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The semiclassical convergent close-coupling approach to ion-atom collisions has been extended to
include electron-transfer channels. The approach has been applied to study the excitation and the
electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for
polarization of Lyman-α emission as well as the cross sections for excitation and electron-capture
into the lowest excited states have been calculated in a wide range of the proton impact energies
from 1 keV to 1 MeV. The results are in good agreement with experimental measurements.
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I. INTRODUCTION

Processes taking place in proton collisions with atomic
hydrogen are of fundamental theoretical and practical
importance. For theoretical description of these pro-
cesses at low incident energies various adiabatic, hyper-
spherical and molecular-orbital close-coupling methods
are used (see, e.g. [1, 2] and references therein). At suffi-
ciently high energies the problem can be treated using the
continuum distorted-wave [3–6] and other perturbative
methods [7]. However, in the intermediate energy range
the cross sections for the excitation of the target, electron
capture by the projectile and direct ionization are com-
parable in magnitude. In this region, non-perturbative
methods based on the solution of the time-dependent
Schrödinger equation (TDSE) within lattice or various
close-coupling schemes allow studying these processes si-
multaneously.

Since the pioneering work of Bates and McCarroll [8]
two-centre coupled channel methods have seen significant
development. Earlier works [9–13] with a small number
of eigenstates were followed by Shakeshaft [14] to include
a large basis set of scaled hydrogenic states. The rapid
development in the computing technology made it pos-
sible to perform large-basis calculations including pseu-
dostates. However, such calculations of Slim and Ermo-
laev [15] produced oscillatory structures in the excitation
cross sections which were not observed experimentally.
Kuang and Lin [16] attributed the existence of these os-
cillations to the simultaneous use of pseudocontinuum
states on both centres. Hence, they proposed to use an
asymmetric close-coupling scheme, called bound-bound-
continuum (BBC), with pseudocontinuum states either
on the target (BBC-T) or on the projectile (BBC-P). In
their BBC-T calculations excitation cross sections were
stable and well-behaved (meaning smooth, without spuri-
ous oscillations), but capture cross sections exhibited un-
physical oscillations. At the same time, the BBC-P type
expansion produced the opposite picture where capture
cross sections were stable, while excitation cross sections
became unstable and oscillatory.

An extensive study of proton-hydrogen collision pro-
cesses was performed by Toshima [17–19] using the two-

centre close-coupling approach based on the Gaussian-
type orbitals. They demonstrated that the spurious os-
cillations observed in the excitation and capture channels
are due to the strong coupling effect between bound and
pseudocontinuum states belonging to different centres.
As evidence, it was shown that as the density of pseu-
docontinuum states increased the oscillatory structures
became less prominent. In [19] the author investigated
in detail the convergence of the ionisation cross section
by performing BBC-T and BBC-P calculations and com-
paring them with the results of symmetric calculations
where the pseudocontinuum states were on both centres.
For all three types of expansions fairly similar ionisation
cross sections were obtained except for the low-energy
region.

The most recent investigation of capture, excitation
and ionisation in the p-H collision system using atomic-
orbital close coupling is due to Winter [20]. This work ex-
tended Shakeshaft’s Sturmian calculations by including
large number of pseudostates. For the ionisation chan-
nel, the results of Winter are in agreement with those
reported by Toshima [19].

A semiclassical convergent close-coupling (SC-CCC)
method has been developed in [21] and applied to an-
tiproton collisions with multielectron targets [22, 23].
The SC-CCC method utilized a large basis of pseu-
dostates for expansion of the electronic part of the scat-
tering wave function. The Hamiltonian for the target is
diagonalized using the orthogonal Laguerre basis result-
ing in negative- and positive-energy pseudostates. The
method did not include rearrangement channels.

