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Abstract

The theory of multiphoton ionization for an atomic system of

arbitrary complexity is developed using a density matrix formalism.

An expression is obtained which determines the differential N-photon

ionization cross section as a function of the polarization states of

the target atom and the incident radiation. The parameters which

characterize the photoelectron angular distribution are related to the

general reduced matrix elements for the N-photon transition. Two-photon

ionization of unpolarized atoms is treated as an illustration of the

use of the theory. The dependence of the multiphoton ionization cross

section on the polarization state of the incident radiation, which

has been observed in two- and three-photon ionization of Cs, is accounted

for by the theory. Finally, the photoelectron spin polarization

produced by the multiphoton ionization of unpolarized atoms, like the

analogous polarization resulting from single-photon ionization, is

found to depend on the circular polarization of the incident radiation.

Preceding page blank
I
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1. Introduction

The experimental observations reported by Fox et al. (1971) and

Kogan et al. (1971) indicate that the cross sections for two- and

three-photon ionization of unpolarized cesium atoms depend on the polar-

ization state of the incident radiation. Lambropoulos (1972a) has

presented a theoretical interpretation of this effect in terms of the

nonlinear dependence of the multiphoton transition amplitude on the

photon polarization vector. Using a one-electron model for the atomic

system, Lambropoulos (1972b) has shown that the differential N-photon

ionization cross section for the case of circularly polarized light

can be conveniently expressed in terms of only one dynamical coefficient.

Because of the possibility that multiphoton ionization experiments

will soon provide an important spectroscopic technique for probing

atomic properties, it is desirable to formulate the theory without

assuming any particular approximation for the atomic wave functions.

In a previous paper (Jacobs 1972), the density matrix formalism

(Fano 1957) was employed to develop a theory of single-photon ionization

for an atomic system of arbitrary complexity. In this paper, the density

matrix formalism is used to derive an expression which determines

the differential N-photon ionization cross section as a function of

the polarization states of the target atom and the incident radiation.

The parameters which characterize the photoelectron angular distribution

will be related to the general reduced matrix elements for the N-photon

transition.
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In the multiphoton photoelectric transition, the final

continuum state of the ejected electron-residual ion system may be

expanded in eigenstates of the total electronic angular momentum

(partial waves). For incident photon frequency ranges up to and including

the vacuum ultraviolet, the electric-dipole approximation should be

adequate. The dipole selection rule implies that only a finite, and

usually small, number of partial waves will be involved in the

transition. This should be contrasted with the case of electron-atom

scattering, where significant contributions to the cross section may

be spread over a large number of partial waves. Providing that the

range of tunable laser light sources can be extended into the vacuum

ultraviolet, multiphoton ionization experiments could offer a precision

technique of investigating the partial wave components of continuum

atomic states.

In the formulation of the final continuum state partial wave

expansion, it is customary to adopt the LS-representation when the

effects of the spin-orbit interactions are not of interest. In this

paper, particular emphasis will be given to the representation where

the atomic states are specified by the total electronic angular momentum

J and the z-component M. The use of the J-representation is required

when the fine structure of the atomic levels can be resolved in the

photoionization experiment. The J-representation may still be employed

even when the interactions can be assumed to be independent of J, since

the reduced matrix elements in the two alternative representations can

then be related by means of vector coupling coefficients. The use
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of the J-representation will be essential for the correct determination

of the photoelectron spin polarization produced by the interaction of

heavy unpolarized alkali atoms with circularly polarized light (Fano

1969). An important aspect of this paper, which has not been exploited

in previous treatments of multiphoton ionization, is the realization

that the general form of the final state partial wave expansion can

be written down without assuming any particular approximation for the

atomic states beyond the choice of the angular momentum representation.

Some investigations of multiphoton ionization have been concerned

primarily with the phenomenon of laser-induced gas breakdown (Bebb and

Gold 1966, Morton 1967). For the treatment of processes associated

with very high light intensities, the perturbation treatment of the

interaction between the atomic system and the radiation field is not

valid; and other more suitable methods have been proposed (Reiss 1970,

Faisal 1972). For the spectroscopic applications envisaged in this

paper, the light intensity must be high enough to make the multiphoton

transition observable. However, the light intensity should not be so

high as to produce significant broadenings and shifts in the energy

levels of the atomic system under investigation. The perturbation

treatment which is used in this paper should, therefore, be valid under

the most favorable experimental conditions for spectroscopic studies.

