
17 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Polarization-Related Statistics of Raman Crosstalk in Single-Mode Optical Fibers / Cantono, Mattia; Curri, Vittorio;
Mecozzi, Antonio; Gaudino, Roberto. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. -
ELETTRONICO. - 34:4(2016), pp. 1191-1205. [10.1109/JLT.2015.2506481]

Original

Polarization-Related Statistics of Raman Crosstalk in Single-Mode Optical Fibers

Publisher:

Published
DOI:10.1109/JLT.2015.2506481

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2637998 since: 2018-02-28T17:47:09Z

IEEE / Institute of Electrical and Electronics Engineers



1

Polarization-related Statistics of Raman Cross-talk

in Single-mode Optical Fibers
Mattia Cantono, Student Member, IEEE, Vittorio Curri, Member, IEEE,, Antonio Mecozzi, Fellow, OSA,

Fellow, IEEE and Roberto Gaudino, Member, IEEE,

Abstract—We present a novel comprehensive theory for the
pump-to-probe interactions caused by the stimulated Raman
scattering (SRS) in glass optical fibers. The developed theory
applies to both the Raman gain with the un-depleted pump
assumption and to the maximum loss induced by the Raman
cross-talk (RXT loss). The latter is an effect that is the limiting
propagation impairment in passive optical networks (PON).

The main novelty of the paper is a rigorous mathematical
analysis describing the interaction of SRS with the polarization
evolution due to polarization mode dispersion (PMD). The
Raman gain (or the RXT loss) is modeled as a random process
for which a comprehensive theory is developed, giving for the
first time to our best knowledge, an exact closed form expression
for the mean and variance of the gain (or depletion) and a
computationally efficient algorithm to numerically derive the gain
probability density function.

The developed theory is validated by the comparison with
Monte Carlo analyses based on the wavelplate model for the op-
tical fiber. The validation showed excellent agreement confirming
the validity of the developed theory.

As an example of application, we used our theoretical results to
analyze next generation PON (NG-PON2) architectures, confirm-
ing that, in this scenario, RXT loss may be a limiting propagation
effect.

Index Terms—Optical Communications, SRS, Raman Effect,
Raman Crosstalk

I. INTRODUCTION

THE Raman effect was first observed in 1928 [1], then was

formalized as stimulated Raman scattering (SRS) in 1962

[2], and, in optical communications, was initially observed

in silica core fibers in 1972 [3], [4]. SRS enables, in every

spectral window, power transfer from every higher frequency

– the pump – to every lower frequency – the probe – with

some losses as mechanical energy – phonons. The spectral

shape of the normalized Raman efficiency in SiO2 [4], [5],

[6] is shown in Fig. 1 as a function of the pump-to-probe

frequency offset (∆f ). It can be observed that it grows roughly

linearly with ∆f up to the maximum at ∆f ≈ 13 THz (∆λ ≈
100 nm), then, after a minor notch, it quickly decreases for

∆f > 15 THz (∆λ ≈ 120 nm).

Since all single-mode fibers are mainly made of SiO2, they

are all affected by the SRS according to the spectral shape

shown in Fig. 1, while its intensity grows along the same

trends as the Kerr effect (i.e. the intensity increases for larger
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nonlinear refractive index n2 and smaller effective area Aeff ).

SRS is independent on the propagation direction, so it couples

both co- and counter-propagating signals.
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Figure 1. Raman efficiency in SiO2 vs. the pump-to-probe spectral offset.

Since the beginning of optical communications, SRS was

considered as a resource, being a physical mechanism useful

for the implementation of optical amplifiers, first outside the

C-band [7], [8], [9], then, already in 1985 [10], in the C-band.

Even if the standard technology for optical amplification is the

Erbium-doped fiber amplification (EDFA), the investigation

on Raman amplifications (RA) has continued, as shown, for

instance, in [11]–[15] , [16], [17].

Besides enabling optical amplification, SRS excites interac-

tions between the transmitted channels, resulting in a spectral

tilting of the channel comb implying an extra loss on higher

frequency channels that grows up to the one at the highest

frequency that only transfers power to the other channels

without receiving any gain. This effect is commonly called

Raman cross-talk (RXT) and it is typically quantified using

the RXT loss experienced by the highest frequency channel.

From Fig. 1, we deduce that the RXT intensity depends on the

overall optical bandwidth occupied by the channels compared

to the SRS bandwidth, roughly 15 THz.

