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Polarization properties of corner-cube
retroreflectors: theory and experiment

Jian Liu and R. M. A. Azzam

Polarization properties of the corner-cube retroreflector are discussed theoretically by use of ray tracing
and analytical geometry. The Jones matrices and eigenpolarizations of the six propagation trips of the
corner-cube retroreflector are derived. An experiment is also set up for the determination of the linear
eigenpolarizations and the output states of polarization for incident linearly polarized light. The ex-
perimental results are consistent with theoretical expectations. © 1997 Optical Society of America

1. Introduction

Corner cubes are commonly used as retroreflectors be-
cause of their geometrically simple structure, and their
polarization properties have been the subject of partic-
ular interest. Analysis of corner cubes by Peck,1
Rabinowitz et al.,2 and Lamekin3 included a discussion
of their eigenpolarization states. Acharekar4 derived
the internal incidence angles and coordinate transfor-
mations between internal reflections for corner cubes.
Hodgson and Chipman5 presented photographs that
qualitatively describe the polarization properties of
corner cubes. Mayer6 studied the depolarization ef-
fects of air-path retroreflectors. Recently Scholl7 re-
ported on the transformation of the electric field
reflected by corner-cube surfaces.
In this paper we present a method, based on solid

analytic geometry, for a thorough investigation of light
interaction with corner cubes. This includes the in-
ternal incidence ~or reflection! angles, wave vectors for
light propagation in the corner cube, and the coordi-
nate systems for light impinging upon the three inter-
nal surfaces. The corner-cube reflector under
discussion is a symmetric triangular pyramidlike
prism. The bottom face is usually called the base, and
the three equal sides form mutually perpendicular in-
ternally reflecting surfaces. Light entering the base

at normal incidence is reflected from all three internal
surfaces and is returned parallel to the input light
beam. In Section 2 reference coordinate systems are
established for analyzing light propagation through a
corner cube, and one of the six propagation trips is
examined in detail. Section 3 gives the Jones matrix
and eigenpolarizations for this specific trip. Section 4
provides the Jones matrices for all six propagation
trips of the corner cube. Experimental results are
presented in Section 5 for verifying the theoretical
analysis. Section 6 gives the conclusion.

2. Analytic Geometry for Corner-Cube Retroreflector

To simplify ray tracing, the corner cube is repre-
sented as shown in Fig. 1. The three right-angle
isosceles triangles ABO, BCO, and CAO are the in-
ternal reflecting surfaces of the corner cube, and are
located in the XY, XZ, and YZ planes, respectively.
Equilateral triangle ABC is the base. Let OA 5
OB 5 OC 5 a. The equations of the four surfaces
and their unit normal vectors are

X 5 0, N1 5 i (1)

for surface ACO;

Z 5 0, N2 5 2k (2)

for surface ABO;

Y 5 0, N3 5 2j (3)

for surface BCO;

X 2 Y 2 Z 1 a 5 0, (4)

N4 5 ~2i 1 j 1 k!y31y2; (5)
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for surface ABC, where i, j, and k are unit vectors
along the coordinate axes X, Y, and Z, respectively.
We assume that the light beam enters the cube in

a direction opposite to N4, normal to the base surface
of the corner cube, and is reflected totally from the
internal surfaces in the order of ACO, ABO, and
BCO; i.e., light enters the cube from the left-hand
side and emerges after a counterclockwise trip from
the cube in the same direction of N4. This is one of
the six distinct trips of light propagating in the
corner-cube retroreflector.
For specificity, let us take a 5 10 cm and the coor-

dinates of the point of light impinging upon the base
surface to be O1~22.5000, 4.0000, 3.5000!. The ex-
ternal reference p-polarization direction for the input
and the output light is defined as perpendicular to
side AB, and the s-polarization direction is parallel to
it, as shown in Fig. 2. Light propagation within the
corner cube is examined by ray tracing and analytic
geometry. The sign conventions are consistent with
those discussed by Azzam and Bashara.8 The nor-
mal to the plane of incidence for light reflection at
each surface of the cube is defined as parallel to the
local s-polarization direction. The unit vectors along
the incident and reflected light from each internal

