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Abstract We prove a conjecture of Ambrus, Ball and Erdélyi that equally spaced
points maximize the minimum of discrete potentials on the unit circle whenever the
potential is of the form

> fdz, z)),
k=1

where f : [0, 7] — [0, oo] is non-increasing and convex and d(z, w) denotes the
geodesic distance between z and w on the circle.
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1 Introduction and Main Results

LetS! := {z =x+iy | x, y € R, x?>+ y?> = 1} denote the unit circle in the complex
plane C.Forz, w € S, we denote by d(z, w) the geodesic (shortest arclength) distance
between z and w. Let f : [0, #] — [0, oo] be non-increasing and convex on (0, 7]
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with £(0) = limg_, o+ f(0). It then follows that f is a continuous extended real-valued
function on [0, 7 ].

For a list of n points (not necessarily distinct) w, = (z1,...,2,) € (SV)", we
consider the f-potential of w,,

n
U (wn;2) =D fd(z, 1) (zeSh, ey
k=1
and the f-polarization of wy,

M7 (wp; S = min U’ (wn; 2). )

z€S

In this note, we are chiefly concerned with the n-point f-polarization of S' (also called
the nth f-Chebyshev constant of S'),

MY = sup M (wn;SH, (3)

wne(Sl "

which has been the subject of several recent papers (e.g., [1,2,5,6]).
In the case (relating to Euclidean distance) when

£©) = £,0) := e — 1] = @sin]0/2) ™", 5> 0, “

we abbreviate the notation for the above quantities by writing

Us(wn:2) = D fild(z z) = Y :
k=1

_ s’
= 12—zl
n
s Ll o 1
M’ (w,; S*) := min _
zeS! Py |z — zil®

M;(Sl):z sup  M*(wn: Sh).
a)ne(Sl)n

&)

The main result of this note is the following theorem conjectured by Ambrus et al.
[2]. Its proof is given in the next section.

Theorem 1 Let f : [0, 7] — [0, oo] be non-increasing and convex on (0, ] with
f(0) =limg_, g+ f(O). Ifw, is any configuration of n distinct equally spaced points on
SY, then MY (w,; S") = M,{ (SY). Moreover; if the convexity condition is replaced by
strict convexity, then such configurations are the only ones that achieve this equality.

Applying this theorem to the case of f; given in (4) we immediately obtain the
following.
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Corollary 2 Let s > 0 and w};, = (e27k/m k= 1,2,....0). If (z1,...,20) €
(SYH", then

1
min » ———— < M*(w}; S') = M (S, (6)
zeS‘ |Z — zkl®
with equality if and only if (z1, . . ., 2,) consists of distinct equally spaced points.

The following representation of M* (w}:; S in terms of Riesz s-energy was observed
in [2]:

EESY2n)  E(Shin)

MS *; Sl —
(@,: 57) 2n n

where

ES(S];n):z inf Zz

wn e = 1Izj —ZkIY

Thus, applying the asymptotic formulas for & (S'; n) given in [3], we obtain the
dominant term of M} (S') as n — oo:

26 o5t s> 1,
(2m)*

M;(Sl)w (1/m)ynlogn, s=1,
2 ()

n, s €l0,1),

JrT(1-3)

where ¢(s) denotes the classical Riemann zeta function and a,, ~ b, means that
limy,_, o0 an /b, = 1. These asymptotics, but for M*(w}:; S!), were stated in [2]".

For s an even integer, say s = 2m, the precise value of M,fm (SYH = M (w}; sh
can be expressed in finite terms, as can be seen from formula (1.20) in [3].

Corollary 3 We have

m2msh = o )2m Zn2k§(2k)otm (Cm)2* — 1), meN,

where o (s) is defined via the power series for sinc z = (sinmwz)/(72):

(sincz)™* = Z(Xj(s)zzj, ap(s) = 1.

1 We remark that there is a factor of 2/(27)P missing in the asymptotics given in [2] for the case p := s > 1.
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In particular,
2l 2 n’
M; () = W” ()= T
n2 n4
My S = (znq4[”2§(2)“1(4)(22" D+nfe@Et - Dl= 20+
My = (znq6[”2§(2)“2(6)(22" D+t @ (6)2* — 1) +n°¢(6)(2° — 1)
I’l2 n4 n6

1720 T 192 T as0°

The case s = 2 of the above corollary was first proved in [1,2] and the case s = 4
was first proved in [5]. We remark that an alternative formula for o (s) is

—DIBY s/
aj(s) = (2—12;' 2wy, j=0,1,2,...,

where Bj(.a)(x) denotes the generalized Bernoulli polynomial. Asymptotic formulas

for M ,{ (S") for certain other functions f can be obtained from the asymptotic formulas
given in [4].