Focusing on high-capacity back-bone links, supposing to

operate on the C-band that extends on 5 THz, the intensity

of SRS is limited at about 25% of its maximum value. The

resulting effect is a spectral tilting of the channel comb

spectrum that, on state-of-the-art transmission bandwidth, can

be compensated for. In these system scenarios, RXT will

possibly become a major issue in next-generation long-haul

links using also the S- and L-band, and in transmission over

multi-core fibers.

On the contrary, in some recent implementation of passive
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optical networks (PON), RXT is already a limiting issue, as

analyzed in [18]–[21], since different services are placed on

different wavelengths in both the C- and L-band simultane-

ously, and may thus have a spectral separation close to the

Raman peak. In particular, in NG-PON2 [22], the activation

of TWDM-PON channels at 1600 nm may strongly deplete

the already operating GPON channel at 1500 nm, possibly

causing its out-of-service [23], [24].

SRS depends on the evolution with propagation of the states

of polarization (SOP) of the signals involved in the process, as

it is mainly effective among signals locally characterized by

the same SOP [25]. Therefore, any variation of signal SOPs

with time and distance makes the RXT vary consequentially.

Since the variation of SOPs is a random process, the RXT

loss is stochastic as well, and its characterization is required

in order to estimate the probability of out-of-service they may

induce [23], [24]. It is well known that in optical fibers,

the main physical effects causing change of SOPs are the

birefringence and the phenomenon generated by its random

variation, i.e., the polarization mode dispersion (PMD). The

PMD causes the SOPs to vary randomly versus the propagation

distance, depending on the launched SOPs and on the system

characteristics [26], [27]. Moreover, as the PMD is mostly

induced by mechanical stresses suffered by the fiber cable, its

random evolution in the fiber varies with time.

As a consequence, in general, the RXT loss is a random

process, depending on the system characteristics and on the

input SOPs of the involved signals and varying with time.

The effects of PMD on SRS have been extensively studied

in the context of RA both experimentally [28]–[31] and

theoretically [32], [33]. Note that results for RA with the un-

depleted pump assumption can be reused for the context of

RXT with the un-filled probe assumption just swapping RA

gain with RXT loss. In [32], [33], theoretical analyses for

the statistics of Raman gain are presented, even if limited to

specific scenarios. In particular, in [33], a complete analysis of

the statistics of Raman gain for random input SOPs is carried

out, and it is shown that the probability density function (PDF)

of the Raman gain in that case is given by a log-normal,

Gaussian in dB, distribution with known mean and variance.

For the RXT-loss, such a result, among others, is confirmed

in [23], [24]. In [33], the case of known input SOPs is not

analyzed while it is done in [32]. In such a publication, the

authors develop and present a set of differential equations,

depending on input SOPs and fiber PMD, for the average and

variance of the Raman gain, but closed-form solutions are not

presented. Moreover, as far as the PDF of the Raman gain is

concerned, in [32], the PDF of its value in dB units is shown

to be Gaussian for link lengths much larger than the PMD

diffusion-length Ld, given by [32]:

Ld =
π

8δ2PMD∆ω2
, (1)

where δPMD is the fiber PMD coefficient expressed in

ps/km1/2 and ∆ω = 2π∆f is the pump-to-signal spectral

separation in circular frequencies.

In modern fibers the PMD coefficient is typically δPMD ≤
0.04 ps/km1/2, and considering the worst-case spectral sep-

aration for RXT, i.e., ∆f ≈ 13 THz (∆λ ≈ 100 nm), we

obtain diffusion lengths of the order of tens of kilometers.

Hence, in the PON environment, for which the distance does

not exceed 40 km, the diffusion length is indeed comparable to

the propagation distance and results presented in [32] cannot

be used.

In this paper, in order to present a comprehensive analysis

including the PON environment where RXT loss is indeed

a limiting effect, we aim at being as general as possible. In

particular, the main novelty of our paper is the provision of

closed-form results for the average value and variance of the

RA gain (or RXT loss) for the general scenario with given

input SOPs, without any limitations to the length-to-LD ratio.

Moreover, we present for the first time to our best knowledge,

a numerical method to exactly evaluate the PDF of the gain,

again in the general case. In particular we show that the Raman

gain is proportional to the integral of a cartesian component

of a particle freely diffusing on a sphere. A one dimensional

version of this problem, namely the integral of the component

of a particle freely diffusing on a circle, has been solved, in

the small noise limit, in a seminal paper by Foschini and

Vannucci in the context of the analysis of the noise of an

integrate and dump receiver with a local oscillator of finite

linewidth [34]. Thanks to the obtained results, we are able to

statistically fully characterize the RXT loss with the possibility

to estimate the related outage probability in PONs [23], [24].