surface are related by9

L2 5 L1 2 2N cos f, (6)

where L1 is the unit vector along the incident ray and
L2 is the unit vector along the reflected ray, as shown
in Fig. 3. The corresponding unit normal n to the
plane of incidence is given by

n 5 L1 3 L2yuL1 3 L2u (7)

for the counterclockwise propagation trip.
The angle of incidence f for each internal surface is

f 5 cos21S 1Î3D 5 54.7356° (8)

for light normally incident upon the base surface of
the corner-cube retroflector. If the incident light de-
viates from the normal, the angle of incidence will be
different at each surface.
The position coordinates of the points where light

impinges upon the surfaces of the corner cube are
listed in Table 1. For this case the displacement
between the input and the output light is O1O5 5
2.1602 cm. The unit vectors along the round-trip
segmented light path, as shown in Fig. 4, are listed in
Table 2. The unit vector along O1O5 is given by

L6 5 O1O5yO1O5 5 ~20.7715, 20.6172, 20.1543!.
(9)

The unit normal to the plane defined by the input and
output light rays is given by

n6 5
L0 3L6

uL0 3L6u
5 ~20.2673, 0.5345,20.8018!. (10)

Fig. 1. Geometry of the corner-cube retroreflector.

Fig. 2. Definition of the external reference p- and s-polarization
directions for the input and the output light. Edge AB of the base
of the corner cube is used as a reference.

Fig. 3. Propagation vectors for the incident and reflected light
from a planer surface. N is the surface normal.

Table 1. Coordinates of Points of Intersection with Each Surface of a
Corner Cube, a 5 10 cm

Surface Intersection Coordinates

Base ~input! O1~22.5000, 4.0000, 3.5000!
ACO O2~0.0000, 1.5000, 1.0000!
ABO O3~21.000, 0.5000, 0.0000!
BCO O4~21.500, 0.0000, 0.5000!
Base ~output! O5~24.1667, 2.6667, 3.1667!
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The external reference s-polarization direction for the
input light shown in Fig. 2 is given by

n1 5 ~0.7071, 0.7071, 0.0000!. (11)

The normal of the incidence plane for surface ACO is

n2 5
L1 3 L2

uL1 3 L2u
5 ~0.0000, 0.7071, 20.7071!. (12)

The normal of the incidence plane for surface ABO is

n3 5
L2 3 L3

uL2 3 L3u
5 ~20.7071, 0.7071, 0.0000!. (13)

The normal of the incidence plane for surface BCO is

n4 5
L3 3 L4

uL3 3 L4u
5 ~20.7071, 0.0000, 20.7071!. (14)

The external reference s-polarization direction for the
output light is the same as that for the input light
~Fig. 2!:

n5 5 ~0.7071, 0.7071, 0.0000!. (15)

The angles between the normals of the incidence
planes for the surfaces of the corner cube and n1 are
listed in Table 3. The angles between the normals of
the incidence planes for the surfaces of the corner
cube and the unit normal n6 to the plane defined by
the input and output light directions are listed in
Table 4 for reference.
It is also important to find the angle between the

normals of the successive incidence planes, which

define the angle of rotation of the coordinate trans-
formation Jones matrix. By following the sign con-
ventions used above8 and looking against the
direction of light propagation, we obtain the relative
angles of rotation listed in Table 5.

3. Jones Matrix of the Propagation Trip ACO 3 ABO
3 BCO

The reflection Jones matrix for each surface of the
corner cube takes the form8

Ti 5 FuRpi uexp~ jdpi!
0

0
uRsi uexp~ jdsi!

G , i 5 1, 2, 3.

