB Mean posterior Bayesian I & p & ψ

Notes. The parameters to which each estimator applies, independently
(/) or simultaneously (&), are given in the last column.

back the measurements, regardless of the bias and the covari-
ance matrix, and is inefficient at correcting the bias of the data.

After marginalization of the PDF f2D over ψ, the 1D ML
estimator of p0, p̂ML, is now defined by

0 =
∂ fp

∂p0

(

p | p0, ψ0, Σp

)

∣

∣

∣

∣

p0=p̂ML

. (6)

The expression of fp is independent of the measurement ψ, but
it still theoretically depends on the true value ψ0, which is un-
known. In the canonical case (εeff = 1), ψ0 disappears from the
expression, but it must be considered as a nuisance parameter in
the general case. One way to proceed in such a case is to com-
pute the mean of the solutions p̂ML for ψ0 varying in the range
−π/2 to π/2. As already stressed by Simmons & Stewart (1985),
this estimator yields a zero estimate below a certain threshold of
the measurement p, which implies a strong discontinuity in the
resulting distribution of this p0 estimator. Nevertheless, unlike
the 2D ML estimators, the p ML estimator does not give back
the initial measurements, and is often used to build polarization
estimates.

Similarly, the 1D ML estimator of ψ0, ψ̂ML, is given after
marginalization of f2D over p by

0 =
∂ fψ

∂ψ0

(

ψ | p0, ψ0, Σp

)

∣

∣

∣

∣

ψ0=ψ̂ML

. (7)

As mentioned for the ML estimator p̂ML, the unknown parameter
p0 in the above expression has to be considered as a nuisance pa-
rameter when solving Eq. (7). We stress that because the canon-
ical simplifications have always been assumed in the literature,
bias on the ψ measurements has not been previously considered,
and the ψ̂ML estimator has not yet been used and qualified to
correct this kind of bias. This analysis is done in Sect. 5.

2.2. Most probable estimators

The most probable (MP) estimators of p0 and ψ0 are the values
for which the PDF f2D reaches its maximum at the measurement
values (p, ψ). The MP estimators ensure that the measurement
values (p, ψ) are the most probable values of the PDF computed
for this choice of p0 and ψ0; i.e., they take the maximum prob-
ability among all possible measurements with this set of p0 and
ψ0. As a comparison, the ML estimators ensure that the measure-
ment values (p, ψ) take the maximum probability for this choice
of p0 and ψ0 compared to the probability of the same measure-
ment values (p, ψ) for all other possible sets of p0 and ψ0.

The 2D MP estimators (MP2), p̂MP2 and ψ̂MP2, are defined
as the values of p0 and ψ0 simultaneously satisfying the two fol-
lowing relations:

0 =
∂ f2D

∂p

(

p, ψ | p0, ψ0, Σp

)

∣

∣

∣

∣ p0 = p̂MP2

ψ0 = ψ̂MP2

(8)

and

0 =
∂ f2D

∂ψ

(

p, ψ | p0, ψ0, Σp

)

∣

∣

∣

∣ p0 = p̂MP2

ψ0 = ψ̂MP2

. (9)

These relations can be solved using the fully developed expres-
sion of f2D, including the terms of the inverse matrix Σ−1

p , as
provided in Appendix A. When canonical simplifications are as-
sumed, this yields

ψ̂MP2 = ψ ,

p̂MP2 =

{

p − σ2
p/p for p > σp

0 for p ≤ σp,
(10)

as found in Wang et al. (1997) and Quinn (2012). We observe
that the MP2 estimate of the polarization fraction is systemati-
cally lower than the measurements, so that this estimator tends
to over-correct p, as shown in Sect. 4.

After marginalization over p or ψ, the 1D MP estimators,
p̂MP and ψ̂MP, are defined independently by

0 =
∂ fp

∂p

(

p | p0, ψ0, Σp

)

∣

∣

∣

∣

p0=p̂MP

(11)

and

0 =
∂ fψ

∂ψ

(

ψ |p0 ψ0, Σp

)

∣

∣

∣

∣

ψ0=ψ̂MP

. (12)

The 1D and 2D estimators are not expected to provide the same
estimates. Under the canonical assumptions, the MP estimator
of p is commonly known as the Wardle & Kronberg (1974)
estimator.

As mentioned earlier, the MP estimator yields a zero esti-
mate below a certain threshold of p (Simmons & Stewart 1985),
which implies a strong discontinuity in the resulting distribution
of these estimators for low S/N measurements.

2.3. Asymptotic estimator

The asymptotic estimator (AS) of the polarization fraction p is
usually defined in the canonical case by

p̂AS =

{

√

p2 − σ2
p for p > σp

0 for p ≤ σp.
(13)

The output distribution of the AS estimator appears as the
asymptotic limit of the Rice (1945) distribution when p/σp tends
to∞, just as for the ML and MP estimators, and given by

PDF
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p
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)
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⎟

⎟

⎟

⎠

, (14)

where N(µ, σ) denotes the Gaussian distribution of mean µ and
variance σ2. As with the previously presented estimators, this
one suffers from a strong discontinuity at p̂AS = 0.

In the general case, when the canonical simplification is not
assumed, it has been shown by Plaszczynski et al. (2014, here-
after P14) that the expression of the asymptotic estimator can
be extended to a general expression by changing the term σ2

p in

Eq. (13) into a “noise-bias” parameter b2 defined by

b2 =
σ′2

U
cos2(2ψ0 − θ) + σ′2Q sin2(2ψ0 − θ)

I2
0

, (15)
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Fig. 1. Distributions of p̂ estimates obtained with the standard estima-
tors: naïve (black), ML (blue), MP (light green), MP2 (green), and AS
(red). We assume the covariance matrix to be canonical, and a S/N of
p0/σp = 1. Based on 100 000 Monte-Carlo simulations with an initial
value of p0 = 1%.

where θ represents the position angle of the iso-probability bi-
variate distribution, and σ′2

U
, σ′2

Q
the rotated variances

θ =
1

2
atan
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, (16)

σ′2Q = σ
2
Q cos2 θ + σ2

U sin2 θ + ρσQσU sin 2θ, (17)

σ′2U = σ
2
Q sin2 θ + σ2

U cos2 θ − ρσQσU sin 2θ, (18)

and ψ0 is the true polarization angle, which can be approximated
asymptotically by the naïve measurement ψ or, even better, by
the estimate ψ̂ML of Sect. 2.1. It has been shown that b2 ensures
the minimal bias of p̂AS.

2.4. Discontinuous estimators

The estimators of p̂ introduced above (ML, MP, and AS) ex-
hibit a common feature: below some cutoff value the estimator
yields exactly zero. This means that the estimator distribution
is discontinuous and is a mixture of a discrete one (at p̂ = 0)
and a continuous one (for p̂ > 0). This type of distribution is
illustrated in Fig. 1 for a S/N of p0/σp = 1 and a canonical co-
variance matrix. The distribution of the naïve measurements is
built using 100 000 Monte-Carlo simulations, starting from true
polarization parameters p0 and ψ0. The other three distributions
of p̂ are obtained after applying the ML, MP and AS estimators.
A non-negligible fraction of the measurements provide null es-
timates of p̂. As shown in Fig. 2, this fraction of null estimates
reaches 40% at low S/N with the MP and AS estimators, and
more than 50% with the ML estimator for S /N < 1. It converges
to 0% for S /N > 4.

If taken into account as a reliable estimate of p̂, null esti-
mates will somewhat artificially lower the statistical bias of the p̂
estimates compared to the true value p0, as explained in Sect. 4.
A null value of these estimators should be understood as an in-
dicator of the low S/N of this measurement, which actually has
to be included in any further analysis as an upper limit value. In
practice, the user seldom has various realizations at hand. Using
these estimators then leads to a result with upper limits mixed
with non-zero estimates in the analysis. Such complications may
be especially hard to handle when studying polarized maps of the
interstellar medium. On the other hand, it would be disastrous to
omit those estimates in any statistical analysis, since weakly po-
larized points would be systematically rejected. To avoid such

0 1 2 3 4 5
p0/σp

0

10

20

30

40

50

60

70

  [
%

]

ML
MP MP2 AS

Fig. 2. Statistical fraction of null estimates of p̂ provided by the ML,
MP, MP2, and AS estimators applied to 100 000 Monte-Carlo measure-
ments, as a function of the S/N in the canonical case.

complications, we explore below other estimators that avoid this
issue and lead to continuous distributions. This is especially im-
portant in the range of S/N between 2 and 3, where the discon-
tinuous estimators still yield up to 20% of null estimates.

