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and Faculty of Mechanical Engineering, Department of Precise Mechanics and Optics, University of Sarajevo,
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We describe theoretically the generation of ultrashort ~subfemtosecond! pulses using high-order harmonics

of a laser pulse with a time-dependent degree of ellipticity. The single-atom response is calculated by using a

low-frequency strong-field approximation. Propagation effects are taken into account using a method going

beyond the slowly varying envelope approximation. Propagation modifies significantly the results obtained in

the single-atom response and, in certain conditions, makes the generation of one attosecond pulse possible. We

discuss prospects for the observation of these ultrashort pulses.

@S1050-2947~97!09411-0#

PACS number~s!: 32.80.Rm, 42.65.Ky

I. INTRODUCTION

High-order harmonic generation ~HG! is a rapidly devel-

oping area in the field of intense laser-atom interactions. One

of the most exciting applications of these processes is the
generation of pulses of electromagnetic radiation of very
short duration ~a few hundred attoseconds!. This new topic
has gained enormous interest since it may open the way to
attosecond spectroscopy and, generally speaking, attosecond

physics @1#.
Several proposals for subfemtosecond pulse generation

have been put forward during the last few years. They all
involve high-order harmonic generation, mostly from gas-
eous media. There are essentially two types of proposals: ~a!
those that rely on phase locking between consecutive har-
monics @2–4#, and ~b! those that concern single harmonics
@5–7#.

The first type of proposals is based on the observation that
the harmonic spectrum consists of a plateau with peaks
equally spaced in frequency and with nearly equal ampli-
tudes. Farkas and Toth, and Harris et al. @2# speculated that,
by filtering out N harmonics from the plateau, one could
obtain a train of intense ultrashort pulses of duration T/2N ,
where T is the laser period, provided the harmonics were
locked in phase. Antoine et al. @3# showed that, though it
does not turn out to be true on the level of individual atoms,
the emission by the macroscopic medium does consist of a
regular train of short pulses thanks to the time filtering in-
duced by macroscopic propagation effects. Furthermore,
Corkum and his collaborators @4# suggested that by using
laser fields with a time-modulated degree of ellipticity, it
should become possible to generate a single attosecond pulse
thus, in a way, achieving extraction of a pulse from the train
of attosecond pulses obtained with linear polarization. This
idea is based on the strong sensitivity of the harmonic con-
version efficiency to the degree of ellipticity of the driving

laser field @8,9#. Several methods have been proposed to

modulate in time the laser degree of ellipticity @4,10#.
Schafer and Kulander, and Christov et al. @5,6# proposed

to use very short fundamental pulses ~below 25 fs! to gener-

ate very short harmonic pulses, especially for the harmonics
in the cutoff region. Further compression can be achieved by
compensating the dynamically induced ~practically linear!
chirp of the harmonics @7,11#.

Finally, it is worth mentioning another scheme based on
high-order harmonics produced by laser pulses interacting
with solid targets @12–15#. Using a simple model for the
oscillating plasma surface, Rza̧żewski et al. @16# showed that
when a Ti-sapphire laser pulse is normally incident on a
surface, the reflected signal has the form of a train of ul-
trashort pulses ~of duration .100 attoseconds!. This result is
rather interesting, since, on one hand, the harmonic spectrum
is monotonically decreasing and does not exhibit any plateau
@17#, while, on the other hand, the production of those ul-
trashort pulses does not require any filtering.

It should be stressed that most of the above-discussed
schemes have been considered only for single atoms. All of
these proposals require a careful study of macroscopic ef-
fects, since propagation and phase matching in the macro-
scopic medium may significantly alter the single-atom sig-
nal. The purpose of the present work is to investigate in
detail, on a single-atom level, as well as including propaga-
tion, the feasibility of the proposal from Corkum et al. @4# to
use laser pulses with a time-modulated degree of ellipticity.
We discuss under which conditions a single attosecond pulse
can be generated, and which power can be obtained.

The plan of the paper is the following. In Sec. II we
present our theoretical approach. The single-atom response is
described using our quantum mechanical theory @18# valid in
the tunneling limit. Propagation equations are solved by us-
ing an approximation that goes beyond the slowly varying
envelope description, in order to account for a rapidly vary-
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ing degree of ellipticity for the fundamental field. In Sec. III
we discuss our numerical results and in Sec. IV the effects of
dispersion and ionization. The general conclusion of our
work, presented in Sec. V, is that the scheme of Corkum and
co-workers does work in a macroscopic medium, provided
the duration of the fundamental laser pulse is short enough
~below 30 fs!. It is in fact the interplay between single-atom
response and phase-matching effects that makes possible the
generation of one attosecond pulse.