(16)

For convenience, we use the simpler notation

Ti 5 Frpi0 0
rsi
G , i 5 1, 2, 3, (17)

where subscript 1 represents surface ACO; 2, ABO;
and 3, BCO.
Then the overall Jones matrix of the ACO3 ABO

3 BCO trip for the corner-cube retroreflecter relative
to the input and output ps coordinate systems as
shown in Fig. 2 can be written as

J123 5 R~2120°!T3R~60°!T2R~260°!T1R~260°!, (18)

where the rotation matrix is defined by

R~u! 5 F cos u
2sin u

sin u
cos uG . (19)

Fig. 4. Light ray vectors for the ACO–ABO–BCO propagation
trip.

Table 2. Unit Vectors Along the Segmented Light Path

Unit Vector Coordinate

L0 ~0.5774, 20.5774, 20.5774!
L1 ~0.5774, 20.5774, 20.5774!
L2 ~20.5774, 20.5774, 20.5774!
L3 ~20.5774, 20.5774, 0.5774!
L4 ~20.5774, 0.5774, 0.5774!
L5 ~20.5774, 0.5774, 0.5774!

Table 3. Angles Between the Surface Normals and n1

Surface
Normal Angle

Surface
Normal Angle

n2 60.0000 n4 120.0000
n3 90.0000 n5 0.0000

Table 4. Angles for Surface Normals Relative to n6

Surface
Normal Angle

Surface
Normal Angle

n1 79.1066 n4 40.8934
n2 19.1066 n5 79.1066
n3 55.4624

Table 5. Angles of Rotation of Coordinates ~deg!

Normals Rotation Angle

n1, n2 a1 260.0000
n2, n3 a2 260.0000
n3, n4 a3 60.0000
n4, n5 a4 2120.0000
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Substitution of the individual rotation and reflection
matrices into Eq. ~18! gives

J123 5 FJ11J21
J12
J22G , (20)

where

J11 5 rp2~rp1 cos
2 60° 2 rs1 sin

2 60°!~2rp3 cos
2 60°

1 rs3 sin
2 60°! 2 ~rp1 1 rs1!

3 ~rp3 1 rs3!rs2 sin
2 60° cos2 60°, (21a)

J12 5 rp2~rp1 1 rs1!~rp3 cos
2 60° 2 rs3 sin

2 60°!

3 sin 60° cos 60° 2 ~2rp1 sin
2 60°

1 rs1 cos
2 60°!~rp3 1 rs3!rs2 sin 60° cos 60°,

(21b)

J21 5 ~2rs1 sin
2 60° 1 rp1 cos

2 60°!

3 ~rp3 1 rs3!rp2 sin 60° cos 60° 2 ~2rp3 sin
2 60°

1 rs3 cos
2 60°!~rp1 1 rs1!rs2 sin 60° cos 60°,

(21c)

J22 5 rs2~rs1 cos
2 60° 2 rp1 sin

2 60°!~2rs3 cos
2 60°

1 rp3 sin
2 60°! 2 ~rp1 1 rs1!

3 ~rp3 1 rs3!rp2 sin
2 60° cos2 60°. (21d)

If the optical properties for the three internal sur-
faces are assumed to be identical and the incident
light is normal to the base surface of the corner-cube
reflector, the reflection coefficients are the same for
three internal surfaces. The elements for the Jones
matrix in Eqs. ~21! then become

J11 5 2
1
16

~rp
3 1 15rprs

2 2 3rsrp
2 1 3rs

3!, (22a)

J12 5
Î3
16

~rp
3 1 rsrp

2 2 rprs
2 2 rs

3!, (22b)

J21 5
Î3
16

~rp
3 1 rsrp

2 2 rprs
2 2 rs

3!, (22c)

J22 5 2
1
16

~3rp
3 2 3rprs

2 1 15rsrp
2 1 rs

3!. (22d)

For a solid glass corner cube with refractive index
1.515, total internal reflection occurs at the three
internal surfaces. The reflection phase shifts are dp
5 124.7455° and ds 5 79.5499°. The Jonesmatrix of
the ACO 3 ABO 3 BCO trip calculated by use of
Eqs. ~22! is

J123 5 F20.0266 1 0.9586i
0.2282 1 0.1685i

0.2282 1 0.1685i
20.9083 1 0.3075iG .

