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Abstract We prove a conjecture of Ambrus, Ball and Erdélyi that equally spaced
points maximize the minimum of discrete potentials on the unit circle whenever the
potential is of the form

n∑

k=1

f (d(z, zk)),

where f : [0, π ] → [0,∞] is non-increasing and convex and d(z, w) denotes the
geodesic distance between z and w on the circle.

Keywords Polarization · Chebyshev constants · Roots of unity · Potentials ·
Max-min problems

Mathematics Subject Classification (2000) Primary 52A40 · 30C15

1 Introduction and Main Results

Let S
1 := {z = x + iy | x, y ∈ R, x2 + y2 = 1} denote the unit circle in the complex

plane C. For z, w ∈ S
1, we denote by d(z, w) the geodesic (shortest arclength) distance

between z and w. Let f : [0, π ] → [0,∞] be non-increasing and convex on (0, π ]
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with f (0) = limθ→0+ f (θ). It then follows that f is a continuous extended real-valued
function on [0, π ].

For a list of n points (not necessarily distinct) ωn = (z1, . . . , zn) ∈ (S1)n , we
consider the f -potential of ωn ,

U f (ωn; z) :=
n∑

k=1

f (d(z, zk)) (z ∈ S
1), (1)

and the f -polarization of ωn ,

M f (ωn; S
1) := min

z∈S1
U f (ωn; z). (2)

In this note, we are chiefly concerned with the n-point f -polarization of S
1 (also called

the nth f -Chebyshev constant of S
1),

M f
n (S1) := sup

ωn∈(S1)n
M f (ωn; S

1), (3)

which has been the subject of several recent papers (e.g., [1,2,5,6]).
In the case (relating to Euclidean distance) when

f (θ) = fs(θ) := |eiθ − 1|−s = (2 sin |θ/2|)−s, s > 0, (4)

we abbreviate the notation for the above quantities by writing

U s(ωn; z) :=
n∑

k=1

fs(d(z, zk)) =
n∑

k=1

1

|z − zk |s ,

Ms(ωn; S
1) := min

z∈S1

n∑

k=1

1

|z − zk |s , (5)

Ms
n(S1) := sup

ωn∈(S1)n
Ms(ωn; S

1).

The main result of this note is the following theorem conjectured by Ambrus et al.
[2]. Its proof is given in the next section.

Theorem 1 Let f : [0, π ] → [0,∞] be non-increasing and convex on (0, π ] with
f (0) = limθ→0+ f (θ). If ωn is any configuration of n distinct equally spaced points on
S

1, then M f (ωn; S
1) = M f

n (S1). Moreover, if the convexity condition is replaced by
strict convexity, then such configurations are the only ones that achieve this equality.

Applying this theorem to the case of fs given in (4) we immediately obtain the
following.
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Corollary 2 Let s > 0 and ω∗
n := {ei2πk/n : k = 1, 2, . . . , n}. If (z1, . . . , zn) ∈

(S1)n, then

min
z∈S1

n∑

k=1

1

|z − zk |s ≤ Ms(ω∗
n; S

1) = Ms
n(S1), (6)

with equality if and only if (z1, . . . , zn) consists of distinct equally spaced points.

The following representation of Ms(ω∗
n; S

1) in terms of Riesz s-energy was observed
in [2]:

Ms(ω∗
n; S

1) = Es(S
1; 2n)

2n
− Es(S

1; n)

n
,

where

Es(S
1; n) := inf

ωn∈(S1)n

n∑

j=1

n∑

k=1
k �= j

1

|z j − zk |s .

Thus, applying the asymptotic formulas for Es(S
1; n) given in [3], we obtain the

dominant term of Ms
n(S1) as n → ∞:

Ms
n(S1) ∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2ζ(s)

(2π)s
(2s − 1)ns, s > 1 ,

(1/π) n log n, s = 1 ,

2−s

√
π

�
( 1−s

2

)

�
(
1 − s

2

) n, s ∈ [0, 1),

where ζ(s) denotes the classical Riemann zeta function and an ∼ bn means that
limn→∞ an/bn = 1. These asymptotics, but for Ms(ω∗

n; S
1), were stated in [2]1.