2.5. Modified asymptotic estimator

A novel asymptotic estimator has been introduced by P14 to
eliminate the discontinuous distribution of the standard estima-
tors while still keeping the asymptotic properties. It has been
derived from the first-order development of the asymptotic es-
timator, which has been modified to ensure positivity, smooth-
ness, and asymptotical convergence at high S/N. The modified
asymptotic (MAS) estimator is defined as

p̂MAS = p − b2 · 1 − e−p2/b2

2p
, (19)

where the “noise-bias” b2 is given by Eq. (15) and computed
using a polarization angle assessed from each sample using the
asymptotic estimator ψ.

P14 also provides a sample estimate of the variance of the
estimator that is shown to represent asymptotically the absolute
risk function (defined in Sect. 3.1) of the estimator:

σ2
p̂,MAS =

σ′2
Q

cos2(2ψ − θ) + σ′2
U

sin2(2ψ − θ)
I2
0

· (20)

This estimator focuses on getting a “good” distribution, which
transforms smoothly from a Rayleigh-like to a Gaussian one, the
latter being reached in the canonical case for a S/N of about 2.

2.6. Bayesian estimators

The PDFs introduced in Sect. 2 provide the probability of ob-
serving a set of polarization measurements (I, p, ψ) given the
true polarization parameters (I0, p0, ψ0) and the covariance ma-
trix Σ. Because we are interested in the opposite, i.e., getting
an estimate of the true polarization parameters given a measure-
ment and knowledge of the noise properties, we use the Bayes
theorem to build the posterior distribution. The posterior PDF B
is given in the 3D case by

B(I0, p0, ψ0 | I, p, ψ,Σ) =

f (I, p, ψ | I0, p0, ψ0, Σ) · κ(I0, p0, ψ0)
∫ +∞

0

∫ 1

0

∫ π/2

−π/2 f (I, p, ψ | I′
0
, p′

0
, ψ′

0
, Σ) κ(I′

0
, p′

0
, ψ′

0
) dψ′

0
dp′

0
dI′

0

,

(21)
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p I sin(2ψ) − p0 I0 sin(2ψ0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (22)

B2D(p0, ψ0 | p, ψ,Σp) ∝ 1

πσ2
p,G

exp

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−1

2

[

p cos(2ψ) − p0 cos(2ψ0)
p sin(2ψ) − p0 sin(2ψ0)

]T

Σ
−1
p

[

p cos(2ψ) − p0 cos(2ψ0)
p sin(2ψ) − p0 sin(2ψ0)

]
⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (24)

where κ(I0, p0, ψ0) is the prior distribution, which represents the
a priori knowledge of the true polarization parameters and has to
be non-negative everywhere. When no a priori knowledge is pro-
vided, we have to properly define a non-informative prior, which
encodes the ignorance of the prior. A class of non-informative
priors is given by the Jeffreys’ prior (Jeffrey 1939) where the
ignorance is defined under symmetry transformations that leave
the prior invariant. As discussed by Quinn (2012) for the 2D
case, this kind of prior can be built as a uniform prior in carte-
sian space (Q0,U0), but it will lead to an under-sampling of the
low values of p in polar space (p0, ψ0). However, for the last
reason, we prefer a uniform prior in polar space, which ensures
uniform sampling even for low values of p0, but which can no
longer be considered as a non-informative prior. While p0 and ψ0

are only defined on a finite range ([0, 1] and [−π/2, π/2), respec-
tively), the intensity I0 may be infinite in theory, which leads to
a problem when defining the ignorance prior. In practice, an ap-
proximation of the ignorance prior for I0 will be chosen as a top
hat centred on the measurement I and chosen to be wide enough
to cover the wings of the distribution until it becomes negligi-
ble. Such uniform priors lead to the expression of B given in
Eq. (22), where the normalization factor has been omitted. We
emphasize that the definition of the ignorance prior introduced
above becomes data-dependent, which does not strictly follow
the Bayesian approach. Furthermore, the question of the defini-
tion range of the prior and the introduction of non-flat priors are
discussed in Sect. 4.3 in the context of comparing the perfor-
mance of the estimators inspired by the Bayesian approach.

Similarly, the posterior PDF in 2D (i.e., when the total inten-
sity is perfectly known, I = I0) is defined by

B2D(p0, ψ0 | p, ψ,Σp) =

f2D(p, ψ | p0, ψ0, Σp) · κ(p0, ψ0)

1
∫

0

+π/2
∫

−π/2
f2D(p, ψ|p′

0
, ψ′

0
, Σp) κ(p′

0
, ψ′

0
) dψ′

0
dp′

0

· (23)

The analytical expressions of the posterior PDF B2D with a
flat prior is given in Eq. (24), where the normalization factors
have been omitted, and the intensity has been assumed to be per-
fectly known. Illustrations of this posterior PDF are presented
in Appendix B. We also introduce Bp and Bψ, the Bayesian
posterior PDFs of p and ψ in 1D, respectively, and defined as
the marginalization of B2D over ψ and p, respectively. We use
the Bayesian posterior PDFs to build two frequentist estima-
tors: the MAP and the MB.

The MAP2 and MAP estimators in 2D and 1D, respectively,
are simply defined as the (p0, ψ0) values corresponding to the
maximum of the posterior PDF, B2D, and Bp and Bψ, respec-
tively. We recall that these estimators match the ML estimators
of Sect. 2 in one and two dimensions exactly, respectively, when
a uniform prior is assumed. As a result, the MAP2 estimators
yield back the polarization measurements, whereas the MAP es-
timators provide a simple way to compute the ML estimates.

The mean Bayesian posterior (MB) estimators are defined as
the first-order moments of the posterior PDF:

p̂MB ≡
∫ +π/2

−π/2

∫ 1

0

p0B2D(p0, ψ0 | p, ψ,Σp)dp0dψ0 (25)

and

ψ̂MB ≡
∫ ψ+π/2

ψ−π/2

∫ 1

0

ψ0B2D(p0, ψ0 | p, ψ,Σp)dp0dψ0. (26)

In the definition of ψ̂MB, the integral over ψ0 is performed over a
range centred on the measurement ψ. This has to be done to take
the circularity of the posterior PDF over the ψ0 dimension into
account (see also Quinn 2012, when dealing with the circularity
of the polarization angle). We note that B2D(p0, ψ0 | p, ψ,Σp) =
B2D(p0, ψ0 + π | p, ψ,Σp).

The frequentist estimators inspired by a Bayesian ap-
proach, p̂MB and ψ̂MB, introduced above in the 2D case can
be easily extended to the 3D case by integrating the PDF
B(I0, p0, ψ0 | I, p, ψ,Σ) of Eq. (21) over the I, p, and ψ dimen-
sions. This is extremely powerful when the uncertainty of the
intensity I has to be taken into account in the estimate of the
polarization parameters, which is highly recommended in some
circumstances, such as a low S/N on I (<5) or the presence of
an unpolarized component on the line of sight (see Sect. 6 and
PMA I for more details).

3. Uncertainties

We introduce here the various estimates of the uncertainty as-
sociated with a polarization measurement, making a clear dis-
tinction between the notions of variance and risk function. We
emphasize the difference between two approaches: one based on
the posterior uncertainties and the second based on confidence
intervals.

3.1. Variance and risk function

It is important not to confuse the variance (noted V) of an estima-
tor with its absolute risk function (noted R). For any distribution
of the random variable X the definitions are

V ≡ E
[

(X − E[X])2
]

and (27)

R ≡ E
[

(X − X0)2
]

, (28)

where E[X] is the expectation of the random variable X and X0 is
the true value. Introducing the absolute bias, B, in E[X] = X0+B
and expanding both relations, the link between the variance and
the absolute risk function is simply

V = R − B2. (29)

Therefore, for a constant absolute risk function, the variance
decreases with the absolute bias, and both are equal when the
estimator is unbiased. The variance does not require knowing

A136, page 5 of 20



A&A 574, A136 (2015)

the true value of the random variable, which makes it useful to
provide an uncertainty estimate, but it has to be used extremely
carefully in the presence of bias. In such cases, the variance will
always underestimate the uncertainty.

Furthermore, it is known that the variance is not appropri-
ate for providing uncertainties with non-Gaussian distributions,
which is the case for the polarization fraction and angle. In such
circumstances, confidence intervals (see Sect. 3.3) are the pre-
ferred method for obtaining robust uncertainties. The variance,
however, is often used as a proxy of the uncertainty in the high
regime of the S/N. In Sects. 4.5 and 5.3, we detail the conditions
under which this can still be applied.