(23)

The Jones eigenvectors8 of the ACO3 ABO3 BCO
trip for the corner cube reflector are

Ee1 5 F 1
0.2434G , Ee2 5 F 1

24.1076G , (24)

which represent orthogonal linear polarization
states. The corresponding complex eigenvalues are

Ve1 5 0.0290 1 0.9996i,

Ve2 5 20.9638 1 0.2665i. (25)

4. Jones Matrices and Eigenpolarizations of the Six
Propagation Trips

The six propagation trips are divided into two groups:
the three counterclockwise propagation trips ACO3
ABO 3 BCO, ABO 3 BCO 3 ACO, and BCO 3
ACO3 ABO, with the unit normal n to the plane of
incidence given by Eq. ~7!; the other set consists of the

Table 6. Jones Matrices, Eigenvectors, and Eigenvalues for the Counterclockwise Propagation Trips of a Corner-Cube Retroreflector

Jones Matrix Eigenvectors and Eigenvalues

ACO 3 ABO 3 BCO

F20.0266 1 0.9586i
0.2282 1 0.1685i

0.2282 1 0.1685i
20.9083 1 0.3075iG F 1

0.2434G , Ve1 5 0.0290 1 0.9996i;

F 1
24.1076G , Ve2 5 20.9638 1 0.2665i.

ABO 3 BCO 3 ACO

F0.6746 1 0.0090i
0.6330 2 0.3797i

20.1766 1 0.7167i
20.2071 2 0.6421iG F 1

0.1933 2 0.4644iG , Ve1 5 0.9733 1 0.2296i;

F 1
20.7639 1 1.8353iG , Ve2 5 20.5058 2 0.8626i.

BCO 3 ACO 3 ABO

F 0.6746 1 0.0090i
20.1766 1 0.7167i

0.6330 2 0.3797i
20.2071 2 0.6421iG F 1

0.1933 1 0.4644iG , Ve1 5 0.9733 1 0.2296i;

F 1
20.7639 2 1.8353iG , Ve2 5 20.5058 2 0.8626i.
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clockwise propagation trips with

n* 5 2L1 3 L2yuL1 3 L2u. (26)

for the trips ACO 3 BCO 3 ABO, BCO 3 ABO 3
ACO, and ABO 3 ACO 3 BCO.
Following the sign conventions and coordinate sys-

tem used above, we obtain the relative angles be-
tween the normals of the successive incidence planes
for each propagation trip, which define the angles of
rotation of the coordinate transformations. Then
the overall Jones matrix for the corner-cube retrore-
flecter can be written as

J123 5 R~2120°!T3R~60°!T2R~260°!T1R~260°!, (27)

J231 5 R~120°!T1R~60°!T3R~260°!T2R~180°!, (28)

J312 5 R~0°!T2R~60°!T1R~260°!T3R~60°!, (29)

J321 5 R~260°!T1R~260°!T2R~60°!T3R~2120°!, (30)

J132 5 R~180°!T2R~260°!T3R~60°!T1R~120°!, (31)

J213 5 R~60°!T3R~260°!T1R~60°!T2R~0°!, (32)

where the subscript notation is already explained in
Section 3.
For the specific corner cube described in Section 3,

the Jones matrices and eigenpolarizations for the six
propagation trips are calculated by use of Eqs. ~27!–
~32! and are listed in Tables 6 and 7. We note that
two of the six propagation trips have linear eigenpo-
larizations and that the other four propagation trips
have elliptical eigenpolarizations. It should be em-
phasized here that the directions of the p and the s
polarizations of the input and the output light are
referred to the edge AB of the corner cube ~Fig. 2! and
that the convention of analyzing polarized light as-
sumes that one looks against the light propagation
direction. That same reference system is used for all
six propagation trips. Other authors presented
Jones matrices for the corner-cube retroreflector

based on different choices of the reference coordinate
system, and different coordinate systems for different
trips.1,2 The dependence of eigenpolarizations on
the choice of coordinate system is discussed in Ap-
pendix A.