Fox et al. (1972) have accounted for the observed photon polarization

effect by noting that in the N-photon ionization process the polarization

of the incident radiation is partially transferred to the target atom
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during the first N-1 virtual transitions. Consequently, in the N'th

order virtual transition the interaction is between a polarized photon

and a polarized atom. The density matrix formalism (Fano 1957) together

with the spherical tensor operator formalism (Fano and Racah 1959),

which are employed in this paper, lead to a convenient quantitative

basis for this interpretation. A major portion of this paper is

devoted to deriving an expression which relates the spherical tensor

components of the final state density matrix to the spherical tensor

components of the target atom and the incident radiation polarizations.

From this analysis it follows that in two-photon ionization of an S-

state of the target atom, the polarization of the first photon plays

the same role as the target atom polarization in the case of single-

photon ionization from an aligned P-state. After making an appropriate

reinterpretation of the reduced matrix elements, the form of the photo-

electron angular distribution following multiphoton ionization can be

deduced from the single-photon ionization formula with inclusion of the

target atom polarization (Jacobs 1972).

The remainder of this paper is arranged as follows. In section 2,

the perturbation expression for the mUiltiphoton transition operator is

introduced. The expression for the spherical tensor components of the

final state polarization density matrix is derived in section 3.

Section 4 begins with a discussion of the form of the photoelectron

angular distribution for the case where the ejected electron and the

residual ion polarizations are not observed. As an illustration of the

use of the theory, two-photon ionization of randomly oriented atoms is

treated in both the LS- and the J-representations. Finally, the
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photoelectron spin polarization produced by circularly polarized

light is discussed.

2. The Multiphoton Transition

An example of the multiphoton transition considered in this paper

is the simultaneous two-photon ionization process

Cs(12 SA) + 2l w - Cs+(1 1 SO) + e-, (1)

which has been observed by Kogan et al. (1971) by means of a pulsed

ruby laser. For a general description of the multiphoton transition,

the atomic states will be specified by the complete set of quantum

numbers n J M. The symbol n is used to represent all quantum numbers

which do not refer to angular momentum, such as the principle quantum

number and the parity. In the case of light atoms it is usually more

appropriate to use the specification nLS ML MS.

It will be assumed that the target atom (in the quantum state i)

is singly ionized as a result of the simultaneous absorption of N

identical electric-dipole photons with frequency w and polarization

vector c. The photoelectron is ejected with momentum k

(corresponding to the formation of the residual ionic state a) and spin

projection ms. The magnitude of k is determined by the energy
a

conservation relation

Ei + N E a +ka2 (2)

which is expressed in rydbergs. It will be convenient to refer all
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projection quantum numbers, including A and m , to a common atomic

quantization axis. The spin orientation ms , measured with respect

to an arbitrary direction, may be obtained by employing the appropriate

Wigner rotation matrix.

The polarization phenomena associated with the N-photon ionization

process may be conveniently investigated by introducing a transition

operator S(N) whose matrix elements are given in lowest-order

perturbation theory (Bebb and Gold 1966) by

< MamsIS(N)IMiA... A) 2 7T Vi5?

gN-1 < ~ (1) In M J vMv) MM n(v) J M M(V)

<'naJa Ma, k;amsl / E(n(V)J(V)) - E(niJ) - v o J
= n(V) J(v) M(v)

6A
I
* $)iniJM> (3)

where a is the fine structure constant, (l) is the electric-dipole

moment operator, and the virtual intermediate atomic states (including

the continuum states) are specified by the quantum numbers n )J( )M( ),

v = 1, N-1. If the final continuum state is normalized per unit

rydberg energy interval, the differential cross section for the

transition where the four projection quantum numbers have definite values

is given by

ao(N) (MamsMi X,ka) = (27T a F)N1IMam IS(N)IMi ... ) 2,a (4)
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where F is the incident photon flux. The dependence on F which appears

in equation (4) implies that the order N of the multiphoton transition

may be identified by varying the intensity of the incident radiation.