Ko lakowska et al. [24, 25] have developed a lattice-
based method to solve the Schrödinger equation. They
have calculated excitation and charge transfer cross sec-
tions for transitions into {1s, 2s, 2p, 3s, 3p, 3d} states in
collisions of protons with hydrogen in the ground state.
The semiclassical time-dependent Schrödinger equation
has been solved using the lattice-based finite differences
and Fourier collocation methods. The approach has been
further developed by Schultz et al. [26] and Pindzola
et al. [27]. Pindzola and Schultz [28] have later re-
formulated the approach using the cylindrical coordi-
nates. Another method of numerical integration of the
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three-dimensional time-dependent Schrödinger equation
based on the Fourier collocation method has been devel-
oped by Chassid and Horbatsch [29] with emphasis on
differential cross sections. Overall the results of the lat-
tice methods have been found to be in good agreement
with experimental data.

Another coupled-channel approach to proton-hydrogen
collisions has been proposed by Keim et al. [30]. The ap-
proach known as a basis-generator method (BGM) pro-
vides a basis dynamically adapted to the collision pro-
cess. It has been applied to calculate the excitation and
electron-capture cross sections.

All afore-mentioned approaches rely on the semiclassi-
cal approximation, where the nuclear motion is assumed
to be along a straight-line trajectory with a constant ve-
locity. This allows separation of electron and nuclear
dynamics resulting in approximate TDSE for the elec-
tronic part of the scattering wave function. There is
another class of close-coupling methods that do not use
the semiclassical approximation to separate the electron
and nuclear dynamics. These methods also can take into
account all possible reaction channels in ion-atom colli-
sions. An impact-parameter Faddeev approach (IPFA)
to ion-atom collisions based on the three-body Faddeev
equations was developed by Avakov et al. [31] and applied
to calculate different electron-transfer reactions [32, 33].
In IPFA the effective potentials were taken into account
only in the lowest-order approximation corresponding to
the so-called ‘pole’-type Feynman diagram for electron
transfer. Although the calculations of the total and par-
tial electron-transfer cross sections showed good agree-
ment with available experimental data, at high energies
this approach overestimated the experimental observa-
tions. To improve the theory a three-body eikonal ap-
proach (TBEA) [34] was developed. The approach takes
into account the next-order ‘triangle’ Feynman diagrams
in the effective potentials. The application of TBEA lead
to considerable improvement in the description of the to-
tal and partial electron-transfer cross sections. Later,
Alt et al. [35] demonstrated that the three-body Faddeev
approach was also capable of providing reliable differen-
tial electron-transfer and elastic-scattering cross sections.
Somewhat related to these are the approaches based on
the Faddeev-Watson series [36, 37]. However, being per-
turbative in nature the latter do not take into account the
coupling between the channels and are only applicable at
sufficiently high incident energies.

A fully quantum-mechanical three-dimensional
integral-equation approach to ion-atom collisions has
been developed in [38, 39]. However, being time-
consuming it did not allow large multi-channel calcula-
tions. A quantum-mechanical version of the convergent
close coupling (QM-CCC) approach has been developed
in the impact-parameter representation and applied to
antiproton scattering on atomic hydrogen [40, 41] and
helium [42]. In contrast to the SC-CCC, the QM-CCC
method utilizes a large basis of Laguerre pseudostates
for expansion of the total three-body scattering wave

function without separation of the electronic and nuclear
motions.

Despite the overall success of the theoretical ap-
proaches, the results of various calculations for the seem-
ingly simplest proton-hydrogen system differ and there
are some discrepancies with experimental observations.
For instance, in the case of the ionisation channel,
near the ionisation peak the discrepancy between the-
ory [19, 20, 25] and the experiment [43–45] is from 30 to
45%. In addition, almost a factor of two disagreement
exists between experimental measurements [46, 47] and
theoretical calculations [20, 48] for the Balmer-α emis-
sion. Clearly, an independent ab initio two-centre ap-
proach would be helpful in clarifying the situation for
this most fundamental collision system. Recently, a two-
centre QM-CCC method has been developed [49] in order
to address some of these problems.

