Polarization Optimality of Equally Spaced Points on the Circle for Discrete Potentials

Douglas P. Hardin · Amos P. Kendall · Edward B. Saff

Received: 6 September 2012 / Revised: 10 April 2013 / Accepted: 12 April 2013 /

Published online: 26 April 2013

© Springer Science+Business Media New York 2013

Abstract We prove a conjecture of Ambrus, Ball and Erdélyi that equally spaced points maximize the minimum of discrete potentials on the unit circle whenever the potential is of the form

$$\sum_{k=1}^{n} f(d(z, z_k)),$$

where $f:[0,\pi]\to [0,\infty]$ is non-increasing and convex and d(z,w) denotes the geodesic distance between z and w on the circle.

Keywords Polarization · Chebyshev constants · Roots of unity · Potentials · Max-min problems

Mathematics Subject Classification (2000) Primary 52A40 · 30C15

1 Introduction and Main Results

Let $\mathbb{S}^1 := \{z = x + \mathrm{i}y \mid x, y \in \mathbb{R}, \ x^2 + y^2 = 1\}$ denote the unit circle in the complex plane \mathbb{C} . For $z, w \in \mathbb{S}^1$, we denote by d(z, w) the geodesic (shortest arclength) distance between z and w. Let $f: [0, \pi] \to [0, \infty]$ be non-increasing and convex on $(0, \pi]$

D. P. Hardin (⋈) · A. P. Kendall · E. B. Saff

Department of Mathematics, Center for Constructive Approximation, Vanderbilt University,

1326 Stevenson Center, Nashville, TN 37240, USA

e-mail: doug.hardin@vanderbilt.edu

A. P. Kendall

e-mail: amos.p.kendall@vanderbilt.edu

E. B. Saff

e-mail: edward.b.saff@vanderbilt.edu

with $f(0) = \lim_{\theta \to 0^+} f(\theta)$. It then follows that f is a continuous extended real-valued function on $[0, \pi]$.

For a list of *n* points (not necessarily distinct) $\omega_n = (z_1, \dots, z_n) \in (\mathbb{S}^1)^n$, we consider the *f*-potential of ω_n ,

$$U^{f}(\omega_{n};z) := \sum_{k=1}^{n} f(d(z,z_{k})) \quad (z \in \mathbb{S}^{1}),$$
 (1)

and the *f*-polarization of ω_n ,

$$M^f(\omega_n; \mathbb{S}^1) := \min_{z \in \mathbb{S}^1} U^f(\omega_n; z). \tag{2}$$

In this note, we are chiefly concerned with the *n-point f-polarization* of \mathbb{S}^1 (also called the *n*th *f-Chebyshev constant* of \mathbb{S}^1),

$$M_n^f(\mathbb{S}^1) := \sup_{\omega_n \in (\mathbb{S}^1)^n} M^f(\omega_n; \mathbb{S}^1), \tag{3}$$

which has been the subject of several recent papers (e.g., [1,2,5,6]).

In the case (relating to Euclidean distance) when

$$f(\theta) = f_s(\theta) := |e^{i\theta} - 1|^{-s} = (2\sin|\theta/2|)^{-s}, \quad s > 0,$$
 (4)

we abbreviate the notation for the above quantities by writing

$$U^{s}(\omega_{n}; z) := \sum_{k=1}^{n} f_{s}(d(z, z_{k})) = \sum_{k=1}^{n} \frac{1}{|z - z_{k}|^{s}},$$

$$M^{s}(\omega_{n}; \mathbb{S}^{1}) := \min_{z \in \mathbb{S}^{1}} \sum_{k=1}^{n} \frac{1}{|z - z_{k}|^{s}},$$

$$M_{n}^{s}(\mathbb{S}^{1}) := \sup_{\omega_{n} \in (\mathbb{S}^{1})^{n}} M^{s}(\omega_{n}; \mathbb{S}^{1}).$$
(5)

The main result of this note is the following theorem conjectured by Ambrus et al. [2]. Its proof is given in the next section.