3.2. Posterior uncertainties

One of the main benefits of the Bayesian approach is to provide
simple estimates of the uncertainties associated with the polar-
ization estimates. One option is to build credible intervals around
the MAP estimates as it has been discussed by Vaillancourt
(2006) or also Quinn (2012), and the other option is to use the
variance of the PDF.

Given a polarization measurement (p, ψ) and the posterior
PDF B2D(p0, ψ0|p, ψ, Σp), the lower and upper limits of the λ%
credible intervals are defined as the lower and upper limits of p0

and ψ0 for the iso-probability region Ω(λ, p, ψ) over which the
integral of B equals λ%, so that�
Ω(λ,p,ψ)

B2D(p0, ψ0 | p, ψ,Σp) dp0dψ0 =
λ

100
· (30)

These intervals, [plow
MAP2
, p

up

MAP2
] and [ψlow

MAP2
, ψ

up

MAP2
], estimated

from the 2D expression of B2D, are defined around the MAP2 es-
timates p̂MAP2 and ψ̂MAP2, which are equal to the measurements
(p, ψ). It has to be noticed that, in general, 2D intervals are not
uniquely defined (see Eq. (32) of PMA I).

A similar definition can be given in the 1D case, which leads
to different results. The lower and upper limits, plow

MAP
and p

up

MAP
,

around p̂MAP are defined as

∫ p
up

MAP

plow
MAP

Bp(p0 | p,Σp) dp0 =
λ

100
, (31)

with the constraint that the posterior probability function is iden-
tical for plow

MAP
and p

up

MAP
. Similarly, the lower and upper limits,

ψlow
MAP

and ψ
up

MAP
, around ψ̂MAP are given by

∫ ψ
up

MAP

ψlow
MAP

Bψ(ψ0 |ψ, Σp) dψ0 =
λ

100
· (32)

We recall that this integral has to be computed around the mea-
surement value ψ̂MAP to take the circularity of the posterior PDF
with the polarization angle into account. The credible intervals
built in 1D or 2D are not supposed to be identical, because
( p̂MAP2, ψ̂MAP2) and ( p̂MAP, ψ̂MAP) are not equal in the general
case.

The second definition of the uncertainty comes from the sec-
ond moment of the 1D posterior probability density functions Bp

and Bψ, as follows:

σ2
p,MB ≡

∫ 1

0

(p0 − p̂MB)2Bp(p0 | p,Σp) dp0 (33)

and

σ2
ψ,MB ≡

∫ ψ+π/2

ψ−π/2
(ψ0 − ψ̂MB)2Bψ(ψ0 |ψ,Σp) dψ0. (34)

The operation of subtraction between the two polarization angles
must be done with care, restricting the maximum distance to π/2.
At very low S/N, i.e., an almost flat uniform PDF, the uncertainty

reaches the upper limit σψ,MB ≤ π/
√

12 rad = 51.◦96. We stress
that these 1σ estimates may not be associated with the usual
68% confidence intervals of the normal distribution, because of
the asymmetric shape of the posterior distribution and because
of the circularity of the angular variable.

3.3. Confidence intervals

So far we have considered point estimation of the true p0 value
which is somewhat tricky in the low S/N regime because of the
non-Gaussian nature of the estimator distribution. A different ap-
proach that takes the entire shape of the distribution into account
is to build confidence regions (or intervals), which allows bounds
on the true value to be obtained at some significance level given
an estimator value.

Simmons & Stewart (1985) have built the so-called Neyman
“confidence belt” for the naïve estimator in the canonical case.
PMA I proposed the construction of 2D (p0, ψ0) intervals, for
the general covariance matrix case. The classical construction
suffers from a standard problem: at very low S/N the confidence
interval lies entirely in the unphysical p < 0 region, and both
previous studies provide over-conservative regions.

P14 has implemented the Feldman-Cousins prescription
(Feldman & Cousins 1998), which is based on using a likelihood
ratio criterium in the Neyman construction. This allows building
intervals that always lie in the physical region without ever being
conservative. They provided these intervals for the MAS estima-
tor, including analytical approximations to the upper and lower
limits for 68%, 95%, and 99.5% significance levels.

4. p̂ estimator performance

We investigate in this section the capability of providing polar-
ization fraction estimates with low bias using the seven p̂ estima-
tors introduced in the previous sections: the naïve measurement
p, the ML, the MP and MP2, the AS, the MAS, and the MB esti-
mators. Their performance is first quantified in terms of relative
bias and the risk function of the resulting estimates.

4.1. Methodology

Given true polarization parameters (p0, ψ0) and a covariance ma-
trix Σp, we build a sample of one million simulated measure-
ments (p, ψ) by adding noise on the true Stokes parameters us-
ing the covariance matrix. We define the relative bias and risk
function on p as

Biasp ≡
〈p̂〉 − p0

σp,G

and Riskp ≡

〈

( p̂ − p0)2
〉

σ2
p,G

, (35)

where p̂ is the polarization fraction estimate computed on the
simulated measurements p, p0 is the true polarization fraction,
〈〉 denotes the average computed over the simulated sample, and
σp,G is the estimate of the noise of the polarization fraction. The
choice of σp,G to scale the absolute bias and risk function, as a
proxy of the p̂ uncertainty, is motivated by the fact that it only
depends on the effective ellipticity and not on ψ0. This choice
can lead to a relative risk function falling below 1 at low S/N,
because σ2

p,G > V (variance, see Eq. (27)) in this regime. The ac-

curacy of the p estimators is also quantified regarding the shape
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of their output distributions. We use the Jarque-Bera estimator
(Jarque & Bera 1980) as a test of normality of the output distri-
bution, and defined by

JB =
n

6

⎛

⎜

⎜

⎜

⎜

⎜

⎝

µ2
3

µ3
2

+

⎛

⎜

⎜

⎜

⎜

⎝

µ4

µ2
2

− 3

⎞

⎟

⎟

⎟

⎟

⎠

2/

4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (36)

where n is the number of samples and µi is the naïve estimate of
the ith central moment of the distribution. This test is based on
the joint hypothesis of the skewness and the excess kurtosis be-
ing zero simultaneously. A value JB = 0 means a perfect agree-
ment with normality to fourth order, but does not prevent depar-
ture from normality at higher orders. This JB estimator tends
to a χ2 test with two degrees of freedom when n becomes large
enough. The JB therefore has to satisfy the condition JB < χ2

α

once a significance level α is chosen. For a significance level
α = 5% and 1%, we get the conditions JB < 5.99 and JB < 9.21,
respectively.

4.2. Canonical case

We first assume the canonical simplification of the covariance
matrix (εeff = 1). The relative Biasp and Riskp quantities are
shown in Fig. 3 for the seven p̂ estimators and estimated us-
ing 100 000 Monte-Carlo simulations. We recall that the dis-
continuous estimators have an output distribution presenting a
strong peak at zero, which artificially lowers the statistical rel-
ative Biasp when simply including null values instead of using
upper limits, as discussed in Sect. 2.4. Actually, these estimators
show the lowest relative biases (top panel of Fig. 3) compared
to the MAS and MB estimators. The ML and MP2 estimators
thus seem to statistically over-correct the data, below S /N = 3.
Consequently, the ML, MP, and AS p̂ estimators have to be used
with extreme care to deal with null estimates. We suggest focus-
ing on the two continuous estimators, MAS and MB.

MAS provides the better performances in terms of relative
bias over the whole range of S/N, while MB appears less and
less efficient at correcting the bias when the S/N tends to zero.
At higher S/N (>2), MB tends to slightly over-correct with a
small negative relative bias (2% of σp) up to S /N ∼ 5, while
MAS converges quickly to a null relative bias for S /N > 3.

The MB estimator clearly minimizes the risk function in the
range 0.7 < S/N < 3.2 (see middle panel of Fig. 3), as expected
for this kind of posterior estimator. At higher S/N (>3.2), both
MAS and MB have roughly the same behaviour, even if the risk
function associated to MAS appears slightly lower.