The purpose of this paper is to further develop the
SC-CCC method [21–23] to include the electron-capture
channels. As a first test, the method is applied to calcu-
late the integral alignment parameter A20 for the linear
polarization of Lyman-α emission produced in proton-
hydrogen collisions. The parameter requires calculations
of the excitation and electron-capture cross sections to
the lowest (n=2) excited states. Such calculations do
not need continuum states on both centres. We generate
the Laguerre-based pseudostates to represent the bound
and continuum states of hydrogen. The full set of the
generated pseudostates are used for the target centre.
However, in this work for the projectile centre only the
negative-energy pseudostates are used. Thus, the scheme
we use is somewhat similar to the BBC-T one mentioned
above. However, for the projectile we use the full set
of generated negative-energy pseudostates rather than a
several eigenstates. This allows one to span the entire
space of the bound states of the atom formed by the pro-
jectile after capturing the electron. The ionisation cross
section, on the other hand, would require the fully sym-
metric calculations with the complete set of pseudostates
on both centres [49].

The experimentally observable degree of linear polar-
ization of Lyman-α emission induced by proton impact
on atomic hydrogen and associated integral alignment
parameter provide detailed information about the rela-
tive population of different magnetic sublevels and can
serve as a sensitive test for theory. The earliest experi-
mental values for the polarization of Lyman-α radiation
in proton-hydrogen collisions were reported by Kaupilla
et al. [50] and Hippler et al. [51] at low energies (below
25 keV). The most recent experiments by Keim et al. [30]
covered the energy range from 1 keV to 1 MeV. Along
with the experimental data, Keim et al. [30] presented the
results of the calculations based on the two-centre BGM
approach mentioned earlier. Agreement between experi-
ment and theory is good over a wide energy range. How-
ever, there are some discrepancies at higher energies. Re-
cently, the polarization of Lyman-α and Balmer-α emis-
sions in the proton-hydrogen collisions has been stud-
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ied using the first-order Faddeev-Watson method [37].
The authors considered the excitation channels only and
made comparisons with the experimental and theoretical
data of Keim et al. [30]. The agreement with experiment
was better at higher energies where the contribution from
the electron-capture channels is expected to be small.

II. TWO-CENTRE SEMICLASSICAL

CLOSE-COUPLING METHOD

A. Basic equations

Consider scattering of a proton on the hydrogen atom.
We assume the target nucleus is located at a fixed origin
and the projectile is moving along a classical trajectory
R = b + vt, where b is the impact parameter and v

is the constant velocity, defined so that b · v = 0. The
non-relativistic semiclassical time-dependent Schrödinger
equation for the electronic part of the total scattering
wave function is written as

HΨ(t, r,R) = i
∂Ψ(t, r,R)

∂t
, (1)

with the Hamiltonian

H = −
1

2
∆r −

1

rT
−

1

rP
+

1

R
, (2)

where r and rT (rP ) denote the electronic coordinates
with respect to the midpoint of the internuclear axis and
the target (projectile) nucleus. (Atomic units are used
unless otherwise specified.) The scattering wave func-
tion is expanded in terms of target ψT

α (rT ) and projectile
ψP
β (rP ) pseudostates as

Ψ(t, r,R) =

Nα
∑

α=1

aα(t, b)ψT
α (rT ) exp

[

−iǫTαt
]

+

Nβ
∑

β=1

bβ(t, b)ψP
β (rP ) exp

[

−iǫPβ t
]

× exp
[

−i
(

v · rT + v2t/2
)]

, (3)

where Nα (Nβ) is the number of states in the target (pro-
jectile) centre and ǫTα (ǫPβ ) is the energy of the target (pro-

jectile) electronic state α (β). The expansion coefficients
aα(t, b) and bβ(t, b) at t → +∞ represent the transition
amplitudes into the target and projectile states. The ex-
tra phase factor in the second term of Eq. (3) results
from the Gaililean transformation which takes into ac-
count the fact that in the moving system the captured
electron acquires a kinetic energy mv2/2 and momentum
mv relative to the target [52].