5. Experimental Results

A. Determination of the Linear Eigenpolarizations

An experiment was set up for verification of the
linear eigenpolarizations of the corner cube. In
Fig. 5 the light beam emitted from a He–Ne laser of
wavelength 623.8 nm passes through a crystal po-
larizer and is retroreflected from a BK7 glass
corner-cube retroreflector10 with refractive index
1.515 ~at l 5 632.8 nm! in the 123 light propagation
trip as discussed above. The polarizer is aligned so
that the transmitted polarization with 0° azimuth
is perpendicular to side AB and parallel to the base
ABC of the corner cube. The output light from the
corner cube is then reflected at near-normal inci-
dence by a mirror, passes through an analyzer, and
is received by a photodetector. The input and out-
put light beams are aligned parallel to the axis of
the corner cube. With the polarization azimuth set
at one of the calculated eigenpolarizations, the ex-
tinction position of the analyzer is determined.
The polarizer is then rotated 90° to yield the orthog-
onal eigenpolarization, and the corresponding ex-

Table 7. Jones Matrices, Eigenvectors, and Eigenvalues for the Clockwise Propagation Trips of a Corner-Cube Retroreflector

Jones Matrix Eigenvectors and Eigenvalues

BCO 3 ABO 3 ACO

F20.0266 1 0.9586i
20.2282 2 0.1685i

20.2282 2 0.1685i
20.9083 1 0.3075iG F 1

20.2434G , Ve1 5 0.0290 1 0.9996i;

F 1
4.1076G , Ve2 5 20.9638 1 0.2665i.

ACO 3 BCO 3 ABO

F0.6746 1 0.0090i
0.1766 2 0.7167i

20.6330 1 0.3797i
20.2071 2 0.6421iG F 1

20.1933 2 0.4644iG , Ve1 5 0.9733 1 0.2296i;

F 1
0.7639 1 1.8353iG , Ve2 5 20.5058 2 0.8626i.

ABO 3 ACO 3 BCO

F 0.6746 1 0.0090i
20.6330 1 0.3797i

0.1766 2 0.7167i
20.2071 2 0.6421iG F 1

20.1933 1 0.4644iG , Ve1 5 0.9733 1 0.2296i;

F 1
0.7639 2 1.8353iG , Ve2 5 20.5058 2 0.8626i.

Fig. 5. Experimental setup for the determination of the linear
eigenpolarizations of a corner-cube retroreflector.
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tinction position of the analyzer is also measured.
During the experiment fine adjustments of both the
polarizer and analyzer are made, to yield maximum
extinction.
To represent the purity of linear polarization, we

introduce a parameter + defined by

+ 5 ~Vmax 2 Vmin!y~Vmax 1 Vmin!, (33)

where Vmax and Vmin are the maximum and mini-
mum output voltages of the detector located behind
the analyzer. For an ideal linear state of polariza-
tion, + 5 1. The experimental results for the ACO
3 ABO 3 BCO propagation trip, given in Table 8,
confirm that the eigenpolarizations of the corner-cube
retroreflector are indeed orthogonal linear states as
predicted by the theory of Section 3. The experi-
mental results for the reverse trip BCO 3 ABO 3
ACO also confirm the linear eigenpolarization predic-
tion.