Theorem 1 Let $f:[0,\pi] \to [0,\infty]$ be non-increasing and convex on $(0,\pi]$ with $f(0) = \lim_{\theta \to 0^+} f(\theta)$. If ω_n is any configuration of n distinct equally spaced points on \mathbb{S}^1 , then $M^f(\omega_n; \mathbb{S}^1) = M_n^f(\mathbb{S}^1)$. Moreover, if the convexity condition is replaced by strict convexity, then such configurations are the only ones that achieve this equality.

Applying this theorem to the case of f_s given in (4) we immediately obtain the following.

Corollary 2 Let s > 0 and $\omega_n^* := \{e^{i2\pi k/n} : k = 1, 2, ..., n\}$. If $(z_1, ..., z_n) \in$ $(\mathbb{S}^1)^n$, then

$$\min_{z \in \mathbb{S}^1} \sum_{k=1}^n \frac{1}{|z - z_k|^s} \le M^s(\omega_n^*; \mathbb{S}^1) = M_n^s(\mathbb{S}^1), \tag{6}$$

with equality if and only if (z_1, \ldots, z_n) consists of distinct equally spaced points.

The following representation of $M^s(\omega_n^*; \mathbb{S}^1)$ in terms of *Riesz s-energy* was observed in [2]:

$$M^{s}(\omega_{n}^{*}; \mathbb{S}^{1}) = \frac{\mathcal{E}_{s}(\mathbb{S}^{1}; 2n)}{2n} - \frac{\mathcal{E}_{s}(\mathbb{S}^{1}; n)}{n},$$

where

$$\mathcal{E}_{s}(\mathbb{S}^{1}; n) := \inf_{\omega_{n} \in (\mathbb{S}^{1})^{n}} \sum_{j=1}^{n} \sum_{\substack{k=1 \ k \neq j}}^{n} \frac{1}{|z_{j} - z_{k}|^{s}}.$$

Thus, applying the asymptotic formulas for $\mathcal{E}_s(\mathbb{S}^1;n)$ given in [3], we obtain the dominant term of $M_n^s(\mathbb{S}^1)$ as $n \to \infty$:

$$M_n^s(\mathbb{S}^1) \sim \begin{cases} \frac{2\zeta(s)}{(2\pi)^s} (2^s - 1) n^s, \ s > 1, \\ (1/\pi) n \log n, \quad s = 1, \\ \frac{2^{-s}}{\sqrt{\pi}} \frac{\Gamma(\frac{1-s}{2})}{\Gamma(1-\frac{s}{2})} n, \ \ s \in [0, 1), \end{cases}$$

where $\zeta(s)$ denotes the classical Riemann zeta function and $a_n \sim b_n$ means that

 $\lim_{n\to\infty} a_n/b_n = 1$. These asymptotics, but for $M^s(\omega_n^*; \mathbb{S}^1)$, were stated in [2]¹. For s an even integer, say s = 2m, the precise value of $M_n^{2m}(\mathbb{S}^1) = M^{2m}(\omega_n^*; \mathbb{S}^1)$ can be expressed in finite terms, as can be seen from formula (1.20) in [3].

Corollary 3 We have

$$M_n^{2m}(\mathbb{S}^1) = \frac{2}{(2\pi)^{2m}} \sum_{k=1}^m n^{2k} \zeta(2k) \alpha_{m-k}(2m)(2^{2k}-1), \quad m \in \mathbb{N},$$

where $\alpha_i(s)$ is defined via the power series for sinc $z = (\sin \pi z)/(\pi z)$:

$$(\operatorname{sinc} z)^{-s} = \sum_{j=0}^{\infty} \alpha_j(s) z^{2j}, \quad \alpha_0(s) = 1.$$

We remark that there is a factor of $2/(2\pi)^p$ missing in the asymptotics given in [2] for the case p := s > 1.