As other consequences of Theorem 1, we immediately deduce that equally spaced
points are optimal for the following problems:

n

min max » |z—z|* O <a<1), N
wpe(SH" zeS! k;

and

n

1
max min » log ——, (8)
wpe(SH" zeS! ; g |z — 2kl

with the solution to (8) being well-known. Furthermore, various generalizations of
the polarization problem for Riesz potentials for configurations on S! are worthy of
consideration, such as minimizing the potential on circles concentric with S'.

2 Proof of Theorem 1

For distinct points 71, z2 € S!, we let 2122 denote the closed subarc of S! from z; to 22
traversed in the counterclockwise direction. We further let y (z1z>) denote the length of
712> (thus, ¥ (Z122) equals either d(z1, z2) or 27 — d(z1, z2)). Observe that the points
z1 and z» partition S! into two subarcs: Z1z> and Z»z;. The following lemma (see
proof of Lemma 1 in [2]) is a simple consequence of the convexity and monotonicity
of the function f and is used to show that any n-point configuration w,, C S! such that
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Fig. 1 The points ) ,2/1\2’2
21,22, p—e(21), pe(22) in
Lemma 4. The potential
increases at every point in the

p—a(Zl)

subarc pg (zﬁ:(zl) when

(21, 22) = (p—e(21), Pe(22));
see (9).

M (w,; SY) = M,{ (SY must have the property that any local minimum of U Fwn; +)
is a global minimum of this function (Fig. 1).

For ¢ € Rand z € S!, we let Pe(2) = ¢'?z denote the counterclockwise rotation
of z by the angle ¢.

Lemma 4 ([2]) Letzi,z> € S' and 0 < ¢ < y(z2z1)/2. Then with f as in Theorem 1,
U/ ((z1,22): 2) < U ((p=e(21), pe(22)): 2) )]

for zinthe subarc pg(z2) p—¢(21), while the reverse inequality holds for z in the subarc

2122, Iffis strictly convex on (0, ], then these inequalities are strict. If 71 = zo, then
gy — = 1

we set71z2 = {z1} and 2271 = S°.

We now assume that w,, = (z1, ..., z,) is ordered in a counterclockwise manner

and also that the indexing is extended periodically so that zx4,, = zx for k € Z. For
1 <k <nand A € R, we define 7 5 : (S")" — (S")" by

Tk,A(le coes ks Zhk41s v Zn) = (le ey IO—A(Zk)7 pA(Zk-‘rl)s ceey Zn)-

If zk—1 # zk and Zx+1 # Zk+2, then 1 A (w,) retains the ordering of w,, for A positive

and sufficiently small. Given A := (Aq,..., AT € R”, let tp := Ty,A, O - O
72,0, 0714, and @), ;=T (@y). Letting o ==y (Zxzx11) and o, = y (242}, ) fork =
1, ..., n, we obtain the system of n linear equations:

o =g — Ak + 20k — Agp1 (1 <k <n), (10)

which is satisfied as long as D> _;_, ) = 27 or, equivalently, if @), is ordered counter-
clockwise. Let

sep(wy) := min oy.
1<t<n
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Then (10) holds if

max [Ag| < (1/4)sep(wy), (11)
1<k<n

in which case, the configurations

4
W\ = Taa, 00Ty 0 TiA (@) (E=1,....0) (12)

are all ordered counterclockwise. If the components of A are nonnegative, then we
may replace the ‘(1/4)’ in (11) with (1/2)’.

Lemma 5 Suppose w, = (z1,...,2,) and w, = (2},...,z,) are n-point con-
figurations on S' ordered in a counterclockwise manner. Then there is a unique
A* = (AT, ..., A}) e R" so that

(@ A; =0, k=1,...,n,

(b) A; =0 forsomeje{l,...,n}, and

(©) ta*(wy) is a rotation of w),.

Proof The system (10) can be expressed in the form

AA =B, (13)

where

2 -1 0 0 - —1 A o —a

-1 2 -1 0 - 0 As o) —ar
A= A= , and B :=

0 o - -1 2 -1

-1 0 - 0 -1 2 An al —ay,
It is elementary to verify that ker A = (rangeA)t = span (1), where 1 =
(1,1,..., DT Since ﬂTl = Zzzl(a,’( — ag) = 0, the linear system (13) always
has a solution A. Let j € {1, ..., n} satisfy A; = minj<x<, Ag. Then subtracting

A1 from A, we obtain the desired A*. Since ker A = span 1, there is at most one
solution of (13) satisfying properties (a) and (b), showing that A* is unique.