II. THEORETICAL DESCRIPTION

We first discuss the case where depletion due to ioniza-
tion and dispersion is neglected. We will discuss in Sec. IV
how the theory can be extended to ~partially! ionized media.

A. Single-atom response

The details of our theory can be found in Refs. @18–20#.
Here we quote only the main results. Atomic units are used
in this paragraph. The dipole moment of an atom xW (t) in the
strong electric field of a laser of frequency v is calculated by
evaluating the integral:

xW~ t !5iE
0

`

dtS p

n1it/2
D 3/2

dW *@pW s2AW ~ t !#

3exp@2iS~pW s ,t ,t !#EW~ t2t !•dW @pW s2AW ~ t2t !#1c.c.

~1!

n is a positive regularization constant, AW (t) denotes the vec-

tor potential of the electromagnetic field, EW(t)52]AW (t)/]t

is the electric field ~elliptically polarized, in general!.

S(pW ,t ,t)5* t2t
t dt9$@pW 2AW (t9)#2/21Ip% ~Ip denoting the ion-

ization potential! is the quasiclassical action, describing the
motion of an electron moving in the laser field with a con-
stant canonical momentum pW . Equation ~1! is a generalized
Landau-Dyhne formula, obtained by using a saddle-point
method to integrate over all possible values of the momen-
tum pW with which the electron is born in the continuum. The
integration variable t represents the possible return times of
the electron, i.e., the times it spends in the continuum be-
tween the moments of tunneling from the ground state to the
continuum and recombination back to the ground state. The
saddle-point value of the momentum ~for which the quasi-
classical action is stationary!, and which enters in Eq. ~1!, is

pW s5pW s(t ,t)5* t2t
t dt9AW (t9)/t . Finally, the field-free dipole

transition element from the ground state to the continuum
state characterized by the momentum pW can be approximated
by

dW ~pW !5i
27/2a5/4

p

pW

~pW 2
1a !3 , ~2!

with a52Ip , for the case of hydrogenlike atoms and transi-
tions from s states @21#. Since the propagation equations are
expressed in the frequency domain, in the general case, we
need to calculate the Fourier transform xWV of xW (t) for a con-
tinuous range of frequencies. When the field is periodic, of
course, the set of frequency components becomes discrete. In
the case of linear polarization, and long pulses, for which the

slowly varying envelope can be applied, the frequency com-
ponents reduce to the harmonics of the laser field.

B. Propagation equations beyond the slowly

varying approximation

We start from the general wave equation describing the

propagation of an electromagnetic field EW(rW ,t) in an isotro-
pic, globally neutral, nonmagnetic, dielectric medium, char-

acterized by an electronic polarization PW (rW ,t) @here we use
System̀e International ~SI! units#:

¹2EW~rW ,t !2

1

c2

]2EW~rW ,t !

]t2 5

1

e0c2

]2PW ~rW ,t !

]t2 . ~3!

The Fourier transform of this equation reads

¹2EWV~rW !1

V2

c2 EWV~rW !52

V2

e0c2 PW V~rW !. ~4!

The polarization PW V(rW) at frequency V consists of a linear
component, characterizing the linear response of the medium
at that frequency, and a nonlinear component, which, in the
absence of depletion, is simply proportional to xWV(rW), the
Fourier component of the atomic dipole moment, calculated
for the ~complex! amplitude of the fundamental field at the
position rW ~we neglect wave-mixing processes involving ab-
sorption of the generated fields!. We now use the paraxial
approximation which assumes that the laser and generated
fields propagate essentially like a plane wave. We introduce

the envelopes EW V(rW)5EWV(rW)exp(2ikVz) and PW V(rW)

5PW V(rW)exp(2ikVz), with kV5V/c , in the absence of dis-
persion. z denotes the coordinate on the propagation axis.

We assume that EW V(rW) and PW V(rW) vary slowly in the coor-
dinate z over the field wavelength. The linear part of the
polarization cancels out with terms in the left-hand side in
Eq. ~4! and we obtain the following equation for the enve-
lopes:

¹
'

2 EW V~rW !12ikV

]EW V~rW !