In particular,

$$\begin{split} M_n^2(\mathbb{S}^1) &= \frac{2}{(2\pi)^2} n^2 \zeta(2) = \frac{n^2}{4}, \\ M_n^4(\mathbb{S}^1) &= \frac{2}{(2\pi)^4} [n^2 \zeta(2) \alpha_1(4) (2^2 - 1) + n^4 \zeta(4) (2^4 - 1)] = \frac{n^2}{24} + \frac{n^4}{48}, \\ M_n^6(\mathbb{S}^1) &= \frac{2}{(2\pi)^6} [n^2 \zeta(2) \alpha_2(6) (2^2 - 1) + n^4 \zeta(4) \alpha_1(6) (2^4 - 1) + n^6 \zeta(6) (2^6 - 1)] \\ &= \frac{n^2}{120} + \frac{n^4}{192} + \frac{n^6}{480}, \end{split}$$

The case s=2 of the above corollary was first proved in [1,2] and the case s=4 was first proved in [5]. We remark that an alternative formula for $\alpha_i(s)$ is

$$\alpha_j(s) = \frac{(-1)^j B_{2j}^{(s)}(s/2)}{(2j)!} (2\pi)^{2j}, \quad j = 0, 1, 2, \dots,$$

where $B_j^{(\alpha)}(x)$ denotes the generalized Bernoulli polynomial. Asymptotic formulas for $M_n^f(\mathbb{S}^1)$ for certain other functions f can be obtained from the asymptotic formulas given in [4].

As other consequences of Theorem 1, we immediately deduce that equally spaced points are optimal for the following problems:

$$\min_{\omega_n \in (\mathbb{S}^1)^n} \max_{z \in \mathbb{S}^1} \sum_{k=1}^n |z - z_k|^{\alpha} \quad (0 < \alpha \le 1), \tag{7}$$

and

$$\max_{\omega_n \in (\mathbb{S}^1)^n} \min_{z \in \mathbb{S}^1} \sum_{k=1}^n \log \frac{1}{|z - z_k|},\tag{8}$$

with the solution to (8) being well-known. Furthermore, various generalizations of the polarization problem for Riesz potentials for configurations on \mathbb{S}^1 are worthy of consideration, such as minimizing the potential on circles concentric with \mathbb{S}^1 .

2 Proof of Theorem 1

For distinct points $z_1, z_2 \in \mathbb{S}^1$, we let $\widehat{z_1z_2}$ denote the closed subarc of \mathbb{S}^1 from z_1 to z_2 traversed in the counterclockwise direction. We further let $\gamma(\widehat{z_1z_2})$ denote the length of $\widehat{z_1z_2}$ (thus, $\gamma(\widehat{z_1z_2})$ equals either $d(z_1, z_2)$ or $2\pi - d(z_1, z_2)$). Observe that the points z_1 and z_2 partition \mathbb{S}^1 into two subarcs: $\widehat{z_1z_2}$ and $\widehat{z_2z_1}$. The following lemma (see proof of Lemma 1 in [2]) is a simple consequence of the convexity and monotonicity of the function f and is used to show that any n-point configuration $\omega_n \subset \mathbb{S}^1$ such that

Fig. 1 The points $z_1, z_2, \rho_{-\varepsilon}(z_1), \rho_{\varepsilon}(z_2)$ in Lemma 4. The potential increases at every point in the subarc $\rho_{\varepsilon}(\widehat{z_2})\rho_{-\varepsilon}(z_1)$ when $(z_1, z_2) \to (\rho_{-\varepsilon}(z_1), \rho_{\varepsilon}(z_2))$; see (9).

 $M^f(\omega_n; \mathbb{S}^1) = M_n^f(\mathbb{S}^1)$ must have the property that any local minimum of $U^f(\omega_n; \cdot)$ is a global minimum of this function (Fig. 1).

For $\phi \in \mathbb{R}$ and $z \in \mathbb{S}^1$, we let $\rho_{\phi}(z) := e^{i\phi}z$ denote the counterclockwise rotation of z by the angle ϕ .

Lemma 4 ([2]) Let $z_1, z_2 \in \mathbb{S}^1$ and $0 < \varepsilon < \gamma (\widehat{z_2 z_1})/2$. Then with f as in Theorem 1,

$$U^f((z_1, z_2); z) \le U^f((\rho_{-\varepsilon}(z_1), \rho_{\varepsilon}(z_2)); z) \tag{9}$$

for z in the subarc $\rho_{\varepsilon}(\widehat{z_2})\rho_{-\varepsilon}(z_1)$, while the reverse inequality holds for z in the subarc $\widehat{z_1}z_2$. If f is strictly convex on $(0, \pi]$, then these inequalities are strict. If $z_1 = z_2$, then we set $\widehat{z_1}z_2 = \{z_1\}$ and $\widehat{z_2}z_1 = \mathbb{S}^1$.