The resulting p̂MB distribution is highly asymmetric at low
S/N (see top panel of Fig. 4), with a sharp cutoff at 0.8σp.
Moreover, we note that the output p̂MB distribution depends not
only on the S/N p0/σp, but also on the value of the true po-
larization fraction p0. We report two cases, p0 = 1% and 50%
in Fig. 4. This comes from the prior of the Bayesian method,
which bounds the estimate p̂MB between 0 and 1. As a conse-
quence, the normality of the Bayesian distribution is extremely
poor, as pointed out in the bottom panel of Fig. 3, where we show
that the JB test of the MB estimator is larger than 9.21 (con-
sistent with a χ2

0.01
test) over the whole range of S/N explored

here (up to S /N ∼ 5). In contrast, the resulting p̂MAS distribution
of Fig. 4 looks much better, mimicking the Rayleigh distribu-
tion for low S/N and going neatly to the Gaussian regime, as
pointed out by P14. The JB of the MAS estimator is the lowest
for S /N > 3 (see bottom panel of Fig. 3), illustrating the consis-
tency between the MAS distribution and the normal distribution.

Fig. 3. Comparison of the average relative bias (top), risk function (mid-
dle) and Jarque-Bera test (bottom) of the pure measurements (naïve,
black), ML (dashed blue), MP (dashed light green), MP2 (dashed
green), AS (dashed red), MAS (orange) and MB (pink) p̂ estimators
in the canonical case, as a function of the S/N p0/σp. The dashed lines
stand for the discontinuous estimators presenting a peak of their output
distribution at p̂ = 0. Based on 100 000 Monte Carlo simulations. The
limit JB = χ2

α for α = 1% is shown in dot-dot-dot-dashed line.

All distributions, naïve, MAS, and MB, converge to a Gaussian
distribution at higher S/N.

4.3. Impact of the Bayesian prior

The choice of the prior is crucial in the Bayesian approach, and
we have seen how it is hard to define a non-informative prior
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Fig. 4. Output distributions of the naïve (black), MAS (orange), and the
MB (pink) p̂ estimators applied to 100 000 Monte-Carlo simulations
using a covariance matrix in the canonical case (εeff = 1), for three
levels of the S/N p0/σp = 1, 2, and 5 (from top to bottom). In the case of
the MB estimator, we show two setups of p0 = 1% and 50% to illustrate
the dependence of the output distribution on the p0 value, due to the
prior used in the Bayesian approach ( p̂MB ∈ [0, 1] so that p̂MB/p0 ∈
[0, 1/p0]). The other estimators are not sensitive to the true value p0.
The MB and MAS curves overlap in the bottom panel.

in Sect. 2.6. The MB estimator studied up to now assumes a
flat prior in p0 between 0 and 1, which is already an informa-
tive prior (see Quinn 2012). In practice when dealing with as-
trophysical data, we can bound the expected true values of the
polarization fraction between much tighter limits. We know, for

Fig. 5. Impact of the flat prior interval upper limit (see Eq. (37)) on the
relative Biasp performance of the MB estimator.

example, that the polarization fraction of the synchrotron signal
peaks at ∼75%, but never reaches this maximum due to line of
sight averaging. The maximum polarization fraction of the dust
thermal emission is still a debated issue, but is unlikely to be
greater than 20% to 30% (Benoît et al. 2004). Appropriate priors
can then be introduced to take this a priori physical knowledge
into account in the MB estimator.

We have already observed in Sect. 4.2 how the output distri-
bution of the p̂MB estimates is affected by the value of the true
p0 (1% or 50%) due to the upper limit (p0 < 1) of the prior, see
Fig. 4. We explore here a family of simple priors defined by

κ(p′0) =

{

1/(kp0) for p′
0
∈ [0, kp0]

0 otherwise,
(37)

where we adjust the upper limit of the prior as a function of the
expected true value. We performed Monte Carlo simulations in
the canonical case by setting the true value at p0 = 1% and vary-
ing the upper limit of the prior (k = 2, 3, 5, 10, and 100). The
statistical relative Biasp of the MB estimators associated with
each version of the priors is shown in Fig. 5. The lower the up-
per limit, the lower the relative Biasp, as expected. However, the
upper limit of the prior has to be very constraining (k ≤ 3) to ob-
serve a decrease in the relative bias in the range of S/N between
1.5 and 3. This requires very good a priori knowledge. Using
more relaxed priors (k ≥ 5) will significantly not improve the
performances of the MB estimator at S/N > 1.

When dealing with maps of polarized data, an interesting ap-
proach would be to start by estimating the histogram of p values
in the map and use it as a prior in our MB estimators, even if this
moves away from a strictly Bayesian approach again by intro-
ducing a data-dependent prior. As a first guess, the prior can be
set to the histogram of the naïve estimates of p̂, but a more so-
phisticated prior would be an histogram of p deconvolved from
the errors, using a maximum entropy method, for example.

We illustrate the performance of the MB estimator with this
kind of prior in Figs. 6 and 7. We start with a sample of 10 000 in-
dependent true values (p0,i) ranging between 0% and 20% polar-
ization fractions, with a distribution shown in Fig. 7 on which
a random realization of the noise is added with the same noise
level over the whole sample, leading to varying S/Ns through
the sample. We explore two extreme cases of the Bayesian prior,
corresponding to i) an idealistic perfect knowledge of the input
distribution and ii) its first guess provided by the naïve estimates.
The prior is therefore chosen as the input distribution of the true
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Fig. 6. Illustration of the improvement in the MB estimator perfor-
mances when using evolved priors. Starting from an input distribution
of 10 000 simulated true values (p0,i), shown in Fig. 7, and the statisti-
cal relative bias is shown for four estimators: naïve, MAS, and MB with
three different priors.

p0,i values and the output distribution of the naïve estimates. We
compare the performance of these two new versions of the MB
estimators with the naïve, MAS, and flat prior MB estimators, in
terms of relative bias in Fig. 6.

We stress that the relative bias values are not defined as pre-
viously done in Sect. 4.1, but refer now to the mean of the dif-
ference between each sample of true value p0,i and its associ-
ated estimate p̂i. The pink shaded region provides the domain
of the possible improvement of the MB estimators, by setting
an appropriate prior as close as possible to the true distribution.
The improvements may seem spectacular, leading to a statistical
relative bias close to zero at all S/Ns in the best configuration
(dashed line). Caution is warranted, however, when looking at
the output distributions associated with these new MB estima-
tors in Fig. 7, shown for three levels of the noise chosen so that
the mean S/N is p0/σp,G = 1, 2 and 3. At low S/N (≃1), the out-
put distribution of the MB estimator with a perfect prior (dashed
line) is extremely peaked around the mean value of the sam-
ple p0, but does not match the input distribution at all. Even at
higher S/N (2−3), the three MB output distributions suffer from
the same feature already mentioned in Sect. 4.2, a sharp cutoff at
low values of p. Using a prior that is too constraining will yield
dramatic cuts of the extremes values of the input distribution.
By contrast, the naïve prior is quite effective in that it allows the
MB estimator to recover the upper limit of the input distribution
reasonably well at a S /N >∼ 2, while the other estimators fail to
do so at such low S/N.

The performance of the MB estimator with an evolved prior
will also strongly depend on the initial true distribution of the po-
larization fraction. For example we duplicated the analysis made
above with a different initial distribution (p0,i) centred on 20% of
polarization fraction instead of 10% (see Fig. 8). In this configu-
ration, the output distributions of the Bayesian estimators are not
as much affected by the cut-off at low p as observed in Fig. 7.
The MB estimator with the naïve prior appears extremely effec-
tive, even at low S/N (∼2).

4.4. Robustness to the covariance matrix

In PMA I we have extensively discussed the impact of the asym-
metry of the covariance matrix on the measurements of the polar-
ization fraction. In particular, we stressed that once the effective
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Fig. 7. Output distributions of the p̂ estimates starting from a distribu-
tion of 10 000 simulated independent true values (p0,i) centred on 10%
of polarization fraction (grey shaded region) shown at three levels of
noise characterized by the mean S/N 〈p0,i〉/σp,G = 1, 2, and 3 (top, mid-
dle, and bottom, respectively). The naïve (black) and MAS (orange) out-
put distributions are compared to the MB output distributions obtained
with three different priors: flat prior between 0 and 1 (solid pink), to the
naïve output distribution (dotted pink), and to the true input distribution
(dashed pink).

ellipticity departs from the canonical case, the bias on the polar-
ization fraction depends on the true polarization angle ψ0, which
remains unknown. We would like to explore in this section how
the performance of the various p̂ estimators are sensitive to the
effective ellipticity of the covariance matrix.
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Fig. 8. Same as Fig. 7 with a different initial distribution (p0,i) centred
on a 20% polarization fraction.