For s an even integer, say s = 2m, the precise value of M2m
n (S1) = M2m(ω∗

n; S
1)

can be expressed in finite terms, as can be seen from formula (1.20) in [3].

Corollary 3 We have

M2m
n (S1) = 2

(2π)2m

m∑

k=1

n2kζ(2k)αm−k(2m)(22k − 1), m ∈ N,

where α j (s) is defined via the power series for sinc z = (sin π z)/(π z):

(sinc z)−s =
∞∑

j=0

α j (s)z
2 j , α0(s) = 1.

1 We remark that there is a factor of 2/(2π)p missing in the asymptotics given in [2] for the case p := s > 1.
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In particular,

M2
n (S1) = 2

(2π)2 n2ζ(2) = n2

4
,

M4
n (S1) = 2

(2π)4 [n2ζ(2)α1(4)(22 − 1) + n4ζ(4)(24 − 1)] = n2

24
+ n4

48
,

M6
n (S1) = 2

(2π)6 [n2ζ(2)α2(6)(22 − 1) + n4ζ(4)α1(6)(24 − 1) + n6ζ(6)(26 − 1)]

= n2

120
+ n4

192
+ n6

480
,

The case s = 2 of the above corollary was first proved in [1,2] and the case s = 4
was first proved in [5]. We remark that an alternative formula for α j (s) is

α j (s) = (−1) j B(s)
2 j (s/2)

(2 j)! (2π)2 j , j = 0, 1, 2, . . . ,

where B(α)
j (x) denotes the generalized Bernoulli polynomial. Asymptotic formulas

for M f
n (S1) for certain other functions f can be obtained from the asymptotic formulas

given in [4].
As other consequences of Theorem 1, we immediately deduce that equally spaced

points are optimal for the following problems:

min
ωn∈(S1)n

max
z∈S1

n∑

k=1

|z − zk |α (0 < α ≤ 1), (7)

and

max
ωn∈(S1)n

min
z∈S1

n∑

k=1

log
1

|z − zk | , (8)

with the solution to (8) being well-known. Furthermore, various generalizations of
the polarization problem for Riesz potentials for configurations on S

1 are worthy of
consideration, such as minimizing the potential on circles concentric with S

1.

2 Proof of Theorem 1

For distinct points z1, z2 ∈ S
1, we let ẑ1z2 denote the closed subarc of S

1 from z1 to z2
traversed in the counterclockwise direction. We further let γ (̂z1z2) denote the length of
ẑ1z2 (thus, γ (̂z1z2) equals either d(z1, z2) or 2π − d(z1, z2)). Observe that the points
z1 and z2 partition S

1 into two subarcs: ẑ1z2 and ẑ2z1. The following lemma (see
proof of Lemma 1 in [2]) is a simple consequence of the convexity and monotonicity
of the function f and is used to show that any n-point configuration ωn ⊂ S

1 such that
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Fig. 1 The points
z1, z2, ρ−ε(z1), ρε(z2) in
Lemma 4. The potential
increases at every point in the
subarc ̂ρε(z2)ρ−ε(z1) when
(z1, z2) → (ρ−ε(z1), ρε(z2));
see (9).

M f (ωn; S
1) = M f

n (S1) must have the property that any local minimum of U f (ωn; ·)
is a global minimum of this function (Fig. 1).

For φ ∈ R and z ∈ S
1, we let ρφ(z) := eiφz denote the counterclockwise rotation

of z by the angle φ.

Lemma 4 ([2]) Let z1, z2 ∈ S
1 and 0 < ε < γ (̂z2z1)/2. Then with f as in Theorem 1,

U f ((z1, z2); z) ≤ U f ((ρ−ε(z1), ρε(z2)); z) (9)

for z in the subarc ̂ρε(z2)ρ−ε(z1), while the reverse inequality holds for z in the subarc
ẑ1z2. If f is strictly convex on (0, π ], then these inequalities are strict. If z1 = z2, then
we set ẑ1z2 = {z1} and ẑ2z1 = S

1.