Substituting this representation of the scattering wave
function into the semiclassical Schrödinger equation (1)
and using the standard projection technique one obtains

the following set of the first-order differential equations
for the time-dependent coefficients


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












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




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













iȧα′ + i

Nβ
∑

β=1

ḃβK
(PT )
α′β =

Nα
∑

α=1

aαD
(T )
α′α +

Nβ
∑

β=1

bβQ
(PT )
α′β ,

i

Nα
∑

α=1

ȧαK
(TP )
β′α + iḃβ′ =

Nα
∑

α=1

aαQ
(TP )
β′α +

Nβ
∑

β=1

bβD
(P )
β′β ,

α′ = 1, 2, 3, . . . , Nα, β′ = 1, 2, 3, . . . , Nβ ,

where D(T ) and D(P ) are direct-scattering matrix ele-
ments, while K(PT ), K(TP ), Q(PT ) and Q(TP ) are rear-
rangement matrix elements [53]. This system of coupled
equations can be written in the matrix form as

i

(

I K(PT )

K(TP ) I

)(

ȧ

ḃ

)

=

(

D(T ) Q(PT )

Q(TP ) D(P )

)(

a

b

)

,

(4)

where I is the identity matrix, submatrices K, Q and
D contain the corresponding direct-scattering and rear-
rangement matrix elements. This system is solved sub-
ject to the initial boundary conditions

aα(−∞, b) =δα1, α = 1, 2, 3, . . . , Nα,

bβ(−∞, b) =0, β = 1, 2, 3, . . . , Nβ. (5)

B. Pseudostates

Projectile or target pseudostates used in the calcula-
tions can be written as

ψnlm(r) = φnl(r)Ylm(r̂), (6)

where

φnl(r) =

Nl
∑

k=1

clnkξkl(r), (7)

and the basis functions ξkl(r) are made of the orthogonal
Laguerre functions

ξkl(r) =

√

λl(k − 1)!

(2l + 1 + k)!
(λlr)

l+1e−λlr/2L2l+2
k−1 (λlr). (8)

Here L2l+2
k−1 (λlr) are the associated Laguerre polynomi-

als and λl are the exponential fall-off parameter. Ex-
pansion coefficients clnk are found by diagonalising the
Hamiltonian of the hydrogen atom. The diagonalisa-
tion procedure gives negative- and positive-energy pseu-
dostates. As the number of pseudostates in each tar-
get symmetry increases the lowest negative-energy pseu-
dostates converge to the hydrogen eigenstates while the
positive energy pseudostates represent an increasingly
dense discretization of the continuum.
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C. Observables

The partial cross sections for the individual direct-
scattering (di) and electron-exchange (ex) transitions
from the ground state are given by

σdi
α =2π

∫ ∞

0

db bP di
α (b), (9)

σex
β =2π

∫ ∞

0

db bP ex
β (b), (10)

respectively, where the transition probabilities are

P di
α (b) = |aα(+∞, b) − δα1|

2, (11)

P ex
β (b) = |bβ(+∞, b)|2. (12)

Integral alignment parameter, A20, characterizes the
anisotropy of the atomic states and is defined as [30]

A20 =
σ2p1

− σ2p0

2σ2p1
+ σ2p0

, (13)

where

σ2p0
= σdi

2p0
+ σex

2p0
, (14)

σ2p1
= σdi

2p1
+ σex

2p1
. (15)

Note that here σ2p1
refers to the m = 1 sublevel which is

identical to the cross section for the m = −1 sublevel.

III. TWO-CENTRE SEMICLASSICAL

CONVERGENT CLOSE-COUPLING

CALCULATIONS

A. Validation of the computer code

The system of the first-order differential equations (4)
has been solved within the range Z ∈ (−Zmax, Zmax),
where Z ≡ vt, subject to the initial boundary conditions
given by (5). To this end we have developed an adaptive
solver similar to the method of Hamming [54], where the
integration step is automatically adjusted according to a
certain error-control criterion.

The calculation of the direct-scattering matrix ele-
ments is relatively straightforward. In this work we use
the procedure that has previously been developed and
used in the antiproton-hydrogen calculations by Abdu-
rakhmanov et al. [40]. In contrast, the evaluation of the
rearrangement matrix elements is significantly more chal-
lenging. For this reason, we have performed a series of
tests to validate the numerical methods for the calcu-
lation of the exchange matrix elements. These are de-
scribed below.