B. Output State of Polarization for Input Linear
Polarizations

As shown in Fig. 6, two liquid crystal ~LC! retarders11
are aligned in such a way that the fast axis of the first
has an azimuth of 45° and that of the second 0°. The
analyzer transmission axis is perpendicular to the
fast axis of the first LC retarder. A photodetector is
placed behind the analyzer. The output signal of the
detector is nulled by adjustment of the voltages of the
two LC retarders, and the state of polarization of the
input light ~taking into consideration the half-wave
retardation effect of themirror that directs the output
light to the detector! is determined by the Jones vec-
tor8

E 5 F 1
2XG , (34)

where

X 5

i sin
d1
2

2 cos
d1
2
exp~id2!

cos
d1
2

2 i sin
d1
2
exp(id2)

. (35)

The corresponding normalized Stokes parameters
can be easily calculated.8
The light emitted from a He–Ne laser with wave-

length 632.8 nm and 8 mW of output power passes
through a crystal polarizer that rotates from 0° to

360° in steps of 10°. The linearly polarized output
light from this polarizer goes through the ACO 3
ABO3 BCO propagation trip and is received by the
polarization state detector that consists of the two
LC retarders and the analyzer as discussed above.
Theoretical results ~solid curves! determined from
the Jones matrix of Eq. ~23! and experimental ones
~circles! are in good agreement as shown in Fig. 7.
Experiments were also carried out for all the other

propagation trips. The results are again consistent
with the theoretical predictions. Figure 8 gives an-
other example of the ACO 3 BCO 3 ABO propaga-
tion trip with the Jones matrix given by Eq. ~31!.

Fig. 6. Polarization-state detector that uses two liquid crystal
~LC! retarders and an analyzer. F1 is the fast axis for LC retarder
1; F2 is the fast axis for LC retarder 2; and PA is the transmission
axis of the analyzer.

Fig. 7. Measured normalized Stokes parameters of the output
light of a corner cube when the incident light is linearly polarized.
The propagation trip is ACO 3 ABO 3 BCO. Solid curves are
theoretically calculated from Eq. ~23! and the circles are experi-
mental results.

Table 8. Experimental Results for the Determination of the Linear
Eigenpolarizations of a Corner Cube

Azimuth for
Input

Eigenpolarization

Polarizer
Azimuth

~deg!

Analyzer
Azimuth,
90° ~deg! +

13.68 13.77 13.18 0.9998
103.68 103.38 102.72 1.0000

13.68 1 180 193.65 192.80 0.9999
103.68 1 180 283.52 283.39 0.9999
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6. Conclusion

We have demonstrated, both in theory and experi-
ment, that if the reference coordinate systems for the
input and output light are selected with respect to
one edge of the base of a corner cube, orthogonal
linear eigenpolarizations are obtained for the ACO3
ABO 3 BCO propagation trip and its reverse prop-
agation trip, whereas elliptical eigenpolarizations are
obtained for the other four trips.

Appendix A: Dependence of Eigenpolarizations on the
Choice of Input and Output Coordinate Systems

The Jones matrix of an optical system depends on the
choice of the reference transverse coordinate systems
that are used in the input and output beams.8 Con-
sequently, the eigenpolarizations also depend on such
a choice, except when the optical system has orthog-
onal circular eigenpolarization states.
To take a simple example, let us consider light

reflection by an optically isotropic plane mirror. If
the input and the output coordinate systems are cho-
sen to coincide with the directions parallel ~p! and
perpendicular ~s! to the plane of incidence in the in-
cident and the reflected beams, the reflection Jones

matrix M is diagonal and the eigenpolarizations are
the p and s linear states. Now suppose that only the
output coordinate system is rotated by an angle a Þ
0, 90° to the directions p9 and s9, whereas the input
system remains unchanged. In this case the new
Jonesmatrix is given byR~a!M, whereR~a! is the 23
2 rotation matrix. The new Jones matrix is no
longer diagonal and its eigenvectors indicate appar-
ent “elliptical eigenpolarizations”. The latter repre-
sent two invariant-ellipticity states12 that experience
a rotation a on reflection. Changing the angle a
generates an infinite number of such pairs of
invariant-ellipticity states whose loci are described
by Azzam and Bashara.12,13

Jian Liu would like to thank Yifeng Cui for helpful
discussion on the experimental setup.
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