We illustrate the dependence of the p̂ estimators on the true
polarization angle ψ0 in Fig. 9. Given true polarization param-
eters (p0 = 0.1 and ψ0 ranging between −π/2 and π/2), a co-
variance matrix characterized by εeff = 2 and θ = 0 (left-hand
panel), and a S/N p0/σp,G = 1, we first set the polarization
measurements (p, ψ) to the maximum of the PDF f2D (left-hand
panel). We apply then the six estimators on these measurements
to get the p̂ estimates for each ψ0 between −π/2 and π/2. With
this particular setting, the MP2 (green) estimator gives back the
true polarization fraction p0 whatever the polarization angle ψ0,
by definition of this estimator and the choice of the measure-
ment in this example. On the contrary, the MP (light green) and
the ML (blue) estimators are extremely sensitive to the true po-
larization angle ψ0, yielding estimates spanning a large range

between 0 and 2.2p0, while the AS (red) and MAS (orange) es-
timators yield results ranging between 1 to 1.8p0 when ψ0 varies.
The MB (pink) estimator provides stable estimates in the range
1.4 to 1.5 p0, which is consistent with the fact that the posterior
estimators minimize the risk function. This of course has a cost,
and the MB estimator provides the largest averaged relative bias
here compared to the other methods, with the exception of the
naïve (black) one.

More generally, for each value of the true polarization an-
gle ψ0 between −π/2 and π/2, we build a sample of 10 000 sim-
ulated measurements using the same setup of the covariance ma-
trix as above. Then we compute the statistical average of the
naïve, MAS, and MB estimates (black, orange, and pink lines,
respectively) obtained on this simulated sample, with their asso-
ciated 1σ dispersion (black, orange, and pink dot-dashed lines,
respectively), as shown in the right-hand panel of Fig. 9. The av-
eraged MB estimates present the same characteristic as shown
in the left-hand panel. By contrast, the averaged MAS estimates
are independent of the unknown ψ0 true polarization angle. The
MAS 1σ dispersion is, however, slightly larger than the MB
1σ dispersion.

The impact of the effective ellipticity of the covariance ma-
trix is then analysed statistically for the MAS and MB estimators
only in Fig. 10. Instead of looking at the accuracy of the p̂ es-
timators around one particular measurement (the most probable
one) as done in Fig. 9, for each set of true polarization param-
eters (p0 = 0.1, ψ0), with ψ0 ranging between −π/2 and π/2,
we perform Monte Carlo simulations. For each set of true po-
larization parameters, we build a sample of 100 000 simulated
measurements on which we apply the MAS and MB estima-
tors to finally compute the statistical relative Biasp and Riskp,
as defined in Sect. 4.1. This is done for various setups of the co-
variance matrix chosen to cover the whole range of the extreme
and low regimes. The minimum and maximum relative Biasp

and Riskp are then computed over the whole range of ψ0 and
effective ellipticity εeff in each regime of the covariance matrix
to build the shaded regions of Fig. 10 for the MAS (top panels)
and MB (bottom panels) p̂ estimators. It appears that the rela-
tive Biasp of the MAS estimator is less affected by a change in
ellipticity for S /N > 2 than the MB estimator, even in the ex-
treme regime of the covariance matrix. The dependence of the
risk function on the ellipticity is almost identical for the two es-
timators around their respective canonical curve. The thickness
of the risk function region is slightly smaller for the MB estima-
tor than for the MAS estimator at low S/N (<3), while it is the
opposite for higher S/N (>3), as already observed in the canoni-
cal case.

4.5. Polarization fraction uncertainty estimates

The questions of estimating the polarization uncertainties and
how uncertainties are propagated are essential in reliable po-
larization analysis. The best approach consists of building the
confidence intervals to retrieve robust estimates of the lower
and upper limits of the 68%, 95%, or 99.5% intervals, which
is valid even when the distribution is not Gaussian. As already
mentioned in Sect. 3.3, building optimized confidence inter-
vals including the full knowledge of the covariance matrix may
represent a challenge for large samples of data. As a result,
P14 provides analytic approximations of such confidence inter-
vals for the MAS estimator, which can be extremely useful.

A commonly used approach, however, is to provide the 1σ
dispersion, assuming the Gaussian distribution of the p̂ estimates
as a first approximation. We have already stressed the difference
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Fig. 9. Illustration of the robustness of the p̂ estimators against the unknown ψ0 parameter when the covariance matrix departs from the canonical
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Fig. 10. Impact of the effective ellipticity of the covariance matrix on the statistical relative Biasp (left column) and Riskp (right column) quantities
in the extreme (light shaded region) and low (dark shaded regions) regimes, for both MAS (orange, top) and MB (pink, bottom) p̂ estimators. The
domain of the naïve measurements is repeated in grey shaded regions on both plots. The canonical case of the MAS (and MB) is also repeated on
each panel in dashed orange (and pink) lines. This is based on 100 000 Monte-Carlo simulations for each set-up of the covariance matrix, the S/N,
and the true polarization parameters.

between the risk function and the variance, and the limitations
of the latter to derive robust uncertainties in the presence of bias.
We compare below the performance of the usual uncertainty es-
timates introduced in Sect. 3 to provide robust 68% tolerance
intervals: MAS variance, credible intervals MAP, and 1σ a pos-
teriori dispersion MB.

Starting with a true p0 value, we performed Monte-Carlo
simulations in the low regime of the covariance matrix, by
exploring the whole range of the true polarization angle ψ0, with
a S/N ranging from 0 to 30. For each simulated measurement
(p, ψ), we compute the p̂ estimates with their uncertainty esti-
mators σp̂. We then compute the a posteriori probability to find
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p̂
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], where σlow

p̂
and σ
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p̂
are the lower and upper

limits of each estimator: credible intervals ML/MAP (blue), a posteri-
ori variance MB (pink), and MAS variance (orange). It is plotted as a
function of the S/N p0/σp,G. 10 000 Monte-Carlo simulations for each
setup of the S/N have been performed assuming a covariance matrix in
the low regime. The Gaussian level at 68% is shown as a dashed line.

the true p0 inside the interval [ p̂ − σlow
p̂
, p̂ + σ

up

p̂
]. In the case

of the MAP estimator, the lower and upper limits of the inter-
val, p̂MAP − σlow

p̂MAP
and p̂MAP + σ

up

p̂MAP
, are set to plow

MAP
and p

up

MAP
,

respectively, (with λ = 68 as defined in Sect. 3.2), which can
be asymmetric. We report the results compared to the expected
68% level in Fig. 11. We recall that this comparison approach
is frequentist, while anything derived from the Bayesian PDF is
used to build single estimates and to be compared with the con-
fidence intervals.

As pointed out in Sect. 3.1, the theoretical variance associ-
ated with the MAS estimator still tends to provide slightly lower
probabilities than the expected 68% at low S/N, mainly due to
the asymmetry of the distribution. The variance associated with
the MB estimator, which is more biased at low S/N, gives ex-
tremely low probability of recovering the true p0 value at low
S/N (<0.5). By contrast, it provides probabilities greater than
68% (as high as 90%) for S/N between 0.5 and 2. This comes
from the fact that the MB variance statistically over-estimates,
by a factor of 2, the exact variance of the a posteriori p̂MB dis-
tribution at low S/N (<2). Thus the MB uncertainty estimator
yields conservative estimates of the uncertainty for S /N > 0.5.
At high S/N (>3), all these uncertainty estimators provide com-
patible estimates of the probability close to 68%.

Because the true S/N is always unknown (see Sect. 4.6), the
probability of finding the true p0 value in the confidence interval
is also shown as a function of the measured S/N in Fig. 12. This
much more realistic picture shows that the variance estimates
provide reliable probability for measured S/N greater than ∼6.

4.6. Polarization signal-to-noise ratio

In any real measurement, the true S/N p0/σp,G remains un-
known. From observations, we only have access to the mea-
sured S/N, which can be obtained by the ratio p̂/σp̂ associated
with each estimator or by a confidence interval approach (see
P14), which is much more robust at a low true S/N. We show in
Fig. 13 the accuracy of the measured S/N compared to the true
S/N for the four following methods: the naïve estimate plus con-
ventional estimate of the uncertainty, the MAS estimate with the
associated variance, the MB estimate and its variance, and the
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Fig. 12. Same as Fig. 11 but plotted as a function of the measured S/N
p̂/σ p̂.
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Fig. 13. Average measured S/N computed over 10 000 Monte-Carlo
simualtions as a function of the true S/N for four methods: naïve p̂/σp,C

(dark), MAP confidence intervals p̂ML/σ p̂,MAP (blue), MB p̂MB/σ p̂,MB

(pink), and MAS variance p̂MAS/σ p̂,MAS(orange). The covariance ma-
trix is taken in its low regime.