It is important to emphasize the simplifications which have been

introduced into the perturbation expression (3). Firstly, it has been

assumed that only one mode of the incident radiation field is excited.

If the line-width of the light source is significant, it may be

necessary to integrate equation (3) over the frequency distribution of

the incident radiation. Even when the line-width of the light source

can be neglected, a factor which can become as large as N! should be

included in equation (3) to account for the incoherence df the

radiation. A further simplification is the omission of the radiative

line-widths of the intermediate states fram the energy denominators.

For the resonant frequencies w = [E (n( v) j(v)) - E (n
i
Ji)]/v,

the radiative line-width must be included to give a finite denominator.

3. The Density Matrix Description

A more general description of the multiphoton ionization process

may be achieved by the use of the density matrix formalism (Fano 1957).

In this formalism, the polarization state of the target atom with

definite angular momentum Ji is represented by a (2Ji + 1)x(2Ji + 1)

density matrix Pi. For the polarization state of the electric-dipole

photon with frequency a, it will be convenient to employ the 3 x 3

density matrix p which arises when the polarization vectors EX are

referred to the atomic quantization axis. In general, the photon
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density matrix elements will depend on the orientation of the incident

photon beam with respect to the atomic quantization axis.

After introducing the direct product density matrix

P (N) Pix PrX *** X Pr ()

where the photon density matrix pr occurs N times, a complete analysis

of the N-photon ionization process may be given in terms of the final

state polarization density matrix

p(N) = S(N) p (N) S(N)+

that is

< Ma M. I P 2(1) | M, M, > EE < M. M- | S(")Jl Mi X1 I .. * 'N >
MiMi' AXlXl,..*ANXN

<MiA' ''' 'Nkp(NMi '> <M'ms[_S(N)[Mi A' Al>* (6)

The density matrix p2(N) determines the angular distribution and spin

polarization of the ejected electrons together with the residual ion

polarization as functions of the polarization states of the target atom

and the incident radiation. If the initial state density matrices

Pi and Pr are normalized so that their traces are equal to unity,

the diagonal elements of/P_(N)will be equal to the partial differential

cross sections for the transitions to the Mams magnetic substates.

To represent the polarization density matrix for a system which

is characterized by an angular momentum J, it is convenient to introduce

the spherical tensor operator T(K,N) (Fano and Racah 1959, Happer 1968),

which may be defined in terms of the Wigner 3-J symbol (the reference
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for the vector coupling coefficients used in this paper is de Shalit

and Talmi 1963) by

<JMIT(KN)IJM'> = (-1)J-M(2K + 1) J) (7)
-MN M'

The density matrix p which describes the polarization state of the

system may be expanded in terms of the complete set of (2J + 1)2

spherical tensor operators in the form

p = Z p(K,N) T(K,N) (8)
KN

The spherical tensor (or multipole polarization) components p (K, N)

are determined by the relation

p(K,N) = (tr p T(K,N)+) (9)

The initial state polarization density matrix p(N defined by

equation (D) may now be conveniently represented by the expansion

pl(N): 
_p(N) = E E Pi(Ki,Ni) T(K i , N i )
_KiN (1) N (1), ... K (N) N (N)

r r r r

x Pr (K ( ), N( D)) T(K ( 1), N ( 1)) x... x Pr (K(N)0, Nr(N)) T (Kr(N), N), (10)

where the spherical tensor operators T(Ki, Ni) and T(Kr, Nr) operate

within the subspaces of the target atom angular momentum Ji and the
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photon angular momentum Jr = 1, respectively. Similarly, the final

state polarization density matrix p(N) will be expanded in the form

P p) = E 2 E P2 ()(KaKs L, NaNsM)
- KaN

a
KsN s LM

T (Ka Na) T (Ks , Ns ) YLM (ka) (11)

where T (Ka, Na) corresponds to the residual ion with angular

momentum Ja, T (KS, Ns) corresponds to the ejected electron with

angular momentum s = 1/2, and YLM (ka) denotes the spherical harmonic

function of the ejection angles.