We now assume that ωn = (z1, . . . , zn) is ordered in a counterclockwise manner
and also that the indexing is extended periodically so that zk+n = zk for k ∈ Z. For
1 ≤ k ≤ n and � ∈ R, we define τk,� : (S1)n → (S1)n by

τk,�(z1, . . . , zk, zk+1, . . . , zn) := (z1, . . . , ρ−�(zk), ρ�(zk+1), . . . , zn).

If zk−1 �= zk and zk+1 �= zk+2, then τk,�(ωn) retains the ordering of ωn for � positive
and sufficiently small. Given � := (�1, . . . ,�n)T ∈ R

n , let τ� := τn,�n ◦ · · · ◦
τ2,�2 ◦τ1,�1 and ω′

n :=τ�(ωn). Letting αk :=γ (ẑk zk+1) and α′
k := γ (ẑ′

k z′
k+1) for k =

1, . . . , n, we obtain the system of n linear equations:

α′
k = αk − �k−1 + 2�k − �k+1 (1 ≤ k ≤ n), (10)

which is satisfied as long as
∑n

k=1 α′
k = 2π or, equivalently, if ω′

n is ordered counter-
clockwise. Let

sep(ωn) := min
1≤�≤n

α�.
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Then (10) holds if

max
1≤k≤n

|�k | ≤ (1/4)sep(ωn), (11)

in which case, the configurations

ω
(�)
n,� := τn,��

◦ · · · ◦ τ2,�2 ◦ τ1,�1(ωn) (� = 1, . . . , n) (12)

are all ordered counterclockwise. If the components of � are nonnegative, then we
may replace the ‘(1/4)’ in (11) with ‘(1/2)’.

Lemma 5 Suppose ωn = (z1, . . . , zn) and ω′
n = (z′

1, . . . , z′
n) are n-point con-

figurations on S
1 ordered in a counterclockwise manner. Then there is a unique

�∗ = (�∗
1, . . . , �

∗
n) ∈ R

n so that

(a) �∗
k ≥ 0, k = 1, . . . , n,

(b) �∗
j = 0 for some j ∈ {1, . . . , n}, and

(c) τ�∗(ωn) is a rotation of ω′
n.

Proof The system (10) can be expressed in the form

A� = β, (13)

where

A :=

⎛

⎜⎜⎜⎜⎜⎝

2 −1 0 0 · · · −1
−1 2 −1 0 · · · 0
...

...

0 0 · · · −1 2 −1
−1 0 · · · 0 −1 2

⎞

⎟⎟⎟⎟⎟⎠
; � :=

⎛

⎜⎜⎜⎜⎜⎝

�1

�2
...

�n

⎞

⎟⎟⎟⎟⎟⎠
, and β :=

⎛

⎜⎜⎜⎜⎜⎝

α′
1 − α1

α′
2 − α2

...

α′
n − αn

⎞

⎟⎟⎟⎟⎟⎠
.

It is elementary to verify that ker A = (rangeA)⊥ = span (1), where 1 =
(1, 1, . . . , 1)T . Since βT 1 = ∑n

k=1(α
′
k − αk) = 0, the linear system (13) always

has a solution �. Let j ∈ {1, . . . , n} satisfy � j = min1≤k≤n �k . Then subtracting
� j 1 from �, we obtain the desired �∗. Since ker A = span 1, there is at most one
solution of (13) satisfying properties (a) and (b), showing that �∗ is unique.

Part (c) holds as a direct result of the fact that both ωn and ω′
n are ordered counter-

clockwise.

Lemma 6 Let �n = (z1, . . . , zn) be a configuration of n distinct points on S
1 ordered

counterclockwise, and with f as in Theorem 1, suppose � = (�1, . . . ,�n) ∈ R
n is

such that

(a) 0 ≤ �k ≤ (1/2)sep(�n) for k = 1, . . . , n, and
(b) there is some j ∈ {1, . . . , n} for which � j = 0.
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Let �′
n := τ�(�n) = (z′

1, . . . , z′
n). Then ẑ′

j z
′
j+1 ⊂ ẑ j z j+1 and

U f (�n; z) ≤ U f (�′
n; z) (z ∈ ẑ′

j z
′
j+1). (14)

If f is strictly convex on (0, π ] and �k > 0 for at least one k, then the inequality (14)
is strict.