]z
52

V2

e0c2 PW V
nl~rW ! , ~5!

where PW V
nl(rW) is the nonlinear polarization envelope. It is

worth stressing that, by solving Eq. ~5! for a continuous
range of frequencies, we go beyond the adiabatic ~slowly
varying envelope! approximation in time. In particular, we
account for the time dependence of the fundamental in a
nonadiabatic way.

To obtain the time dependence of the total field EW(rW ,t),
one has to Fourier transform back to the time domain:

EW~rW ,t !5

1

2p
E EW V~rW !exp@2i~Vt2kVz !#dV . ~6!

To investigate the response of a certain range of frequencies,
say between Vmin and Vmax , one simply limits the integra-
tion to that particular range. Finally, the integrated temporal

signal is equal to * uEW(rW ,t)u22prdr .

56 4961GENERATION OF ATTOSECOND PULSES IN . . .



C. Electromagnetic field with a modulated degree of ellipticity

A simple way to obtain a laser field with a time-dependent
degree of ellipticity, proposed by Corkum et al. @4#, is to use
two cross-polarized fields with slightly different frequencies:

EW0~ t !5E0 f ~ t !„cos~v1t !,cos~v2t !,0…, ~7!

where E0 is the field amplitude, f (t) is the pulse envelope,
and v1 and v2 are the two laser frequencies. We introduce
v̄5(v11v2)/2 and D5(v22v1)/2. The phase difference
between the two perpendicular components varies in time,
and is equal to 2Dt . The total field is elliptically polarized,
with a time-varying ellipticity. The axes of the ellipse are
oriented at 645° with respect to the x ,y axes. The instanta-
neous value of the ellipticity is e(t)5tan(Dt) for
2p/4<Dt<p/4, and e(t)5cot(Dt) for p/4<Dt<3p/4
modulo p. The sign of e(t) represents the sense of rotation
of the ellipse ~helicity!. In Fig. 1, we plot e(t) for two
choices of D5v̄/32 ~solid line! and D5v̄/16 ~dashed line!.
Since D is commensurable with v̄ , the ellipticity e(t) is a
periodic function with a period equal to 16 and 8 optical
periods, respectively ~one optical period is T52p/v̄!. In
these cases, assuming that the pulse envelope changes on a
much slower time scale, so that the intensity is approxi-
mately constant over this time range, the response of a single
atom submitted to a field given by Eq. ~7! will also be peri-
odic with the same period as the ellipticity.

III. NUMERICAL RESULTS

A. Single-atom response

Most of our calculations, in particular those for the single-
atom emission, have been performed for a constant field in-
tensity @I52uE0u2, f (t)51 in Eq. ~7!#, i.e., as if the laser
pulse were infinitely long. This implies that the range of
frequencies necessary to describe the response of an atom to
the field defined in Eq. ~7! is discrete provided that D is
commensurable with v̄ . Consider a process where n1 pho-
tons are absorbed from the first field and n2 from the second
field. Parity implies that n11n2 is odd, and so is n22n1 .
The frequency of the emission is n1v11n2v2

5(n11n2)v̄1(n22n1)D . In our case, this implies that the
spectrum consists of odd harmonics of D since v̄/D is even.

In Fig. 2, we present three single-atom spectra obtained in
neon. In all cases, the peak intensity is chosen to be
431014 W/cm2, and the wavelength l52pc/v̄ , 825 nm.
The dots represent the results obtained for linear polariza-
tion. The spectrum then consists of odd harmonics of the
fundamental. The solid and dashed lines have been obtained
for two ~infinitely long! pulses, defined as in Eq. ~7! for
D5v̄/16 and D5v̄/32, respectively. The peaks at the odd
harmonic frequencies of D have been joined by a line for the
sake of clarity. When D5v̄/32, the spectrum shows maxima
at the ~odd! harmonic frequencies of v̄ . This is because the
variation of the ellipticity is relatively slow compared to the
optical cycle and some periodicity at the mean frequency is
conserved. In contrast, when D5v̄/16, the harmonic struc-
ture is almost lost. The spectrum is more or less continuous
in the plateau region with a ~slightly shifted! harmonic struc-
ture in the cutoff region. The results obtained with a time-
varying degree of polarization are about two orders of mag-
nitude lower than those with linear polarization. This is
because the time during which emission occurs is limited to
about 1/8 of that for the case of linear polarization ~see be-
low!, so that the harmonic strength is approximately a factor
of 64 below.