To obtain the explicit expression for the tensor components of

p(N), it will be necessary to introduce into equation (3) the final

state partial wave expansion (Blatt and Biedenharn 1952, Jacobs 1972)

with the incoming wave boundary condition appropriate- to the description

of the photoionization process (Breit and Bethe 1954). In the J-

representation this expansion may be written as

naJaMa'kams>= E i
f

e-i (ka) Ye: (ka)
Em KN JM

(asK\ (K J
()sJaN+Ke-M (2K +1) (J + 1) (Ma m -N) NM) InaJaK ,JM>, (12)

where 0 e (ka) is the Coulomb phase shift. The asymptotic form of

the angular momentum eigenfunctions Ina Ja K e, J M > for large

distances between the ejected electron and the residual ion involves

the scattering matrix for the electron-ion collision problem.
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The corresponding form of the partial wave expansion in the

LS-representation is

na LaSaM La MS a, ka m.> e - io-f (ka)Ye*
em LML SMS

(_1) - aLaML+sSa-MS /(2L + 1) (2S + 1) (ML m -ML) M L -)a M~L a ms - M

Ina La Sa e, LMLSMS> (13)

A derivation of equation (13) based on the use of close-coupling final

state wave functions has been presented by Burke (1968). However, it

is evident from the derivation that the validity of the result is not

restricted by the close-coupling approximation.

After substituting the partial wave expansion (12) into

equation (3) and using the Wigner-Eckart theorem, the matrix elements

(N)
of S() are evaluated in the form

<Ma msIS
( N) IM i AI ''' AN> = Z Z Z Z

KN m J M J (1) M(1) ... J(N-1)M(N- 1)

(-1) s -J - N*+K-e+ 3J - 2M f(2K + 1) (2 J + 1)

ta s K\e K JA 1 j(N 1)%
Ma mS -N N M M AN M(N - 1)

LN=2 (
1

)J(_M(, + (.,+ l ))(M. (_l)j(vM+) I+ (v)1 (J)jM(1) J
Lv- l k-u (V+ l) Av+1 M(V) - \- M (

1 ) A1 Mi/

(14)M (u) Yem (ka)'
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where the symbol u is used to denote the channel angular momenta

K JJ(1)... J(N-1), and the quantities M(u) are defined in terms of the

reduced electric-dipole matrix elements by

M(u) = 2 af e i
( o g

-

f / 2
)

Z (na Ja K e, J[IQ(1) In(N - l ) J(N-1))

n(1) (N- )E(nN1)j(N-1)) - E(n,)- (N - 1)o

(n(v+') J(v+') II n(v) oJ )

_t r=1 E (n(V) J (v)) _(n J,
)

(n() j(1) II Q(1) II ni Ji). (15)

Perturbation theory has been used to obtain an explicit expression

for the dynamical quantities M(u) which may be evaluated numerically

with approximate atomic wave functions. However, it will become

evident that only the dependence on the projection quantum numbers

given by equation (14) will be assumed in the subsequent analysis.

Therefore, the question of the validity of the perturbation expression

(15) will not be relevant to the derivation presented in this section.

After the expansions (10) and (14) are substituted into equation

(6), the relation between the spherical tensor components of p2(N), Pi,

and Pr is found to be expressible in the form

/(2Ka + 1) (2Kg + 1) (2L + 1)
p(N) (K K L,N. NM) = V

V(2Ki + 1) pi (Ki, Ni)

KiN K N K(N)N (N)
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' /(2K(') + 1) p (K(1), N)) ... (2K(N) + 1) Pr (Kr(), Nr ))

E ~ B (u1 , U2) M (Ul) M (U2)* (16)
U1 U 2

Using the appropriate vector coupling identities, the expression

obtained for the recoupling coefficients B(ul, u2 ) may be reduced to

the convenient form

B(u,, u 2 ) V(2K 1 + 1) (2K2J, + 1) (2 + 1) (2J2 + 1)

1 f2L) y + -K K-

(? 1 ?2 L) E E L ~~~~~~~~~~~(2 K1 + 1) (2J 12 + 1) 1-)f 2 K2 1 1K2 N12
K12 N 1 2 J 1 2 M 1 2 J( 1 l) M (1) j 1 (N- 1) M (N- 1)