Different techniques for calculating the two-centre re-
arrangement matrix elements have been reported in the
literature. For example, Avakov et al. [32] studied the
electron transfer in proton-hydrogen collisions using true

eigenstates. The authors included only the lowest-order
Feyman diagram, corresponding to the electron-proton
interaction. In order to be able to compare the effec-
tive potentials, in our code (written for pseudostates) we
constructed a large basis so that the lowest pseudostates
practically reproduce the exact hydrogenic eigenstates
and then used in the calculations only the lowest pseu-
dostates. For example, with the exponential fall-off pa-
rameter λl in the Laguerre functions set equal to 1 for
all l and the basis size Nl = 40 − l, all n ≤ 4 eigenstates
are reproduced very accurately. Therefore, as a first im-
portant test we have compared the impact parameter de-
pendence of the electron-capture probability amplitudes
for all possible combinations of the transitions involving
eigenstates with n ≤ 4 . An excellent agreement with
the corresponding results by Avakov et al. [32] has been
obtained. To further test the accuracy of the individual
exchange matrix elements, we have calculated the Born
cross sections for all channels in p-H(1s) collisions, taking
into account both the electron-proton and proton-proton
interactions and compared with the corresponding results
from Belkić [7]. In this case too, excellent agreement has
been obtained.

The next step is testing the coupling between direct
and rearrangement channels in calculations with limited
number of eigenstates. Lovell and McElroy [55] carried
out (2+1) and (1+2) coupled calculations with differ-
ent combinations of 1s and 2s hygrogenic states used in
target and projectile centres. The authors tabulated ex-
citation and electron-capture cross sections for several
energies. We have obtained very good agreement with
all their tabulated data, except for the cross section for
the excitation of the 2s state at 12.5 keV energy when
the 1s and 2s states for the projectile and the 1s state
for the target centre are used. Since we got an excellent
agreement for all transitions at the all other reported col-
lision energies, we believe that there must be a misprint
in [55] in the aforementioned transition.

Calculations with the lowest five eigenstates (1s, 2s,
2p0 and 2p±1) reported by Cheshire et al. [11] and Rapp
and Dinwiddie [13] could serve as a stronger test. These
papers give excitation and capture cross sections for all
channels in a tabulated form. Comparing our calculated
cross sections at corresponding incident energies we con-
clude that our results also agree well with the results by
Cheshire et al. [11] and Rapp and Dinwiddie [13]. Winter
and Lin [12] performed calculations with only 1s in the
target centre and 1s, 2s, 2p0 and 2p±1 states in the pro-
jectile centre. They reported the 2s and 2p capture cross
sections at E = 25 and 100 keV which we reproduce as
well.

Thus the performed tests validate the current imple-
mentation of the two-centre semiclassical close-coupling
method and the associated computer code. Next we ap-
ply the method to perform large-scale pseudostate calcu-
lations.
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B. The integral alignment parameter A20

First we calculate the integral alignment parameter
A20 for the linear polarization of Lyman-α emission pro-
duced in proton-hydrogen collisions. Since this quan-
tity requires calculations of the excitation and electron-
capture cross sections for the transitions into the low-
est (n=2) excited states only, in principle, we do not
need continuum states on both centres. In our calcula-
tions, we first generate the Laguerre-based pseudostates
to represent the bound and continuum states of the target
and the projectile. However, in the projectile center the
positive-energy pseudostates are truncated as their con-
tribution is small. As mentioned earlier, this scheme is
somewhat similar to the BBC-T one mentioned in Intro-
duction. The difference is in that we use the full set of
negative-energy pseudostates rather than several eigen-
states. This allows one to span the entire space of the
bound states of the atom formed by the projectile after
capturing the electron.

We set the fall-off parameter λl equal to 1 for all l. This
allows one to reproduce the ground state of hydrogen
with the least number of basis states. In turn this ensures
the fastest convergence in the close-coupling calculations.
For each l from 0 to lmax we set Nl = Nmax−l. To achieve
convergence in the final cross sections, lmax and Nmax are

systematically increased. Calculations with various bases
are labeled as (Nlα , N

′

lβ
), prime meaning only negative-

energy pseudostates are used. For example, the diagonal-
isation of the hydrogen Hamiltonian with Nmax = 20 and
lmax = 3 gives 74 nl-states. In the nlm notation (includ-
ing all m with |m| ≤ lmax) this corresponds to 286 states
and 46 of them are of negative energy. These calcula-
tions are denoted as (203, 20′3). Similarly, the (213, 21′3)
calculations include 53 negative-energy pseudostates and
249 positive-energy pseudostates for the target and only
53 negative-energy pseudostates for the projectile.