In the present work, we want to examine the temporal
response of a limited frequency range ~corresponding to a
few, typically ten, harmonics in the linear polarization case!.
We consider the filtered signal:

uxW F~ t !u2
5U (

Vmin<V<Vmax

xWV exp~2iVt !U2

, ~8!

keeping only the frequency components Vmin541v̄
<V<Vmax561v̄ @22#. This temporal signal is plotted in
Fig. 3 over three optical periods in the three cases mentioned
above: ~a! linear polarization, ~b! time-dependent elliptical
polarization for D5v̄/32, ~c! and ~d! time-dependent ellip-
tical polarization for D5v̄/16. In the case of linear polariza-
tion @Fig. 3~a!#, the time profile is rather complex. This result
has been discussed in detail in Ref. @3#. The harmonics in the
plateau region generated by a single atom are not locked in
phase, since they result from quantum interferences between
probability amplitudes corresponding to various paths for the

FIG. 1. Time dependence of the ellipticity for D5v̄/32 ~dashed

line! and D5v̄/16 ~solid line!.

FIG. 2. Frequency spectrum for a single neon atom for D50

~dots, linear polarization!, D5v̄/32 ~dashed line!, and D5v̄/16

~solid line!. The laser intensity is 431014 W/cm2, and the wave-

length 825 nm.
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generation, associated to different electron trajectories in the
continuum @1#. As a result, the time profile of the filtered
signal consists of a complex train of pulses, with several
peaks per half cycle. The dominant peaks in the train can be
associated directly to the electronic trajectories that occur
with the dominant probability amplitudes. In particular, the
largest one corresponds to a trajectory lasting about one
cycle ~return time t2!, whereas the next largest corresponds
to a shorter one, lasting about half a cycle ~return time t1!.
The smaller peaks are associated to longer trajectories.

In the case of the time-dependent elliptical polarization
with D5v̄/32 @Fig. 3~b!#, the instantaneous field @Eq. ~7!#
becomes linear at the times t lin5 . . . ,28T ,0T ,8T , . . . ~T is the
mean optical period!. Due to the dramatic decrease of the
harmonic generation efficiency with increasing ellipticity,
the harmonics are now generated in the form of bursts close
to the times t lin . Figure 3~b! shows the temporal signal close
to t50. The emission peaks are mostly after the times t lin .
This is because there is a time lag, depending on the electron
trajectory, between tunneling and harmonic emission. For
t lin50, tunneling takes place close to t520.5T ,0T ,0.5T ,
i.e., when the field is close to its maximum, and the most
efficient emission occurs within the first period afterwards,
i.e., between t50T and t51.5T . Let us consider the five
highest peaks in Fig. 3~b!. The first (t50.05T) and third
(t50.55T) ones correspond to ‘‘short’’ trajectories in the
linear polarization case @see Fig. 3~a!#, lasting about half a
cycle. The tunneling times for these trajectories are approxi-

mately t520.45T and t50.05T . The second (t50.25T),
fourth (t50.75T), and fifth (t51.25T) peaks correspond to
‘‘long’’ trajectories in the linear polarization case, lasting
slightly less than one cycle. The present time profile con-
firms, at least qualitatively, these considerations based on
stationary phase arguments @23#. The amplitudes of the first
and the third peaks can be comparable only if the mean de-
grees of ellipticity during the corresponding electron trajec-
tories are alike. This implies that the return times should be
close to 0.5T . The presence of the fifth peak (t51.25T),
while no significant peak appears at t51.05T , indicates that
the peaks at t50.25T ,0.75T ,1.25T , . . . correspond to trajec-
tories with longer return times than the trajectories charac-
terizing the first and third peaks in Fig. 3~b!. Furthermore,
the time profile clearly indicates that the wave packet recol-
lides several times with the core. The consequence of this
quasiperiodicity is a spectrum with well defined harmonics
@24,25#.

In the case of the time-dependent elliptical polariza-
tion with D5v̄/16 @Figs. 3~c!,~d!#, the instantaneous
field @Eq. ~7!# becomes linear at the times t lin

5 . . . ,28T ,24T ,0T ,4T , . . . . Figure 3~c! shows the harmonic
bursts close to the time t lin50T . They are very similar to
those of Fig. 3~b!, except that the difference between the
peaks ~in particular between the second and fourth! is more
pronounced, owing to the more rapidly varying degree of
ellipticity. Note that the bursts close to
t lin5 . . . ,28T ,0T ,8T , . . . are all identical, but different from

FIG. 3. Time profile uxW F(t)u2 calculated for a single neon atom and composed of the Fourier components with

Vmin541v̄<V<Vmax561v̄ . The laser intensity is 431014 W/cm2, and the wavelength 825 nm. ~a! Linear polarization, ~b! time-dependent

elliptical polarization with D5v̄/32, ~c! and ~d! time-dependent elliptical polarization with D5v̄/16.