-12 12 ... 12 " 12

N N -N, 2 N12 M -M,12 , \-M,2 N(N) M,.(N-I)-

Ja s K2 rK2 f2 J2 r J2 1 J2-')

Ja s K, K, JE i J, 1 Jf')

Ka s� 5K12 1K2 L J, 2 1J,2 Kr(N) J212 )

N-2V J1 (V+1) K~~~ (~V~~+1) J () 1~~J (2(v r) J (V) 

I (- )
J

2 T,(+) + 1) I"
( v +' ) N(v+1) M J 2 (V) J(, 1) 1 J(v) TT W' ~ 12 (2 J,~vl + 1) lN(v+l) M (V)< ji' J I

~~~~1 J2 ( 1 2

Lv=l 1 r til-(v+l) KN(V+) Ji (Vj K

(-M1(, N,(') Ni j 1 J (17)
J, 2~ K>)K
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In equations (14), (15), and (17) the terms inside the square

brackets are to be omitted for the case of N = 2.

From the selection rule that g + g2 + L must be an even integer

and the requirement that the values of El and F2 which are associated

with a given ionic state must correspond to the same parity, it

follows that only even values of L are involved in the spherical

harmonic expansion of equation (11). Using the abbreviation

I = Ja + s + Ji' the maximum allowed value of L is given by

2 (I + N) for integral values of I
Lmax - (18)

a2(I+ N) 1 for half-integral values of I (

It should be clear that the maximum value of L may not be realized

unless the target atom is polarized and the polarizations of the residual

ion and the ejected electron are observed.

In the case of the LS-representation, the density matrices Pi and

p(N) may be expressed as direct products of density matrices referring2

to either the orbital or the spin angular momenta. The polarization

state of the target atom is now represented by the spherical tensor

components PL (KL
i
,NL i

) and psi (KSi, NS i
) . The final state

polarization density matrix is now expanded in a form which is analogous

to equation (11) but with the separated components PLN)(KLaL, N LaM) and

PS S(N) (KSaKs, NSaNs). For the case of N=--2, the recoupling coefficient

which occurs in the analogue of equation (16) may be expressed in the

form
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B(flL1LiL(),f2L2L2(')) = (2S i + 1) /(2C 1 + 1) (2/2+ 1) (2L1 + 1) (2L2 + 1)( 21 22 2~*~~, 1 - 1

1e 2 L (2 L12 + 1) ( 2 Li () + 1) (l) f2+ KSi- NSi+L12 '-12(l
0 0 0 L 12 M 1 2 L 12(1) M (1)

aKS K5 KSi\ (KLa L L1 2 \ (L 1 2 K(2) L1 )' (L 12() Kr(1 ) KL

NSa N, -NS NLa M -ML1 2 \-ML1 2 Nr(2) ML121)/ -ML1.') N(1) NL.

Sa S Si La P2 L2 L2 1 1(1) L(1) Li

S Sa S Si hS La fI L1 L1 1 L (') LIO) 1 L. (19)

KSa Kr S La L L K( 2 ) L 1
2
(1) 2(1) K 1 ) L

i

which may also be written as a product of factors containing either

spin or orbital angular momenta. The generalization of equation (19)

for N > 2 becomes apparent when the comparison with equation (17)

is made.

4. Multiphoton Photoelectron Spectroscopy Measurements

When the ejected electron and the residual ion polarizations are

not measured, the angular distribution of the ejected electrons is

given by the partial differential cross section

(N) (ka) = t r(p2 (N)) (20)a a) 2 ~~~~~~~(20)
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From equation (11) it follows that this differential cross section

may be expressed in the form

PaN (k) /(2Ja+ 1) (2 s + 1) p)(OOL, 00M) YLM (ka) (21)
LM

where the maximum value of the even integer L is 2(Ji + N) for

integral values of Ji and 2(Ji + N) - 1 for half-integral values of

J..

For an unpolarized target atom the coordinate system can be

conveniently chosen so that the form of the partial differential

cross section (21) reduces to

ar 2N1

oa-) (ka) 4- 1 + E (N) PL (cos 0) , (22)
L= 2 2

where u(N) is the total cross section for the ionic state a, and thea .

asymmetry parameters which occur in the Legendre polynomial expansion

are defined by