ML estimate with the MAP credible intervals. We observe that
all methods agree only for a true S/N over 3, giving back the
true S/N in this regime. Below this true S/N, the measured S/N
becomes extremely biased regardless of the method used, due to
the bias of the measurement p̂ itself, but also due to the bias in-
troduced by the variance as an estimate of the uncertainty when
the output distribution departs from the Gaussian regime.

5. ψ̂ estimator performance

As pointed out by PMA I, once the covariance matrix is not
canonical (εeff > 1), a bias of the polarization angle measure-
ments ψ appears with respect to the true polarization angle ψ0.
This bias may be positive or negative. We propose to compare
the accuracy at correcting the bias of the polarization angle of
the four following ψ̂ estimators: naïve measurements ψ, the ML
ψ̂ML (which is equivalent to the MAP ψ̂MAP), the MP2 ψ̂MP2, and
the MB ψ̂MB.

5.1. Methodology

Similarly to the p̂ estimators, we define the relative bias and risk
function on ψ̂ as

Biasψ ≡

〈

ψ̂ − ψ0

〉

σψ,0
and Riskψ ≡

〈

(ψ̂ − ψ0)2
〉

σ2
ψ,0

, (38)

A136, page 12 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424451&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424451&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424451&pdf_id=13


L. Montier et al.: Polarization measurement analysis. II.

where ψ̂ is the polarization angle estimate computed on the sim-
ulated measurements ψ, ψ0 is the true polarization angle, 〈〉 de-
notes the average computed over the simulated sample, and σψ,0
is the standard deviation of the simulated measurements.

5.2. Performance comparison

We explore the performance of the four ψ̂ estimators at four
S/N = 0.5, 1, 2, and 5 (from top to bottom) and a covariance
matrix with an effective ellipticity εeff = 2, in Fig. 14. The rel-
ative Biasψ (left-hand panels) and Riskψ (right-hand panels) are
plotted as a function of the true polarization angle ψ0. While the
MB estimator seems to provide the least biased estimates with
the lowest risk function at low S/N (<1), it becomes the least ef-
ficient at higher S/N. In contrast, the ML (or MAP too) presents
poor performances at low S/N, but provides impressive results at
high S/N, reducing the relative bias close to zero at a S/N of 5.
The MP2 estimator does not present any satisfactory properties:
strong relative bias and risk function in almost all cases. This
ψ̂MP2 estimator can therefore be ruled out.

An overview of the performance of the four ψ̂ estimators as
a function of the S/N is shown in Fig. 15 after marginalization
over all the possible values of the ψ0 parameter. Since the rel-
ative Biasψ can be positive or negative depending on ψ0, we
compute the average of the absolute value of the relative bias,
〈|Biasψ|〉 as an indicator of the statistical performance of the es-
timators regardless of the true polarization angle. We observe
again in the left-hand panel of Fig. 15 that the MB estimator
provides the lowest relative bias for S/N < 1.2, while the ML is
especially powerful for S/N > 2. All estimators provide almost
the same results for the average Riskψ (left-hand panel), even if
MB appears slightly better than the others, including the naïve
measurements.

The examples provided above were computed with an ex-
treme effective ellipticity (εeff = 2) to emphasize the observa-
tions, but the same conclusions can be reached for lower values
of the ellipticity. See, for example, the case with εeff = 1.1 shown
in Fig. 15. In the low regime of the covariance matrix, however,
the statistical relative bias on ψ is very small, typically smaller
than 5% of the dispersion, so that the need to correct the bias on
ψ remains extremely limited.

5.3. Polarization angle uncertainty estimates

Once a reliable estimate of ψ̂ based on the MB and ML (MAP)
estimators has been obtained, we would like to build a robust es-
timate of the associated uncertainties σψ̂, which should be done
by building confidence intervals. Because building confidence
intervals may represent a hard task in some cases, for example
when dealing with the full covariance matrix, we explain other
methods below.

One option is to use the uncertainty associated with the MB
estimator,σψ̂,MB (see Eq. (34)). Another is to use the credible in-
tervals built around the MAP estimates on the posterior PDF. We
can keep the lower and upper limits, ψlow

MAP
and ψ

up

MAP
computed

for a 68% credible interval or build a symmetrized uncertainty:

σψ̂,MAP =
1

2

(

ψ
up

MAP
− ψlow

MAP

)

. (39)

A third option consists in taking the conventional uncertainty
given in PMA I, derived from the derivatives of the polar-
ization parameters. PMA I has already shown that this ψ̂ un-
certainty estimator, associated with the naïve measurements,

tends to systematically underestimate the true dispersion of the
ψ distribution.

We first assume the canonical simplification of the covari-
ance matrix, which implies that the ψ measurements are not sta-
tistically biased. We also recall that under such assumptions, the
ML (MAP) and MB ψ̂ estimators will give back the measure-
ments ψ. We study, however, how the uncertainties associated
with these two estimators can be used to get a reliable estimate
of the uncertainty σψ̂. Starting from a true point (p0, ψ0), we
simulate a sample of 1000 simulated measurements p, ψ at a
given S/N p0/σp, on which we apply the two ML (MAP) and

MB ψ̂ estimators and their associated uncertainty σψ̂,MAP and
σψ̂,MB, respectively. From this simulated set, we can derive the
averaged σψ̂ for both methods. Because all estimators give back
the measurements in the canonical case, we compare the MAP
and MB polarization angle uncertainties estimators directly to
the true dispersion of the ψmeasurements in Fig. 16. We also re-
peat the average of the conventional estimates of the polarization
uncertainty estimate, which has been shown by PMA I (see their
Fig. 7) to underestimate by a factor of two the true uncertainty at
low S/N (<2). We observe that the MAP estimator σψ̂,MAP pro-
vides an extremely good estimate of the polarization angle un-
certainty compared to the true one over the whole range of S/N,
even if slightly conservative up to a S/N of 5. The MB estimator
σψ̂,MB provides consistent estimates of the uncertainty from in-
termediate S/N ∼ 1, but still underestimates at lower S/N (<1).

In the non-canonical case a statistical bias on ψ appears,
which can be partially corrected using the appropriate ψ̂ esti-
mators (see Sect. 5.2), leading to an output distribution of the
ψ̂ estimates. We quantify the performance of the ψ uncertainty
estimators via Monte-Carlo simulations, as done for the p̂ uncer-
tainties. Starting from a set of polarization parameters (p0 = 0.1,
−π/2 < ψ0 < π/2), we build a sample of simulated measure-
ments (p, ψ) using various setups of the covariance matrix in
the low regime, and various S/Ns ranging from 0 to 30. We then
compute the a posteriori probability to find the true polarization
angle ψ0 in the interval [ψ̂ − σlow

ψ̂
, ψ̂ + σ

up

ψ̂
], where σlow

ψ̂
and σ

up

ψ̂

are symmetrized. The results are shown as a function of the true
S/N p0/σp,G in Fig. 17 and of the measured S/N p̂/σp̂ in Fig. 18.
We observe that the MAP estimator provides slightly conserva-
tive probabilities over the whole range of S/N. The MB estimator
gives low probabilities to recover the true polarization angle ψ0

for a true S/N < 1 and a measured S/N < 2.

6. Three-dimensional case

In all of the preceding sections, the total intensity I was assumed
to be perfectly known, I = I0. In some cases, however, this as-
sumption is not valid as discussed by PMA I. For instance, one
needs to subtract any unpolarized component from the observed
intensity signal, leading to three main problems: i) the derived
polarization fraction may be grossly underestimated if this is not
done properly; ii) this subtraction may be subject to a relatively
large uncertainty, larger than the noise on the total intensity, and
could lead to diverging estimates of the polarization fraction
when intensity crosses null values; iii) this uncertainty on this
unpolarized component intensity level should be included in the
3D noise covariance matrix and propagated to the uncertainty es-
timates of the polarization fraction. This happens, for instance,
when dealing with the polarization fraction of the Galactic dust
component at high latitude, where the total intensity of the signal
is strongly contaminated by the unpolarized signal of the cosmic
infrared background (CIB).
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Fig. 14. Comparison of the relative Biasψ (left) and Riskψ (right) quantities of the four ψ̂ estimators: naïve (black), ML (blue), MP2 (green), and
MB (pink) plotted as a function of the true polarization angle ψ0 and computed at four S/Ns of p0/σp,G = 0.5, 1, 2, and 5. The covariance matrix
is set to ε = 2 and ρ = 0 (εeff = 2). 1000 Monte Carlo realizations are performed for each set of the polarization angle and the S/N.
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Fig. 16. Average polarization angle uncertainty as a function of the S/N
in the canonical case and computed over 1000 Monte-Carlo simulations
for each value of the S/N: true uncertainty σψ,0 (black), conventional
estimateσψ,C (C, dashed dark), ML σψ̂,MAP (blue), and MB σψ̂,MB (pink)
estimators. The covariance matrix is assumed to be canonical.