In addition, we also provide an analytical approximation able

to give the PDF of the Raman gain for very small values of

PMD. All theoretical results are validated by comparison with

numerical results obtained through Monte Carlo simulations

based on the waveplate model [35], [36] for the fiber.

This paper is organized as follows. Sec. II is devoted to

presenting the main theoretical analysis. Here for the first time,

to our best knowledge, the average value, the variance and the

PDF of the Raman gain (or RXT loss) are theoretical derived

for any general system scenarios. In Sec. III, theoretical results

developed and presented in the previous section are com-

pared with those obtained through Monte Carlo simulations-

based on the waveplate model. Comparisons display excellent

agreements, validating the developed theory. In Sec. IV, we

apply the developed and validated results to the PON scenario,

demonstrating that SRS is indeed the propagation limiting

effect together with the fiber loss, in PON, in case of co-

existence of GPON and TWDM-PON channels. Finally, we

draw some conclusions.

II. THEORETICAL ANALYSIS

In the following, we study the pump-to-probe interaction

enabled by the SRS between two co-propagating continuous

wave (CW) optical fields with a spectral separation equal

to ∆ω. We analyze only the time-independent SRS, thus

focusing on the resulting variation on the average power of

the involved wavelengths, while we ignore the (second-order)

time-dependent effects that induces relative intensity noise

power transfer [37]. The developed theory applies to two

different situations:

• the pump-to-probe gain (i.e. the RA gain) under the
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un-depleted pump assumption, as typically applicable in

distributed Raman amplifiers.

• the probe-to-pump loss (i.e. the Raman crosstalk de-

pletion) under the un-filled probe assumption, i.e., the

assumption that the probe benefits of negligible gain,

as typically applicable in recent NG-PON2 transmission

scenarios, where SRS causes depletion of a (relative

weak) optical signal acting as Raman pump for other

(relatively stronger) signals at higher wavelengths [20],

[21], [23], [38].

Let us define an index i to discriminate between the two

aforementioned scenarios:

i =

{

p for RA gain

s for RXT loss
. (2)

where p corresponds to the pump optical field (the upper

frequency signal), and s the signal – the probe – optical field

(the lower frequency optical signal). Starting from the well

known theory for RA [33], and assuming that the RA gain

or RXT loss becomes negligible when the signal and pump

are orthogonally polarized [25], [32], we can consider the

following equation, that gives either the SRS gain experienced

by the signal due to the pump presence, as in any Raman

amplification scenario, or the SRS induced depletion suffered

by the pump signal, as in PON scenario, in dB units:

GdB(L) =10 log10(e)Cr(∆ω)Pi(z = 0)
[

Leff,i+

+ DOPi

∫ L

0

η(z) exp(−αiz) dz

]

, (3)

where L is the length of the fiber, Cr(∆ω) is the polarization

averaged Raman gain coefficient at distance ∆ω, Pi(z = 0) is

the optical power at the input of the fiber of either the signal or

the pump, αi is the fiber loss at the pump or signal frequency,

DOPi is the degree of polarization of either the pump or signal

optical fields, Leff,i is the effective length of the fiber given

by

Leff,i =
1− e−αiL

αi
, (4)

whereas η(z) is given by

η(z) = ŝs(z) • ŝp(z), (5)

i.e. the dot product between the Stokes vector representing

the SOP of the signal and the pump at position z. Due to

the presence of PMD, the term η(z) is a stochastic process,

since the SOP of the optical fields randomly evolve during the

propagation along the fiber due to its random birefringence

variation [27]. This being said, Eq. (3) is given by the sum

of two terms, a deterministic term and a stochastic integral.

Starting from Eq. (3) we want to compute its average value,

variance and PDF as a function of the input states of polariza-

tion of the pump and signal, and the PMD coefficient of the

fiber.

A. Average of GdB(L)

We start rewriting Eq. (3) as

GdB = KLeff,i +KDOPi

∫ L

0

η(z)e−αiz dz, (6)

where K = 10 log10(e)Cr(∆ω)Pi(z = 0). Taking the average

of Eq. (6) yields

〈GdB〉 =
〈

KLeff,i +KDOPi

∫ L

0

η(z)e−αiz dz

〉

, (7)

The average operator in the previous and following equations

is to be interpreted as an ensemble average over all possible

polarization stochastic evolution. Thus, it is NOT an average

over time or distance, but an ensemble average over polariza-

tion states.