ox(N) gai?) /V47T (2Ja + 1) (2 s + 1) (2L + 1) p() (0OL, OOM) (23)

If the incident radiation is unpolarized or circularly polarized,

the z-axis is to be taken as the propagation direction of the incident

photons. For linearly polarized light the appropriate choice of the

z-axis is the photon polarization direction. The electric-dipole

photon tensor components for these polarization states are given in

Table 1 for later reference.
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As an illustration of the use of the theoretical framework

developed in the previous section, it is of interest to consider two-

photon ionization for the usual experimental condition of randomly

oriented target atoms. The cross section a(2)is given in the

J-representation by

1 J 5K K ( J j(1) I()

r (Kr2 ) ° 2 ( 1 ) J1( 1) Ji )1 2

a (23., + 1) Kr K J j (1) J2(1)
r ~1 2

M (K j J (1)) M (K j j2()) * (24)

and in the LS-representation by

0- (2)- 1 Z Z E (lK +-1L+LI

(2Li + 1)K E L L(1) L (1(L1 ~~~131 2
( 1) L (>) L L( Lf') L

M (f 1L1)) M (f L1 L2 (1))* (25)

From the photon tenso.r components given in Table 1, it is clear that

the total cross section a(2) depends on the polarization state of the

incident radiation. In contrast, the total cross-section for single-

photon ionization of an unpolarized target atom involves only the tensor

component Pr (0, 0), which is independent of the polarization state.

Equations (24) and (25) illustrate the nonlinear dependence on the

photon polarization discussed by Lambropoulos (1972a).
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The angular distribution of photoelectrons resulting from two-

photon ionization is characterized by the two asymmetry parameters a2(2)

and 'a ( 2 ) . In the J-representation these two asymmetry parameters

are given by

/a1(2) - (2L + 1) Z + (2Kr( ) + 1) (2K(2 ) + 1) p,(K.(), 0) p, (
cr a (2 Ji + 1) K(1)

r
K (2)

r

3 (K1 , K2 ) (- 1 )J 2 +K 2 + Ji + J(O+ 1 + K ()Kjj()
K i[i J1J

1 ) K22 J2 J
K2[fJ2J

( 1 )

y(2Cl+ 1) (2 f 2 + 1) (2Jl+ 1) (2J2+ 1) ( 20L) K1 ) K
(
2

)
0 /K( 0

L)

O0

{ 1 2 L 1

J2 JI K 1 f J(1)

1

j 11)

JKr {J
2

L

1

1

K( 2 )

j (1) (26)

j j1) M (K1 e, J~ J()) M (K2 2 J2 J2(1))
*

K (l)r

The corresponding expression for a(2) in the LS-representation is

(2) (2 L + 1) E 2)r() 2K) 
/aL(2) = (2L + 1) ' /(2Kr() + 1) pr(Kr(1), 0) por (Kr(2),0)

ar ( 2i + 1) Kr(1) K (2)
r r

EW (-1)L 2 + La + Li + Li(1) + 1 + K(1)

iL1 L1 ( )L 2L22111 2 2 2

1/(2e 1 + 1) (2e2 + 1) (2L1 + 1) (2L2 + 1)
( 2 r

0 O0/ /\0

T I C2 L i 1 1 Kl)' 1 2

LLLLI L I)} M(FlL 1Lfl)) M(C 2 L2 L2(1))* (27)[ LI L 1 La L( 1) L (1) Li 111 K 2)2LL 2 a 2 1 i L K 2 K()
r'l

K(2 ), 0)

K ( 2)

r
0

L)

O0

Y I I I .I I r I r 1--r , -,
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The requirement that the angular distribution given by equation (22)

with N=2 be a non-negative function of 0 implies that the values of

the asymmetry parameters /a2() and 8a¼2) are restricted by the

ine qualities

/3a2'() + ,42) > -1 (28)

4/a2(2) - 3,a, (2) < 8 (29)

The form of the photoelectron angular distribution resulting from two-

photon ionization has also been discussed by Lambropoulos and Berry

(1972), who have derived an explicit expression for the asymmetry

parameters using a density matrix formalism similar to the formalism

employed in section 3. However, their treatment is restricted to the

case where there is only one value of the intermediate angular momentum

L,(1)L 

The case of two-photon ionization from an S-state of the target

atom is of particular experimental interest. In the LS-representation,