We now assume that $\omega_n = (z_1, \dots, z_n)$ is ordered in a counterclockwise manner and also that the indexing is extended periodically so that $z_{k+n} = z_k$ for $k \in \mathbb{Z}$. For $1 \le k \le n$ and $\Delta \in \mathbb{R}$, we define $\tau_{k,\Delta} : (\mathbb{S}^1)^n \to (\mathbb{S}^1)^n$ by

$$\tau_{k,\Delta}(z_1,\ldots,z_k,z_{k+1},\ldots,z_n) := (z_1,\ldots,\rho_{-\Delta}(z_k),\rho_{\Delta}(z_{k+1}),\ldots,z_n).$$

If $z_{k-1} \neq z_k$ and $z_{k+1} \neq z_{k+2}$, then $\tau_{k,\Delta}(\omega_n)$ retains the ordering of ω_n for Δ positive and sufficiently small. Given $\Delta := (\Delta_1, \ldots, \Delta_n)^T \in \mathbb{R}^n$, let $\tau_{\Delta} := \tau_{n,\Delta_n} \circ \cdots \circ \tau_{2,\Delta_2} \circ \tau_{1,\Delta_1}$ and $\omega'_n := \tau_{\Delta}(\omega_n)$. Letting $\alpha_k := \gamma(\widehat{z_k z_{k+1}})$ and $\alpha'_k := \gamma(\widehat{z_k' z_{k+1}'})$ for $k = 1, \ldots, n$, we obtain the system of n linear equations:

$$\alpha'_{k} = \alpha_{k} - \Delta_{k-1} + 2\Delta_{k} - \Delta_{k+1} \quad (1 \le k \le n),$$
(10)

which is satisfied as long as $\sum_{k=1}^n \alpha_k' = 2\pi$ or, equivalently, if ω_n' is ordered counterclockwise. Let

$$sep(\omega_n) := \min_{1 \le \ell \le n} \alpha_{\ell}.$$

Then (10) holds if

$$\max_{1 \le k \le n} |\Delta_k| \le (1/4) \operatorname{sep}(\omega_n), \tag{11}$$

in which case, the configurations

$$\omega_{n,\Delta}^{(\ell)} := \tau_{n,\Delta_{\ell}} \circ \cdots \circ \tau_{2,\Delta_{2}} \circ \tau_{1,\Delta_{1}}(\omega_{n}) \quad (\ell = 1, \dots, n)$$
(12)

are all ordered counterclockwise. If the components of Δ are nonnegative, then we may replace the (1/4) in (11) with (1/2).

Lemma 5 Suppose $\omega_n = (z_1, \ldots, z_n)$ and $\omega'_n = (z'_1, \ldots, z'_n)$ are n-point configurations on \mathbb{S}^1 ordered in a counterclockwise manner. Then there is a unique $\mathbf{\Delta}^* = (\Delta_1^*, \dots, \Delta_n^*) \in \mathbb{R}^n$ so that

- (a) $\Delta_k^* \ge 0$, k = 1, ..., n, (b) $\Delta_j^* = 0$ for some $j \in \{1, ..., n\}$, and
- (c) $\tau_{\Delta^*}(\omega_n)$ is a rotation of ω

Proof The system (10) can be expressed in the form

$$A\mathbf{\Delta} = \mathbf{\beta},\tag{13}$$

where

$$A := \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \cdots & -1 & 2 & -1 \\ -1 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}; \quad \mathbf{\Delta} := \begin{pmatrix} \Delta_1 \\ \Delta_2 \\ \vdots \\ \Delta_n \end{pmatrix}, \quad \text{and} \quad \boldsymbol{\beta} := \begin{pmatrix} \alpha'_1 - \alpha_1 \\ \alpha'_2 - \alpha_2 \\ \vdots \\ \alpha'_n - \alpha_n \end{pmatrix}.$$

It is elementary to verify that ker $A = (range A)^{\perp} = span (1)$, where 1 = $(1,1,\ldots,1)^T$. Since $\boldsymbol{\beta}^T\mathbf{1} = \sum_{k=1}^n (\alpha_k' - \alpha_k) = 0$, the linear system (13) always has a solution Δ . Let $j \in \{1, \dots, n\}$ satisfy $\Delta_j = \min_{1 < k < n} \Delta_k$. Then subtracting $\Delta_i \mathbf{1}$ from Δ , we obtain the desired Δ^* . Since ker $A = \text{span } \mathbf{1}$, there is at most one solution of (13) satisfying properties (a) and (b), showing that Δ^* is unique.