We have performed a series of calculations in the en-
ergy interval between 1 keV and 1 MeV with increasing
lmax and Nmax with a particular attention to the conver-
gence of the integral alignment parameterA20, character-
ising the degree of linear polarization of Lyman-α emis-
sion in proton-hydrogen collisions. In Table I we give A20

at incident energies E = 1, 10, 100 and 1000 keV for Nmax

from 10 to 21 at the fixed value of the angular momentum
lmax = 3. In Figure 1 we plot the integral alignment as a
function of impact energy with respect to increasing lmax

at fixed Nmax = 20. Table I and Figure 1 show that the
integral alignment A20 is very well converged with the
(203, 20′3) basis. These results have been obtained with
Zmax = 200. Calculations with Zmax = 250 have also
been carried out to make sure the results do not depend
on them. Hereafter the (203, 20′3) result are simply called
as SC-CCC.

TABLE I. (Color online) Convergence of integral alignment A20 of Lyman-α emission for proton impact on atomic hydrogen
with increasing Nmax at fixed lmax = 3.

Energy (keV) Nmax=10 Nmax=15 Nmax=17 Nmax=18 Nmax=19 Nmax=20 Nmax=21
1 20.92 44.32 45.49 42.66 44.33 44.56 44.68
10 18.08 16.93 16.20 16.32 16.33 16.15 16.08
100 -3.729 -3.757 -3.768 -3.759 -3.752 -3.751 -3.752
1000 16.16 16.19 16.20 16.25 16.24 16.26 16.26

In Figure 2 we plot the calculated integral alignment
A20 of Lyman-α emission in p+H collisions as a func-
tion of the impact energy. The results of different close-
coupling calculations are given by curves, while symbols
with error bars represent the experimental data. Com-
paring our results with the experimental data of Hip-
pler et al. [51] in the energy range from 1 to13 keV,
we observe fairly good agreement. Within 13-25 keV,
where there is some disagreement between the experi-
mental measurements of Keim et al. [30] and Hippler et

al. [51] our results are in good agreement with the former.
But at higher energies (E >30 keV) our results underes-
timate the experimental observations of Keim et al. [30].
From the theoretical side, comparison is made with the
calculations of McLaughlin et al. [48], Winter [20] and

Keim et al. [30]. At lower energies, A20 from the 40-state
triple centre close-coupling calculations of McLaughlin et

al. [48] is higher than the results of the current work and
the other calculations. The 40-state coupled-channel cal-
culation [48] produces A20 that passes through zero at
much lower energy than the experiment and the other
theories. Similarly, the minimum of A20 is reached at
much lower energy by the three-centre work [48]. The re-
cent semiclassical 220-Sturmian function results of Win-
ter [20] in the interval between 1 keV and 100 keV show
significantly different energy dependence exhibiting dou-
ble minima at about 20 keV and 50 keV. Reasonably good
agreement is achieved with the two-centre BGM calcula-
tions of Keim et al. [30] over the whole energy range of
interest. Especially, the agreement is rather good be-
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FIG. 1. (Color online) Convergence of integral alignment A20

of Lyman-α emission in p+H collisions with respect to in-
creasing lmax at fixed nmax=20.
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FIG. 2. (Color online) Integral alignment A20 of Lyman-α
emission in p+H collisions as a function of the impact energy.
Experimental results of Hippler et al. [51] and Keim et al. [30]
and theoretical calculations of McLaughlin et al. [48], Win-
ter [20], Keim et al. [30] and Fathi et al. [37] are also given.
The results of the present work are given by a red solid line
connecting the calculated points.

low 10 keV. In Figure 2, the results of Fathi et al. [37]
from the three-body Born-Faddeev calculations are also
shown. As mentioned before these calculations do not
take into account electron capture. The results are close
to the ones from the close-coupling techniques above 200
keV which indicate that at high energies the contribution
from the electron-capture channels is small.