56 4963GENERATION OF ATTOSECOND PULSES IN . . .



those at t lin5 . . . ,24T ,4T ,12T , . . . . ~In the D5v̄/32 case,
similarly, the bursts at 28T ,8T are different from those at
216T ,0T ,16T .! The reason is that the periodicity of the field
defined in Eq. ~7! for D5v̄/16 is 8T and not 4T . The elec-
tric field is maximum at t528T ,0T ,8T , . . . whereas it van-
ishes at t524T ,4T , . . . . Around t524T ,4T , . . . , the
maxima of the electric field are thus shifted by T/4 with
respect to the surroundings of t528T ,0T ,8T , . . . . The tra-
jectories are also shifted by the same value. In Fig. 3~d!, the
remaining peaks correspond to trajectories occurring around
t524T when the polarization is close to linear and thus the
mean degree of ellipticity is minimum.

We stress that our results are different from those of Ref.
@4#, where the single-atom response consisted of a regular
train of attosecond pulses, and one of these pulses was se-
lected using a fundamental pulse with a time-varying degree
of ellipticity. Here we consider the case when the harmonics
that contribute to the signal are deep in the plateau region,
where the generation is most efficient. This is the regime
dominated by quantum interference effects, for which the
response of the atom to a linearly polarized field is irregular
@Fig. 3~a!#. It is not surprising that, in this case, the time-
dependent polarization does not enable the selection of a
single attosecond pulse per 8T @Fig. 3~b!# or per 4T @Figs.
3~c!,~d!#. It selects in general two pulses per half cycle, i.e.,
about four pulses in total in the vicinity of t5t lin . Even
when the degree of ellipticity changes very rapidly
(D5v̄/16), some T/2 periodicity appears around
t lin528T ,0T ,8T , . . . . As a consequence, it should be pos-

sible to distinguish some harmonic structure in the spectrum,
even with a poor contrast. We attribute the smearing of the
harmonics in the spectrum ~Fig. 2! to an additional shift,
dependent on the return time, induced by the time-dependent
degree of ellipticity. The structure of the cutoff is preserved
because there only one return time leads to harmonic genera-
tion. Even if the mechanism is probably different, the smear-
ing of the spectrum in the plateau obtained for an infinitely
long pulse, but for a rapidly varying degree of ellipticity,
actually resembles that obtained for a short pulse and linear
polarization @5,6,25,26#.

B. Many-atom response

We first present the results for a constant field intensity.
To describe the many-atom response to the field described in
Eq. ~7!, it is necessary to know the Fourier components of
the atomic dipole moment, calculated for the fundamental
field „E0(rW)cos@v1t1f(rW)#,E0(rW)cos@v2t1f(rW)#,0…, whose
amplitude and phase vary in the nonlinear medium. We here
assume that focusing of the two fields is the same ~given the
small frequency difference!, which implies that the ampli-
tude and phase of the two components are the same. How to
obtain the components xWV(rW) from those calculated previ-
ously for a field defined as in Eq. ~7! is explained in detail in
the Appendix.

The results presented below for the macroscopic response
have been obtained under the following conditions. The ~825
nm! fundamental field is supposed to be Gaussian with a

FIG. 4. Same as Fig. 3 for the macroscopic response calculated for a 1 mm wide atomic jet located 2 mm after the focus. The laser

intensity is equal to 431014 W/cm2 at the center of the jet.
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confocal parameter b55 mm. The intensity is chosen to be

6.5631014 W/cm2 at focus. A 1 mm wide jet of neon atoms

is located 2 mm after the focus so that the peak intensity at

the center of the jet is 431014 W/cm2.
We calculate as before the filtered time profiles composed

of the sum of the Fourier components of the propagated field
for Vmin541v̄<V<Vmax561v̄ . The results are shown in
Figs. 4~a!–4~d!, for linear polarization ~a!, time-dependent
elliptical polarization with D5v̄/32 ~b!, and time-dependent
elliptical polarization with D5v̄/16, ~c! and ~d!. The unit on
the vertical axis is an instantaneous power ~square of the
electric field amplitude integrated over the plane perpendicu-
lar to the propagation axis!. Note that these results probably
underestimate the harmonic intensities by a factor of the or-
der of 5–10 @21#.