The Bayesian approach has the definite advantage over other
estimators discussed here in that it can deal fairly easily with 3D
(I,Q,U) noise. However, an uncertain total intensity still poses
problems, which are most acute in low brightness regions, since
the noisy I may become zero or negative, leading to infinite or
negative polarization fractions. With this in mind, it is possible
that the choice of the prior in p0 and I0 may have a strong impact
on the p̂MB estimate. One may, for instance, choose to allow for
negative I0 in low-brightness regions, which implies extending
the definition range of the polarization fraction to the negative
part, leading to a prior defined on [−1, 1]. Another possibility in
this case, and a possible development of the present paper, is to
extend the dimensionality of the problem to include the unpo-
larized intensity component Ioffset, e.g., with a flat prior between
Ioffset,min and Ioffset,max, while still imposing I0 > 0.

We stress that the Bayesian approach is also currently the
only one that can deal with correlation between total intensity I
to Stokes parameters Q and U. We note, however, (i) new and
forthcoming polarization data sets have a much more control
over these systematics; and (ii) the impact of these correlations
between noise components on the polarization fraction and angle
bias is quite limited, as shown by PMA I.
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Fig. 17. Probability of finding the true polarization angle ψ0 inside the
interval [ψ̂−σlow

ψ̂
, ψ̂+σ

up

ψ̂
], where σlow

ψ̂
and σ

up

ψ̂
are the lower and upper

uncertainties for each estimator, ML/MAP (blue) and MB (pink), and
plotted as a function of the S/N p0/σp,G. For each value of the S/N 1000
Monte-Carlo simulations have been carried out in the low regime of the
covariance matrix. The expected level at 68% is shown as a dashed line.
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Fig. 18. Same as Fig. 17, but plotted as a function of the measured S/N
p̂/σ p̂.

7. Conclusion

We have presented in this work an extensive comparison of the
performance of polarization fraction and angle estimators. While
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Simmons & Stewart (1985) focused on the common estimators
of the polarization fraction, such as the maximum likelihood
(ML), the most probable (MP), and the asymptotic (AS), and
Quinn (2012) suggested using a Bayesian approach to estimate
the polarization fraction, we have generalized all these methods
to consider the full covariance matrix of the Stokes parameters.
We also included in this comparison a novel estimator of the po-
larization fraction, the modified asymptotic (MAS, Plaszczynski
et al. 2014). In addition, we performed the first comparison of
the performance of the polarization angle estimators, since a sta-
tistical bias of ψ is expected when the covariance matrix departs
from its canonical form. We followed a frequentist methodol-
ogy to investigate the properties of the polarization estimators,
even when dealing with the frequentist estimators inspired by
the Bayesian approach.

The question of the performance of a p̂ or ψ̂ estimator de-
pends intrinsically on the analysis we would like to carry out
with these quantities. Whether one includes the full covariance
matrix or not is one of the first questions that must be handled,
but the more important aspect relies on the properties of the
output distribution of each estimator. In practice, a compromise
between three frequentist criteria has to be found: a minimum
bias, a minimum risk function, and the shape of the output dis-
tribution, in terms of non-Gaussianity. We present below a few
recipes associated to typical use cases:

– Build a mask. It is usually recommended to build a mask on
the intensity map, instead of using the S/N of the polariza-
tion fraction, so that no values of the polarization fraction
(especially low values of p) are discarded in the further anal-
ysis. It can be useful, however, to build a mask based on the
S/N of a polarization fraction map when we are interested in
strong values of the polarization fraction only, and we try to
reject p estimates artificially boosted by the noise. This is the
case when we look for the maximum value of p, for example.
In this context we suggest following the prescription of P14,
using a combination of the MAS estimator with confidence
intervals. This method allows building conservative domains
where the S/N is ensured to be greater than a given threshold.
P14 provide numerical approximations in the canonical case.
If one wants to take the specificity of the noise properties in
each pixel into account, confidence intervals can be built for
any covariance matrix (including ellipticity and correlation),
but it could require intensive computing. Another alternative
in that case is to build credible intervals using the posterior
distribution (MAP).

– Large maps of the polarization fraction with high S/N on the
intensity. Another typical use is to provide large maps of the
polarization fraction with the associated uncertainty, when
the intensity is assumed to be perfectly known. Because of
their discontinuous distributions presenting a peak at p̂ = 0
and their strong dependence on the unknown true polariza-
tion angle ψ0, the common estimators of p (ML, MP, and
AS) are not designed well for this purpose. These estima-
tors could produce highly discontinuous patterns with zero
values over the output p̂ map when the S/N goes below 4,
which may imply complicated analysis that include upper
limit values. To avoid these issues, we first suggest using the
MAS estimator, which has been shown to produce the lowest
relative bias, with a continuous output distribution that be-
comes close to a Gaussian for S/N greater than 2. Moreover,
the relative risk function associated with the MAS estimator
becomes competitive for S/N > 3, while the MB estimator
minimizes the relative risk function for an intermediate S/N

between 1 and 3. The uncertainties can then be derived again
from the confidence or credible intervals, depending on the
ellipticity of the covariance matrix. A second option, espe-
cially suited to intermediate S/N (2−3), consists in perform-
ing a preliminary analysis on the data to build a prior from
the p̂ distribution, which can then be injected into the MB
estimator. The performance of this method strongly relies on
the properties of the initial true distribution. It is particularly
efficient for true polarization fractions largely greater than
zero, to avoid the major drawback of the MB estimator pre-
senting a lower limit that is proportional to the noise level.
The MB (with flat prior) estimator therefore presents a cut-
off at 0.8σp, so that it can never provide null estimates of p̂.
We stress that above a S/N of 4, all methods (except MP2)
fall into agreement.

– Combined polarization fraction and angle analysis. The
Bayesian estimators of p̂MB and ψ̂MB may be used to build
estimates of the polarization fraction and angle simultane-
ously, by taking the full covariance matrix into account, in-
cluding the ellipticity and correlation between Q and U, and
the correlation between total and polarized intensity. This
could be useful when performing an analysis over large areas
with inhomogeneous noise properties, when the S/N on the
intensity becomes problematic or when an important corre-
lation between I and (Q, U) exists. Nevertheless, we stress
that the output distributions of the MB estimates are strongly
asymmetric at low S/N (<3) and that the Bayesian uncer-
tainty estimates cannot be used as typical Gaussian 68% tol-
erance intervals.

– Low S/N on the intensity. We recommend in this case to use
the Bayesian estimators that allow simultaneous estimates of
the intensity and the polarization parameters, taking the full
covariance matrix into account, and to include the impact of
the uncertainty of the intensity on the polarization fraction
estimate.

– Very low S/N studies. Very low S/N s studies may require
different approaches. We have seen that at low S/N, all esti-
mators provide biased estimates of the polarization fraction,
with highly asymmetric distributions. The more conserva-
tive option in this case is to use the confidence or credible
intervals. Similarly the question of assessing the unpolarized
level of a set of data (i.e., S/N ∼ 0) has been first raised by
Clarke et al. (1993). They suggested using a Kolmogorov test
to compare the measurement distributions with the expecta-
tion derived from the Rice distribution with p0 = 0. Another
option is to build the likelihood in two dimensions (Q,U) to
perform a χ2 test with Q0 = U0 = 0. A last method could be
to use the Bayesian posterior probability B(p0|p, σp) to as-
sess the probability of having p0 within a specified interval
of zero (or exactly p0 = 0 if delta functions are allowed in
the prior) for a given measurement or a series of measure-
ments by convolving all individual PDFs (see Quinn 2012,
for details about the complications that can arise in such an
analysis).