As seen from Figure 2, A20 from the current calcula-
tions reproduces the experimental data reasonably well
at all considered energies. At low energies, the integral
alignment is positive meaning that the cross section for
the transition to the 2p1 state is much larger than the
one corresponding to the 2p0 level. As the incident en-
ergy increases the cross section for the 2p0 channel gets

larger resulting in the change of sign at about 15 keV.
Here the electron-capture channels become negligible and
the excitation channels give the main contribution to the
integral alignment parameter. It is interesting to note
that, although the integrated cross sections for both the
excitation and the electron-transfer channels calculated
by the large-scale coupled-channel approaches agree rea-
sonably well with the experiments, the agreement for the
relative ratio of cross sections for 2p channels (as defined
by A20) is not satisfactory at higher energies.

Finally, we emphasise that all previous calculations
(except perturbative ones) exhibit oscillations and wig-
gles (see Figure 2). The latter may indicate that conver-
gence has not been reached in terms of the range of in-
cluded impact parameters. According to our calculations
the probabilities for the 2p0 and 2p1 transitions have ex-
tremely long tails. In fact, the higher the energy, the
longer is the tail. For this reason, in order to get conver-
gent (and, therefore, smooth) results we had to include
impact parameters as large as 50 a.u.. Test calculations
at 1 MeV with the maximum impact parameter 60 and
70 a.u. gave the same result. At the same time, trial cal-
culations with the maximum impact parameter 30 a.u.
showed wiggles similar to those seen in A20 calculated
using the BGM method [30]. The oscillations similar to
those seen in the Sturmian-based close coupling method
may indicate that the exchange matrix elements, calcu-
lated as two-dimensional integrals with the reported in-
tegration parameters [20], were not sufficiently accurate.
Generally, we find that A20 is more demanding in terms
of various integration parameters than the individual par-
tial cross sections used to calculate it.

C. Excitation and electron capture into 2s and 2p

states

In Figures 3-6 we present our 2s and 2p excitation
and electron-capture cross sections and compare with ex-
perimental measurements and various calculations. The
agreement with the calculations of Winter [20] is gen-
erally good. However, detailed comparison with Win-
ter’s 220-state Sturmian function calculations (see Ta-
ble V in [20]) reveals that there are some discrepancies.
These are clearly noticeable, e.g., at energies 8 and 25
keV. In the 2s excitation cross sections (Figure 3), the
disagreement at these energies are about 13% and 16%,
respectively. While in the case of excitation to the 2p
state the discrepancies are 5% and 12%, respectively. In-
terestingly, our cross sections for electron capture to the
2p level agree very well with the corresponding results of
Winter [20] at all energies.

Also shown in Figs. 3-6 are the cross sections by
Kolakowska et al. [24] obtained using the lattice-based
Fourier collocation method. Our results agree with them
at all energies except at 100 keV for excitation to the
2p and at 40 keV for electron capture to the 2s state.
Relatively worse agreement is observed with the calcu-
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FIG. 3. (Color online) The cross section for excitation to
the 2s state for the p-H(1s) collisions. Experimental results
of Higgins et al. [56] and Morgan et al. [57] as well as the
theoretical calculations by Winter and Lin [58], Kolakowska
et al. [24], Sidky and Lin [59] and Winter [20] are shown.
The present SC-CCC results are shown by a red solid line.
Experimental results are given with error bars, while symbols
indicate the theoretical calculations.