In the linear polarization case, the time profile consists of
a train of pulses of duration 300 attoseconds ~as!. As ex-
plained in Ref. @3#, propagation selects only one of the two
dominant trajectories: In the focusing conditions chosen
here, it is the trajectory with the short return time @compare
Figs. 3~a! and 4~a!#. The reason for the selection is that the
phase-matching conditions are different for the two trajecto-
ries ~since they are associated to different phase variations!
and are not fulfilled simultaneously. As shown in Figs. 4~b!–
4~d!, this conclusion is also true when the degree of elliptic-
ity varies in time. Essentially two peaks are selected in Figs.
4~b! and 4~c!. These peaks are the first and third peaks of the
series of four peaks obtained in Figs. 3~b! and 3~c!, which
correspond to the short trajectories. Finally, Fig. 4~d! shows
selection of only a single attosecond pulse. Note that the
instantaneous power is about the same as in the linear polar-
ization case. The number of photons contained in one of
these pulses can be estimated to be about 1000.

The spectra obtained in the three cases ~D50, i.e., linear
polarization, D5v̄/32, and D5v̄/16! and in the same geo-
metrical conditions ~jet positioned 2 mm after the focus! are
shown in Fig. 5~a!. We use the same conventions as in Fig.
2. The number of photons is estimated by assuming a square
pulse of duration 25 fs. In all cases, the spectra are signifi-
cantly more regular than in the single-atom response. This is
because phase matching selects essentially one trajectory ~in
the conditions chosen, the shortest one!, so that quantum
interferences vanish. Interestingly, in the D5v̄/16 case, the
harmonic structure, which had disappeared in the single-
atom response, is clearly present. To better understand this
effect, we have calculated the same spectra in different geo-
metrical conditions, when the gas jet is positioned at the
focus, keeping the same laser intensity at the center of the
gas jet (I5431014 W/cm2). In these conditions, phase
matching favors the other dominant electron trajectory @3#,
corresponding to the longer return times of the order of the
optical cycle. The results are shown in Fig. 5~b! for the three
polarization cases. The spectrum obtained for D5v̄/16 pre-
sents a remarkable property: it consists of a series of ~broad!
peaks centered at the even harmonics of the fundamental
frequency ~a small frequency shift appears already in the
spectrum corresponding to the D5v̄/32 case!. This is again
a very interesting effect of time filtering due to the propaga-
tion. It allows us to understand the origin and composition of
the single-atom emission spectrum. The frequencies close to
the even harmonic ones are associated to the longer trajec-

tory, whereas the ones close to the odd harmonic frequencies
correspond to the shorter trajectory. In other words, the har-
monic frequencies are shifted depending on the return time
corresponding to the electron trajectory. This property has an
interesting consequence from the experimental point of view.
The observation of the variation of the positions of the har-
monic peaks in the spectrum as a function of the geometrical
conditions ~position of the atomic medium relative to the
laser focus! provides an ~indirect! signature of the emission
of a single, or perhaps two attosecond pulses.

C. Influence of the pulse shape

To take into account rigorously the influence of the laser
pulse duration, as described in Sec. II, it is necessary to
calculate the single-atom response for a laser pulse whose
degree of polarization and envelope vary in time, Fourier
transform the time-dependent dipole moment, propagate the
different frequency components, and inverse Fourier trans-
form to obtain the time-dependent response of the medium.
In contrast to the case of an infinitely long pulse, there is no
periodicity and the range of frequencies is continuous. In the
present work, however, we treat the pulse envelope as a slow
process in comparison to the other time variation and we
perform a slowly varying envelope approximation for the
pulse envelope. This is a crude approximation since, in the
numerical example chosen ~25 fs pulse width! the pulse en-
velope variation is actually comparable to that of the degree
of ellipticity ~for the D5v̄/16 case, the periodicity is 8T ,

FIG. 5. Same as Fig. 2 for the macroscopic response. The laser

pulse is square with a 25 fs width. ~a! The 1 mm wide jet is located

2 mm after the focus; ~b! the jet is centered at the focus.
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i.e., 22 fs!. Here our aim is only to estimate how short the
pulse width should be to enable the generation of only one
‘‘attosecond’’ pulse.