Part (c) holds as a direct result of the fact that both ω_n and ω'_n are ordered counterclockwise.

Lemma 6 Let $\Omega_n = (z_1, \dots, z_n)$ be a configuration of n distinct points on \mathbb{S}^1 ordered counterclockwise, and with f as in Theorem 1, suppose $\mathbf{\Delta} = (\Delta_1, \dots, \Delta_n) \in \mathbb{R}^n$ is such that

- (a) $0 \le \Delta_k \le (1/2) \operatorname{sep}(\Omega_n)$ for k = 1, ..., n, and
- (b) there is some $j \in \{1, ..., n\}$ for which $\Delta_j = 0$.

Let $\Omega'_n := \tau_{\Delta}(\Omega_n) = (z'_1, \dots, z'_n)$. Then $\widehat{z'_j z'_{j+1}} \subset \widehat{z_j z_{j+1}}$ and

$$U^f(\Omega_n; z) \le U^f(\Omega'_n; z) \quad (z \in \widehat{z'_j z'_{j+1}}). \tag{14}$$

If f is strictly convex on $(0, \pi]$ and $\Delta_k > 0$ for at least one k, then the inequality (14) is strict.

We remark that $\Delta_k = 0$ for all k = 1, ..., n is equivalent to saying that the points are equally spaced.

Proof Recalling (12), it follows from condition (a) that $(z_1^{(\ell)},\ldots,z_n^{(\ell)}):=\omega_{n,\Delta}^{(\ell)}$ are counterclockwise ordered. Since $\Delta_j=0$ and $\Delta_k\geq 0$ for $k=1,\ldots,n$, the points $z_j^{(\ell)}$ and $z_{j+1}^{(\ell)}$ are moved at most once as ℓ varies from 1 to n and move toward each other, while remaining in the complement of all other subarcs $\widehat{z_k^{(\ell)}}z_{k+1}^{(\ell)}$, i.e.,

$$\widehat{z_{j}'z_{j+1}'} = \widehat{z_{j}^{(n)}z_{j+1}^{(n)}} \subseteq \widehat{z_{j}^{(\ell)}z_{j+1}^{(\ell)}} \subseteq \widehat{z_{k+1}^{(\ell)}z_{k}^{(\ell)}},$$

for $k \in \{1, ..., n\} \setminus \{j\}$ and $\ell \in \{1, ..., n\}$. Lemma 4 implies that, for $\ell = 1, ..., n$, we have $U^f(\omega_n^{(\ell-1)}; z) \leq U^f(\omega_n^{(\ell)}; z)$ for $z \in \widehat{z_j^{(\ell)}}\widehat{z_{j+1}^{(\ell)}}$ (where $\omega_n^{(0)} := \omega_n$) and the inequality is strict if $\Delta_\ell > 0$. Hence, (14) holds and the inequality is strict if f is strictly convex and $\Delta_k > 0$ for some k = 1, ..., n.

We now proceed with the proof of Theorem 1. Let $\omega_n=(z_1,\ldots,z_n)$ be a non-equally spaced configuration of n (not necessarily distinct) points on \mathbb{S}^1 ordered counterclockwise. By Lemma 5, there is some equally spaced configuration ω_n' (i.e., $\alpha_k'=2\pi/n$ for $k=1,\ldots,n$) and some $\mathbf{\Delta}^*=(\Delta_1^*,\ldots,\Delta_n^*)$ such that (a) $\omega_n'=\tau_{\mathbf{\Delta}^*}(\omega_n)$, (b) $\Delta_k^*\geq 0$ for $k=1,\ldots,n$, and (c) $\Delta_j^*=0$ for some $j\in\{1,\ldots,n\}$. Then (10) holds with $\alpha_k:=\gamma(\widehat{z_k},\widehat{z_{k+1}})$ and $\alpha_k':=2\pi/n$. Since ω_n is not equally spaced, we have $\Delta_k^*>0$ for at least one value of k.