– Polarization angle. Concerning the polarization angle es-
timates ψ̂, we have shown that the ML provides the best
performance in terms of relative bias and risk function for
S/N > 1. It corrects a potential bias ofψwhen the covariance
matrix is not in its canonical form. Because the ML and MAP
estimators give equivalent results, the MAP can be used to
efficiently build credible intervals and symmetric uncertain-
ties, which have been shown to be in a very good agreement
with the output distributions. Nevertheless, we stress that the
level of the absolute bias of ψ remains extremely limited
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compared to the dispersion of the polarization angle in most
cases (i.e., in the low and tiny regimes of the covariance ma-
trix), so that it can usually be neglected.
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Appendix A: Most probable in general case

The MP2 estimators, p̂MP2 and ψ̂MP2, have to satisfy Eqs. (8)
and (9) simultaneously. These relations can be solved using the
fully developed expression of f2D, including the terms of the in-
verse matrix Σ−1

p :

Σ
−1
p =

(

v11 v12

v12 v22,

)

(A.1)

leading to

ψ̂MP2 =
1

2
arctan

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

((

v11v22 − v212

)

p2 − v11

)

sin 2ψ + v12 cos 2ψ
((

v11v22 − v212

)

p2 − v22

)

cos 2ψ + v12 sin 2ψ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

p̂MP2 =
A1

A2 cos 2ψ̂MP2 + A3 sin 2ψ̂MP2

, (A.2)

with

A1 ≡ p
(

v11 cos2 2ψ + v22 sin2 2ψ + 2v12 cos 2ψ sin 2ψ
)

− 1/p ,

A2 ≡ v11 cos 2ψ + v12 sin 2ψ ,

A3 ≡ v22 sin 2ψ + v12 cos 2ψ. (A.3)

This analytical solution only depends on the input measurements
(p, ψ) and the covariance matrix Σp. Because the polarization
fraction must be positive, there is a lower limit of the S/N so
that p̂MP2 = 0. In that case, ψ̂MP2 is not constrained anymore
and can be chosen to be any possible value. We set it equal to

the measurement ψ. Moreover, this expression can be simplified
when ρ = 0, which implies that v12 = 0, leading to

ψ̂MP2 =
1

2
arctan

(

p2 − 1/v22

p2 − 1/v11

tan 2ψ

)

, (A.4)

p̂MP2 =
p
(

v11 cos2 2ψ + v22 sin2 2ψ
)

− 1/p

v11 cos 2ψ cos 2ψ̂MP2 + v22 sin 2ψ sin 2ψ̂MP2

·

In the canonical case (v12 = 0, v11 = v22 = 1/σ2
p), we recover the

expression derived by Quinn (2012):

ψ̂MP2 = ψ ,

p̂MP2 =

{

p − σ2
p/p for p > σp

0 for p ≤ σp.
(A.5)

Appendix B: Bayesian posterior PDF

We illustrate the shape of the posterior PDF in Fig. B.1, where
B2D(p0, ψ0 | p, ψ,Σp) is shown at four levels of the S/N and five
couples of (ε, ρ). It is interesting to notice that the posterior PDF
allows the polarization fraction to be zero at low S/N, when these
values were rejected by the PDF (see Appendix B of PMA I).
Moreover, the posterior PDF peaks at the location of the mea-
surements used to compute it. As largely emphasized in PMA I,
we also recall that once the effective ellipticity of the covariance
matrix departs from the canonical simplification, the PDFs are
sensitive to the initial true polarization angle ψ0.
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Fig. B.1. Posterior probability density functions B2D(p0, ψ0 | p, ψ,Σp) computed for the most probable measurements (p, ψ) of the f2D distribution
(crosses), which were obtained for a given set of true polarization parameters ψ0 = 0◦ and p0 = 0.10 (dashed lines) and various configurations of
the covariance matrix, at four levels of S/N p0/σp,G = 0.1, 0.5, 1, and 5 (top to bottom). The scales of the p0 and ψ0 axes may vary from one row
to the next in order to focus on the interesting part of the PDF. The black contours provide the 90, 70, 50, 20, 10, 5, 1, and 0.1% levels.

Appendix C: Mean Bayesian posterior analytical

expression

In the canonical case, the MB estimator of the polarization frac-
tion p takes a simple analytical expression. The Bayesian poste-
rior on p is given in this case by

Bp(p0 | p,Σp) =
R(p | p0, Σp) · κ(p0)

∫ 1

0
R(p | p′

0
, Σp) κ(p′

0
) dp′

0

, (C.1)

where κ is the prior chosen equal to one over the definition
range ([0, 1]), and R denotes the Rice (1945) function which is
defined by

R(p | p0, Σp) =
p

σ2
p

exp

⎛

⎜

⎜

⎜

⎜

⎝

−
p2 + p2

0

2σ2
p

⎞

⎟

⎟

⎟

⎟

⎠

I0

⎛

⎜

⎜

⎜

⎜

⎝

pp0

σ2
p

⎞

⎟

⎟

⎟

⎟

⎠

, (C.2)

where I0(x) is the zeroth-order modified Bessel function of the
first kind (Gradshteyn & Ryzhik 2007), and σp = σQ/I0 =

σU/I0 is the characteristic noise level of the polarization
fraction.

The MB estimator and the posterior variance take the follow-
ing forms

p̂MB =

∫ 1

0
p0 e(−p2

0
/2σ2

p)I0

(

pp0

σ2
p

)

dp0

∫ 1

0
e(−p0

2/2σ2
p)I0

(

pp0

σ2
p

)

dp0

(C.3)

and

σ̂2
p,MB =

∫ 1

0
(p0 − p̂MB)2 e(−p2

0
/2σ2

p)I0

(

pp0

σ2
p

)

dp0

∫ 1

0
e(−p0

2/2σ2
p)I0

(

pp0

σ2
p

)

dp0

· (C.4)

If we assume in a first approximation that the integral of p0 over
[0, 1] can be taken over [0,+∞) (which is fine at high S/N), and
we use the formula of Prudnikov et al. (1986),

∫ ∞

0

xa−1e−bx2I0(cx)dx =
1

2
b−a/2Γ(a/2)1F1

(

a

2
, 1,

c2

4b

)

, (C.5)

where Γ is the Gamma function, 1F1 the confluent hypergeomet-
ric function of the first kind, and a, b, and c all positive reals, we
can derive

∫ ∞

0

e(−p2
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(C.6)
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Fig. C.1. Accuracy of the approximate analytical expression of the
Bayesian estimates of the polarization fraction p̂MB (solid line) and its
associated uncertainty σ̂p,MB (dashed line), as a function of the S/N of
the measurement p/σp, where σp = σQ/I0 = σU/I0.
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and finally
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We finally obtain the simple expression of the MB estimator and
the associated Bayesian variance:

p̂MB =
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and
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As shown in Fig. C.1, this analytical approximation gives less
than 0.15% of relative error at low S/N compared to the exact
p̂MB estimate and less than 0.05% for the associated uncertainty.
This small departure quickly tends to 0 for a S/N > 4. Thus
these expressions may be used to speed up the computing time
when the canonical simplification may be assumed.

We explore in Fig. C.2 to the extent at which the canonical
simplification may be done in the presence of an effective
ellipticity of the covariance matrix. In this more general case,
we suggest changing σp into σp,G in the Eqs. (C.9) and (C.10).
The relative error between the approximate estimate and the
exact Bayesian estimate has been explored in two regimes
of the covariance matrix, the low (1 < εeff < 1.1) and tiny
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Fig. C.2. Accuracy of the generalized approximate analytical expres-
sion of the Bayesian estimates p̂MB (top) and σ̂p,MB (bottom), taking the
full covariance matrix components into account, in the low (light grey)
and tiny (dark grey) regimes.

(1 < εeff < 1.01) regimes. Three domains are observed in the
top panel of Fig. C.2 dealing with the accuracy of the p̂MB es-
timate: i) at low S/N (<1), the bias on p is so large that the
presence of an effective ellipticity does not significantly affect
the estimate in comparison; ii) for an intermediate range of the
S/N (1 < S/N < 4), the effective ellipticity of the Σp signif-
icantly affects the Bayesian estimate so that the departure of
the analytical approximation from the exact estimate becomes
important; iii) at high S/N (>4), the noise is so low that the
Bayesian estimate is not sensitive to the asymmetry of the co-
variance matrix anymore. Consequently, the approximate analyt-
ical expression provides very good estimates of p̂MB for S /N < 1
and S /N > 4, and 5% to 0.5% of relative error for intermediate
1 < S/N < 4 in the low and tiny regimes of the covariance ma-
trix, respectively. In the extreme regime of the covariance matrix,
the relative error increases up to 20%.

Concerning the accuracy of the Bayesian approximate es-
timate σ̂p,MB of the polarization fraction uncertainty (bottom
panel), the agreement is better than 0.1% for S/N < 1, and
about 8% S/N > 1 in the low regime, and 1% in the tiny regime.
Because the uncertainty becomes small compared to the polar-
ization fraction at high S/N, up to 8% of error in σ̂p,MB is still
acceptable for this approximation.
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