The numerical method consists of assuming the laser in-
tensity to be constant over a given time step
I(t)5Ik ,tk21,t,tk and of calculating the time-dependent
response of the nonlinear medium for this series of ~constant!
peak intensities Ik . The time-dependent response of the non-
linear medium to a laser pulse can then be easily recon-
structed. Results obtained for a 25 fs laser pulse are shown in
Fig. 6, for the same four cases as before: linear polarization
~a!, time-dependent elliptical polarization with D5v̄/32 ~b!,
and with D5v̄/16, ~c! and ~d!. In Fig. 6~d!, we have intro-
duced a phase shift of p/2 in both components in Eq. ~7!, so
that the photon emission occurring previously slightly after
t lin524T @see Figs. 3~d! and 4~d!# is shifted in time and is
now centered at the top of the pulse. In the D5v̄/32 case,
the pulse duration is short enough so that only one burst of
mainly two attosecond pulses is emitted. In the D5v̄/16
case, there are three groups of short pulses, but the ‘‘side-
bands’’ emitted at the beginning and end of the pulse have
much lower power than the pulses emitted close to the top of
the laser pulse. In the case shown in Fig. 6~d!, the medium
generates essentially one attosecond pulse of power 30 W.
This calculation shows that the laser pulse duration should be
as short as 25 fs to enable the generation of a single attosec-
ond pulse. This result proves that the proposal of Corkum
and co-workers @4# works well for harmonics in the plateau,
and enables efficient selection of a single attosecond pulse
provided that the driving pulse is short enough.

IV. INFLUENCE OF IONIZATION EFFECTS

We here concentrate on the effects due to ionization,
depletion, and additional dispersion which are the most im-
portant affecting high-order harmonic generation in gases. In
a general formalism, the depletion of the atomic medium due
to ionization can be included via the Fourier transform of the
electronic polarization:

PW V~rW !5E PW ~rW ,t !exp~ iVt !dV

5E N~rW ,t !xW~rW ,t !exp~ iVt !dV

5@NV*xWV#~rW !, ~9!

the sign * denoting the convolution operation and NV is the
Fourier transform of the density N(rW ,t). Ionization, which
depletes the medium density, perturbs not only the nonlinear
response of the polarization but also the linear response at
any frequency, i.e., it introduces a dispersion. Ionization is in
general described by a rate so that the atomic density reads

N~rW ,t !5Na~z !expS 2E
2`

t

G~rW ,t8!dt8D , ~10!

where Na(z) is the initial atomic density in the gas jet which
depends on the coordinate z along the propagation axis.
G(rW ,t8) is the ionization rate due to the fundamental field at
position rW and time t8. ~Ionization due to the generated fields

FIG. 6. Same result as in Fig. 4, for a Gaussian laser pulse of 25 fs duration.
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is negligible.! In our theoretical approach, we calculate G as
2 Re(ḡ), where ḡ is the time average of the complex decay
rate @27#

g~ t !5E
0

`

dtS p

n1it/2
D 3/2

EW*~ t !•dW *@pW s2AW ~ t !#

3exp@2iS~pW s ,t ,t !#EW~ t2t !•dW @pW s2AW ~ t2t !# .

~11!

In the present work, we treat ionization as a slow pertur-
bation, and we include it within a slowly varying envelope
approximation, in a similar way as the pulse envelope ~see
preceding section!. This allows us to separate the time varia-
tion of the density from that of the dipole moment @Eq. ~9!#.
The propagation equations @see Eq. ~5!# take the form ~see
Ref. @20#!

¹
'

2 EW v i
~rW ,t !12ikv i

]EW v i
~rW ,t !

]z
12kv i

dkv i
~rW ,t !EW v i

~rW ,t !50

~12!

for the fundamental fields with frequencies v i , i51,2, and

¹
'

2 EW V~rW ,t !12ikV

]EW V~rW ,t !

]z
12kVdkV~rW ,t !EW V~rW ,t !

52

V2

e0c2 PW V
nl~rW ,t ! ~13!

for the generated fields at frequency V. The time dependence
in the equations refers to the slow time variation due to the
pulse shape and to ionization effects. ~It has not been ac-
counted for in the Fourier transform.! The depletion is ac-

counted for by taking PV
nl(rW ,t) proportional to the atomic

density. dkV(rW ,t)52e2Ne(rW ,t)/2mcV , with e denoting the
electron charge, m its mass, and Ne(rW ,t)5Na(z)2N(rW ,t)
the electronic density, describes the corrections to the wave
vector due to ionization, and more specifically due to the free
electron density induced in the medium. The wave vectors
kV , kv i

are those describing propagation in the neutral me-

dium. Since the ionization rate G depends on EW v i
(rW ,t8), Eqs.