For $0 \le t \le 1$, let $\omega_n^t := \tau_{(t \Delta^*)}(\omega_n) = (z_1^t, \dots, z_n^t)$ and, for $k = 1, \dots, n$, let $\alpha_k^t := \gamma(\widehat{z_k^t z_{k+1}^t})$. Recalling (10), observe that

$$\alpha_k^t = \alpha_k - t(\Delta_{k-1} + 2\Delta_k - \Delta_{k+1})$$

= $\alpha_k + t(2\pi/n - \alpha_k)$
= $(1 - t)\alpha_k + t(2\pi/n)$,

for $0 \le t \le 1$ and $k = 1, \ldots, n$, and so $\operatorname{sep}(\omega_n^t) \ge t(2\pi/n)$. Now let $0 < t < s < \min(1, t(1 + \pi/(nD)))$, where $D := \max\{\Delta_k : 1 \le k \le n\}$. Then Lemma 6 (with $\Omega_n = \omega_n^t$, $\mathbf{\Delta} = (s - t)\mathbf{\Delta}^*$, and $\Omega_n' = \tau_{\mathbf{\Delta}}(\Omega_n) = \omega_n^s$) implies that $\widehat{z_j^s z_{j+1}^s} \subseteq \widehat{z_j^t z_{j+1}^t}$ and that

$$U^f(\omega_n^t;z) \le U^f(\omega_n^s;z) \quad (z \in \widehat{z_j^s z_{j+1}^s}), \tag{15}$$

where the inequality is sharp if f is strictly convex.

Consider the function

$$h(t) := \min\{U^f(\omega_n^t; z) : z \in \widehat{z_j^t z_{j+1}^t}\}, \quad (0 \le t \le 1).$$

Observe that

$$h(t) \leq \min\{U^f(\omega_n^t; z) : z \in \widehat{z_j^s z_{j+1}^s}\} \leq \min\{U^f(\omega_n^s; z) : z \in \widehat{z_j^s z_{j+1}^s}\} = h(s),$$

for $0 < t < s < \min(1, t(1 + \pi/(nD)))$. It is then easy to verify that h is non-decreasing on (0, 1). Since ω_n^t depends continuously on t, the function h is continuous on [0, 1] and thus h is non-decreasing on [0, 1].

We then obtain the desired inequality

$$M^f(\omega_n; \mathbb{S}^1) \le h(0) \le h(1) = M^f(\omega'_n; \mathbb{S}^1),$$

where the last equality is a consequence of the fact that ω'_n is an equally spaced configuration and so the minimum of $U^f(\omega'_n; z)$ over \mathbb{S}^1 is the same as the minimum over $\widehat{z'_j z'_{j+1}}$. If f is strictly convex, then h(0) < h(1) showing that any optimal f-polarization configuration must be equally spaced. This completes the proof of Theorem 1.

Acknowledgements We thank the referees for their helpful suggestions to improve the manuscript. This research was supported, in part, by the U.S. National Science Foundation under Grants DMS-0808093 and DMS-1109266.

References

- Ambrus, G.: Analytic and probabilistic problems in discrete geometry. Ph.D. Thesis, University College London (2009)
- Ambrus, G., Ball, K., Erdélyi T.: Chebyshev constants for the unit circle. Bull. Lond. Math. Soc. 45(2), 236–248 (2013)
- 3. Brauchart, J.S., Hardin, D.P., Saff, E.B.: The Riesz energy of the *N*th roots of unity: an asymptotic expansion for large *N*. Bull. Lond. Math. Soc. **41**(4), 621–633 (2009)
- Brauchart, J.S., Hardin, D.P., Saff, E.B.: Discrete energy asymptotics on a Riemannian circle. Unif. Distrib. Theory 6, 77–108 (2011)
- Erdélyi, T., Saff, E.B.: Riesz polarization inequalities in higher dimensions, J. Approx. Theory 171, 128–147 (2013)
- Nikolov, N., Rafailov, R.: On the sum of powered distances to certain sets of points on the circle. Pac. J. Math. 253(1), 157–168 (2011)