Part (c) holds as a direct result of the fact that both w, and ), are ordered counter-
clockwise.

Lemma 6 LetQ, = (z1, ..., 2,) be a configuration of n distinct points on S' ordered
counterclockwise, and with f as in Theorem 1, suppose A = (A, ..., Ay) € R" is
such that

(@) 0 < Ax < (1/2)sep(Qy) fork=1,....n, and
(b) there is some j € {1, ..., n} for which A; = 0.
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Let @), == tA(2) = (2}, ..., 2,). Then Z, z]Jr] C zjzj41 and

—

Ul Q2 <UT(Q2) (ze2jd)y)). (14)

If fis strictly convex on (0, ] and Ay > O for at least one k, then the inequality (14)
is strict.

We remark that Ay = Oforallk =1, ..., nis equivalent to saying that the points
are equally spaced.

(Z) ey Z%)) = (1)([)

Proof Recalling (12), it follows from condition (a) that (z; A are
counterclockwise ordered. Since A; = 0 and Ay > 0 for k =1,...,n, the points
5@) and zﬂ] are moved at most once as £ varies from 1 to n and move toward each

other, while remaining in the complement of all other subarcs z,(f)zl(ﬁ 1> 1€,

W« OO O O
n n
T =2 Liar 280 S Yl

fork e {1,...,n}\{jland £ € {1, ..., n}. Lemma 4 implies that, for £ =1, ..., n,
we have Uf(co(‘Z l) 7) < Uf(a)(z) z) forz € Z(Z)zﬁl (where a)(o) := w,) and the
inequality is strict 1f Ay > 0. Hence, (14) holds and the inequality is strict if f is
strictly convex and Ay > O forsome k =1, ..., n. ]

We now proceed with the proof of Theorem 1. Let w,, = (z1, ..., 2Z,) be a non-

equally spaced configuration of n (not necessarily distinct) points on S' ordered
counterclockwise. By Lemma 5, there is some equally spaced configuration ),
(e, ap = 2m/n fork = 1,...,n) and some A* = (A},..., A}) such that (a)
w), = Ta*(wy), (b) Aj = O0fork =1,...,n,and(c) Aj = Oforsome j € {1,...,n}.
Then (10) holds with ey := (2%, zx+1) and oy := 2m/n. Since w, is not equally
spaced, we have A,’g > ( for at least one value of k.

For 0 <t < 1, let o}, := tya%(wy) = (2}, ....2,) and, fork = 1,...,n, let

—

) = (22} )- Recalling (10), observe that

af = ap — 1(Ag—1 + 20k — Agt1)
o +1t2m/n — o)
(1 =)o +t(2m/n),

forO0 <7 <landk =1,...,n, and so sep(w},) > t(27/n). Now let0 <7 < s <
min(l, (1 4+ 7w /(nD))), where D := max{Ay : 1 < k < n}. Then Lemma 6 (with
Q, = o), A = (s —t)A*, and Q) = 1A(Q,) = o)) implies that zé Zj+1 - zjz
and that

Jj+1

Ul @2 < UM @) (€ 2y, (15)

where the inequality is sharp if f is strictly convex.

@ Springer



Discrete Comput Geom (2013) 50:236-243 243

Consider the function

h(t) :=min{U/ (0};2) 1z €252}, 0<t<1).
Observe that

h(t) < minfU7 (@l 2) 1 2 € 2525, ) < min{U7 ()i 2) 1 2 € 528, ) = his),

j+1
for 0 <t < s < min(l, (1 + w/(nD))). It is then easy to verify that / is non-
decreasing on (0, 1). Since o/, depends continuously on ¢, the function  is continuous
on [0, 1] and thus % is non-decreasing on [0, 1].

We then obtain the desired inequality

MY (wq; SN < h(0) < h(1) = M7 () Sh,

where the last equality is a consequence of the fact that w), is an equally spaced
configuration and so the minimum of U f (w),; 2) over S! is the same as the minimum

over z’jz’j 41+ If f is strictly convex, then 2(0) < h(l) showing that any optimal
f-polarization configuration must be equally spaced. This completes the proof of
Theorem 1. O
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