the allowed virtual intermediate states are the P-states. The triangle

conditions imply that the allowed values of the final state total angular

momentum L1 are 0, 1 and 2. In the case of circularly polarized light,

however, angular momentum conservation implies that only the D-partial

wave component will be excited. This also follows from equations (25)

and (27) which now reduce to

' 3(2E) - [pr (Kr,, 0)] { IM (E, 2 1)[2 (30)

Kr el r 1~~~~~~~~~~~~~1

and
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L(2
)

5 2 L + 1) (- 1 )
L

_ ......
(L 2)a(2 L.... EQ 2 K (1) + 1) (2Kr(2 ) + 1) Pr (K(

1
), 0)Pr (Kr(2 ), 0)

3 0-/(2) e K (2 ) r 2 LaK
r r

(2 K(
2
)

[~~~~~~~~~~~~~~~~~~~ r
L El + 1) (2 E2 + 1) 0 0 

1 2

2L 2 }1 M(e1 , 2, 1) M(f 2, 2, 1)*, (31)

2 ~K (1) K(2

where the photon tensor components for the case of circular polarization

are to be used. Lambropoulos (1972) has given particular emphasis to

the fact that only the dynamical quantities M corresponding to the L = N

partial wave component of the final state occur in the expression for

the differential N-photon ionization cross section for circularly

polarized light. A further significant feature is that equations

(50) and (51) also apply to single-photon ionization from an aligned

P-state provided that the quantities M are suitably reinterpreted.

This result is in agreement with the explanation of the photon

polarization effect given by Fox et al. (1971).

The component of the photoelectron spin polarization in the

direction of the incident radiation, which is produced by N-photon

ionization of a randomly oriented atom, may be expressed in the form

P? (a) =k 4-(N ) 
+

y ,N)PL(cos ] , (32)

Pa (ka) = 4 7T >- (N) (k ) [P a L=2 L= a a (N

where it is assumed that the polarization state of the residual ion

is not detected and 0 measures the angle between the photoelectron

direction and the direction of the incident radiation. The total
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polarization P (N) and the asymmetry parameters YaL(N) are given in termsaL

of the tensor components of the final state density matrix by the

relations

c(N) P(N) = 47 (2Ja + 1) (2 s + 1) p(N) (010,000) (33)a a a233

and

-(N) 7a (N) 
=

477 (2J+ 1) (2s + 1) (2L + 1) p?(N)(OIL 000) (34)a aL Ja / 2 (4

Since Fano (1969) has shown that the spin polarization of photo-

electrons ejected from randomly oriented alkali atoms is determined

by the -direct action of the spin-orbit force on the continuum states,

the use of the J-representation is required for the correct

determination of this polarization. From equation (17), it is

evident that the photoelectron spin polarization is nonzero only when

the following conditions are satisfied

J1 (
1

) KK(1)12 ~~~~~~~r

J1 (v+) + K(v+l) + J (v) = even integer, v : 1, N - 2
J12( + 1+ Kr(+1+ 1 2(

12 + K(N) + J1 ( N 1) = even integer 

J12 + 1 = even integer

Using the properties of the photon tensor components given in Table 1,

it is found that in the electric-dipole approximation the photoelectron

spin polarization produced by multiphoton ionization of any order,

like the analogous polarization resulting from single-photon ionization,

is determined only by the circularly polarized component of the

incident radiation.
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Table 1

Spherical Tensor Components for Various Polarization
States of Electric-Dipole Photons

polarization state Pr(0,0) Pr(1) Pr(2,0)
Pr(O'IOI

unpolarized (1/3)1/2 0 (1/6)1/2

circular polarization (X = .1) (1/3)
1
/ +1/2 (1/6)1/2

linear polarization (1/3)1/2 0 (1/6)1/2
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