~12! have to be solved first, and their solution is used then to
solve Eqs. ~13!.

In Fig. 7, we present the same result as in Fig. 4~d! but
taking into account the depletion of neutral atoms and the
dispersion effects due to the free electrons. We show two
results, one obtained for a pulse width of 25 fs ~solid line!
and one for a pulse width of 150 fs ~dashed line!. The com-
parison with the result of Fig. 4~b! ~dot-dashed line! indi-
cates that, in the regime of parameters used to investigate the
generation of attosecond pulses, the effects due to depletion
and ionization-induced dispersion do not play an important
role.

V. CONCLUSION

In this paper we apply our theory of harmonic generation
to study the generation of attosecond pulses in a laser field
with a time-dependent degree of ellipticity, as proposed by
Corkum and co-workers @4#. We show that, on the level of
single-atom response, an efficient selection of a single at-
tosecond pulse is hardly possible because of the existence of
several electron trajectories leading to the harmonic emis-
sion. However, this effect can be controlled and significantly
reduced in the process of propagation and buildup of the
macroscopic harmonic signal in the medium. Due to the time
filtering induced by propagation, and for a short enough laser

FIG. 7. Same result as in Fig. 4~d!, with inclusion of ionization

and dispersion effects for a square 25 fs ~solid line! and square 150

fs pulse ~dashed line!.

FIG. 8. Parameter n2
x(V) ~a! for D5v̄/32 and ~b! for D5v̄/16,

in solid circles. The open circles in both figures represent the solu-

tions of the equation V5n1v11n2v2 for integers n1 ,n2 , such that

un1u1un2u,(3Up1Ip)/v̄ .
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pulse, selection of a single attosecond pulse becomes pos-
sible. The power in that single attosecond pulse is compa-
rable to that of the pulses generated in the case of linear
polarization. Finally, in the regime of parameters considered,
dispersion and ionization effects do not much affect our re-
sults.
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APPENDIX

In this appendix, we describe how to obtain the dipole
moment xWV(rW) for the field E0(rW)„cos@v1t

1f(rW)#,cos@v2t1f(rW)#,0… at the position rW . The phase f(rW)
comes from focusing. In the following, we drop the rW and
denote xWV(rW) by xWV(f). If the field had been monochro-
matic with frequency v1 , such a phase shift would have led
to a time shift (t05f/v1) of the atomic response and the
components xWV(f) would have been simply related to the
xWV(0) by xWV(f)5xWV(0)exp(iVf/v1). In the present case,
even if we assume the same focusing conditions for the two
components of the field, we have v1t1f5v1(t1t0) and
v2t1f5v2(t1t0)1(v12v2)t0 , i.e., a relative phase shift

is acquired. This implies that the components xWV(f) need to
be calculated for all possible values of f.

Amazingly, in the regime of parameters of interest, our
numerical calculations indicate that the expression for xWV(f)
takes an extremely simple form

xV
i ~f !5xV

i ~0 !exp@ ifeff
i ~f ,V !# , ~A1!

where i refers to the x or y components and the effective
phase is

feff
i ~f ,V !5

V

v1

f1n2
i ~V !S 12

v2

v1
Df . ~A2!

In the above expression, n2
i (V) is a parameter which de-

pends only on the frequency of the considered Fourier com-
ponent and which we determine numerically. The values of

n2
x(V) are plotted as solid circles in Fig. 8~a! for D5v̄/32,

and in Fig. 8~b! for D5v̄/16. The open circles in both fig-
ures represent the values of n2 that correspond to solutions of
the equation V5n1v11n2v2 for integers n1 ,n2 , such that

un1u1un2u,(3Up1Ip)/v̄ . As we see, n2
x(V) is typically

very close to some of those solutions, so that in practice a

simple analytical approximation to n2
x(V) can be used. The

results for n2
y(V) are very similar.

The result of Eq. ~A1! is important. It allows us to calcu-

late xWV(f) by knowing xWV(0), and n2
i (V). This reduces the

amount of data to be generated and stored for the propaga-
tion problem enormously.
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