We remark that �k = 0 for all k = 1, . . . , n is equivalent to saying that the points
are equally spaced.

Proof Recalling (12), it follows from condition (a) that (z(�)
1 , . . . , z(�)

n ) := ω
(�)
n,� are

counterclockwise ordered. Since � j = 0 and �k ≥ 0 for k = 1, . . . , n, the points

z(�)
j and z(�)

j+1 are moved at most once as � varies from 1 to n and move toward each

other, while remaining in the complement of all other subarcs
̂

z(�)
k z(�)

k+1, i.e.,

ẑ′
j z

′
j+1 = ̂

z(n)
j z(n)

j+1 ⊆ ̂
z(�)

j z(�)
j+1 ⊆ ̂

z(�)
k+1z(�)

k ,

for k ∈ {1, . . . , n} \ { j} and � ∈ {1, . . . , n}. Lemma 4 implies that, for � = 1, . . . , n,

we have U f (ω
(�−1)
n ; z) ≤ U f (ω

(�)
n ; z) for z ∈ ̂

z(�)
j z(�)

j+1 (where ω
(0)
n := ωn) and the

inequality is strict if �� > 0. Hence, (14) holds and the inequality is strict if f is
strictly convex and �k > 0 for some k = 1, . . . , n. ��

We now proceed with the proof of Theorem 1. Let ωn = (z1, . . . , zn) be a non-
equally spaced configuration of n (not necessarily distinct) points on S

1 ordered
counterclockwise. By Lemma 5, there is some equally spaced configuration ω′

n
(i.e., α′

k = 2π/n for k = 1, . . . , n) and some �∗ = (�∗
1, . . . ,�

∗
n) such that (a)

ω′
n = τ�∗(ωn), (b) �∗

k ≥ 0 for k = 1, . . . , n, and (c) �∗
j = 0 for some j ∈ {1, . . . , n}.

Then (10) holds with αk := γ ( ̂zk, zk+1) and α′
k := 2π/n. Since ωn is not equally

spaced, we have �∗
k > 0 for at least one value of k.

For 0 ≤ t ≤ 1, let ωt
n := τ(t�∗)(ωn) = (zt

1, . . . , zt
n) and, for k = 1, . . . , n, let

αt
k := γ (ẑt

k zt
k+1). Recalling (10), observe that

αt
k = αk − t (�k−1 + 2�k − �k+1)

= αk + t (2π/n − αk)

= (1 − t)αk + t (2π/n),

for 0 ≤ t ≤ 1 and k = 1, . . . , n, and so sep(ωt
n) ≥ t (2π/n). Now let 0 < t < s <

min(1, t (1 + π/(nD))), where D := max{�k : 1 ≤ k ≤ n}. Then Lemma 6 (with

�n = ωt
n,� = (s − t)�∗, and �′

n = τ�(�n) = ωs
n) implies that ẑs

j z
s
j+1 ⊆ ẑt

j z
t
j+1

and that

U f (ωt
n; z) ≤ U f (ωs

n; z) (z ∈ ẑs
j z

s
j+1), (15)

where the inequality is sharp if f is strictly convex.
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Consider the function

h(t) := min{U f (ωt
n; z) : z ∈ ẑt

j z
t
j+1}, (0 ≤ t ≤ 1).

Observe that

h(t) ≤ min{U f (ωt
n; z) : z ∈ ẑs

j z
s
j+1} ≤ min{U f (ωs

n; z) : z ∈ ẑs
j z

s
j+1} = h(s),

for 0 < t < s < min(1, t (1 + π/(nD))). It is then easy to verify that h is non-
decreasing on (0, 1). Since ωt

n depends continuously on t, the function h is continuous
on [0, 1] and thus h is non-decreasing on [0, 1].

We then obtain the desired inequality

M f (ωn; S
1) ≤ h(0) ≤ h(1) = M f (ω′

n; S
1),

where the last equality is a consequence of the fact that ω′
n is an equally spaced

configuration and so the minimum of U f (ω′
n; z) over S

1 is the same as the minimum

over ẑ′
j z

′
j+1. If f is strictly convex, then h(0) < h(1) showing that any optimal

f -polarization configuration must be equally spaced. This completes the proof of
Theorem 1. ��
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