10-1

100

100 101 102 103

C
ro

ss
 s

ec
tio

n 
(1

0-1
6  c

m
2 )

Incident Energy (keV)

 Detleffsen
 Morgan
 Kondow
 Winter and Lin
 Kolakowska et al.
 Sidky and Lin
 Winter
 SC-CCC 

FIG. 4. (Color online) The cross section for excitation to the
2p state for the p-H(1s) collisions. Experimental results are
due to Detleffsen et al. [60], Morgan et al. [57] and Kondow
et al. [61]. Theoretical calculations are as described in Figure
3.

lations from the two-centre momentum-space discretiza-
tion method of Sidky and Lin [59]. Significant differences
in 2p excitation and 2s capture cross sections are visible
almost at all five energies given by Sidky and Lin [59].
Winter and Lin [58] reported 36-state triple-centre results
at E=8, 11.11 and 15 keV. These are also displayed in
Figures 3-6. Overall agreement between our results and
the calculations of Winter and Lin [58] is not very good.
For example, for the 2s excitation (Figure 3) at 8 keV
the discrepancy is almost 40%. This gets even worse for
the 2p excitation cross section at E=11.11 keV.
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FIG. 5. (Color online) The cross section for electron trans-
fer to the 2s state for the p-H(1s) collisions. Experimental
results are due to Bayfield et al. [62], Chong et al. [63], Hill
et al. [64], Morgan et al. [57] and Ryding et al. [65]. Theoret-
ical calculations are as described in Figure 3.
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FIG. 6. (Color online) The cross section for electron transfer
to the 2p state for the p-H(1s) collisions. Experimental results
are due to Kondow et al. [61], Morgan et al. [57] and Stebbings
et al. [66]. Theoretical calculations are as described in Figure
3.

For the 2s excitation (Figure 3), in the range 5-15 keV
there is an excellent agreement with the experimental
values of Morgan et al. [57]. But at higher energies our
results lie slightly above the experimental data of Higgins
et al. [56]. As it is seen from Figure 4, the 2p excitation
cross section is in good agreement with the experiment
except for the region 15-25 keV. At higher energies our
cross sections are within the error bars of the measure-
ments by Detleffsen et al. [60]. As to electron transfer to
the 2s state (Figure 5), our cross sections are in agree-
ment with the experimental data of Bayfield et al. [62],
Chong et al. [63], Hill et al. [64] and Morgan et al. [57].
But in the 40-100 keV energy interval our results are lo-
cated between the values given by Bayfield et al. [62]
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and Ryding et al. [65]. Comparison of the calculated 2p
electron-transfer cross section in Figure 6 shows excellent
agreement with the experiment of Kondow et al. [61],
Morgan et al. [57] and Stebbings et al. [66].

IV. CONCLUSION

The semiclassical convergent close-coupling approach
to ion-atom collisions has been extended to include re-
arrangement channels. The approach has been applied
to calculate the integral alignment parameter A20 asso-
ciated with the degree of linear polarization of Lyman-α
emission induced by proton impact on atomic hydrogen
over the broad energy range spanning 1 to 1000 keV. It
provides detailed information about the relative popula-
tion of different magnetic substates and can serve a sen-
sitive test for theory. The calculated linear polarisation
parameter A20 includes contributions to Lyman-α radia-
tion from both direct and exchange excitation of atomic
hydrogen and is in good agreement with the most recent
measurements of Keim et al. [30] as well as earlier exper-
imental data of Hippler et al. [51]. However, at higher
energies the agreement with the experiments is less satis-
factory. Fairly good agreement with the two-centre BGM
calculations by Keim et al. [30] is obtained. The excita-
tion as well as capture cross sections to the lowest levels
of the atomic hydrogen are in excellent agreement with
the experimental data.

As mentioned earlier, almost a factor of two dis-
agreement still exists between experimental measure-
ments [46, 47] and theoretical calculations [20, 48] for
the Balmer-α emission. Another challenge is calculation
of stopping power. The first coupled-channel calcula-
tion of the energy loss for protons colliding with H atoms
were reported by Grande and Schiwietz [67]. Since then
the problem has not been fully resolved. Recently we
have reported stopping power calculations for antipro-
tons in atomic [68] and molecular targets [69]. However,
a full solution to the proton-H energy loss problem is
more challenging as it requires solution to concurrent H-
H problem as well. Grande and Schiwietz [67] considered
the latter in the so-called first-order plane-wave Born ap-
proximation. It would be interesting to apply the present
method to the Balmer-α emission problem and calcula-
tions of stopping cross sections for protons colliding with
atomic hydrogen.
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