Using the properties of the average operator, ignoring the

deterministic terms and considering the degree of polarization

of the optical fields to be maintained during propagation we

get

〈GdB〉 = KLeff,i +KDOPi

〈

∫ L

0

η(z)e−αiz dz

〉

. (8)

Exchanging the integral and the average operator we get

〈GdB〉 = KLeff,i +KDOPi

∫ L

0

〈

η(z)
〉

e−αiz dz. (9)

Appendix A provides the detailed calculation of the moments

and the PDF of η(z). In particular, it is shown that

〈

η(z)
〉

= η(0) exp

[

−1

3
∆ω2γz

]

, (10)

where γ is given by

γ =
3π

8
δ2PMD, (11)

and η(0) is the dot product of the two input SOP.

Plugging Eq. (10) into Eq. (9) yields

〈GdB〉 =KLeff,i

+KDOPi

∫ L

0

η(0) exp

[

−1

3
∆ω2γz − αiz

]

dz.

(12)

The integral of Eq. (12) can be easily solved yielding to

〈GdB〉 = KLeff,i +KDOPiη(0)Lpol, (13)

where Lpol is given by

Lpol =
1− exp

[

−αiL− γ
3∆ω2L

]

αi +
γ
3∆ω2

. (14)

Fig. 2 depicts Eq. (13) as a function of the PMD coefficient of

the fiber δPMD and for three different input SOP configuration,

namely co-polarized, 45◦ oriented and orthogonally polarized

signals.

It can be noticed that for low δPMD the input SOP are

maintained during propagation, therefore their dot product can

be considered as independent from z and factorized from the

integral of Eq. (3), yielding

lim
δPMD→0

〈GdB〉 = KLeff,i (1 + DOPiη0) . (15)

As δPMD increases, the two input SOP will not maintain their

relative position. The more they are scrambled, and the more

they will be uniformly distributed over the Poincaré sphere.
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Figure 2. Average value of GdB(L) as a function of δPMD for a link length of
20 km, K = 1 dB/km, αi,dB = 0.2 dB/km and DOPi = 1. Three different
input SOP configurations are considered.

As δPMD is infinitely large, the two SOP can be considered

uniformly distributed over the Poincaré sphere, and their dot

product will be zero on average since the PDF of η(z) will

be uniformly distributed over the interval [−1,+1], thus the

same result of [33] is obtained.

lim
δPMD→∞

〈GdB〉 = KLeff,i. (16)

B. Variance of GdB(L)

We now consider the variance of GdB(L) that is given by

σ2
dB =

〈

G2
dB

〉

− 〈GdB〉2 . (17)

To compute the second order moment of GdB we consider
〈

G2
dB

〉

=K2L2
eff,i + 2K2DOPiLeff,iη(0)Lpol

+K2DOP2
i I2(L), (18)

where the last term of the summation is given by

I2(L) =

〈[

∫ L

0

η(z)e−αiz dz

]2〉

. (19)

Applying Fubini’s theorem [39] we shall compute

I2(L) =

∫ L

0

∫ L

0

〈

η(z′)η(z′′)
〉

e−αi(z
′+z′′) dz′ dz′′. (20)

In order to compute the correlation
〈

η(z′)η(z′′)
〉

we start

considering the case z′ ≥ z′′ and the conditional expectation

of η(z′) given η(z′′), i.e. [40]

〈

η(z′) | η(z′′)
〉

= η(z′′) exp

[

−1

3
∆ω2γ

(

z′ − z′′
)

]

. (21)

Knowing that
〈

〈

X | Y = y
〉

〉

= 〈X〉 [41], we can multiply

both sides of Eq. (21) by η(z′′) and averaging with respect to

all possible η(z′′), yielding

〈

η(z′)η(z′′)
〉

=
〈

η(z′′)2
〉

exp

[

−1

3
∆ω2γ

(

z′ − z′′
)

]

. (22)

As described in Appendix A, the term
〈

η(z′′)2
〉

is given by:
〈

η(z′′)2
〉

=η(0)2 exp
[

−γ∆ω2z′′
]

+
1

3

[

1− exp[−γ∆ω2z′′]
]

. (23)

Plugging Eq. (23) into Eq. (22), yields

〈

η(z′)η(z′′)
〉

=k1 exp

[

−k2
3
(z′ + 2z′′)

]

+
1

3

[

−k2
3
(z′ − z′′)

]

if z′ > z′′, (24)

where

k1 = η(0)2 − 1

3
, (25)

k2 = γ∆ω2. (26)

The same procedure can be repeated for z′ < z′′. The final

expression for
〈

η(z′)η(z′′)
〉

is given by Eq. (27) in the bottom

of this page. Plugging Eq. (27) back into Eq. (20), and solving

the double integral yields Eq. (28) in the bottom of this page.

Considering again Eq. (17), Eq. (18) and Eq. (28) yields the

final result for the variance of GdB, i.e.

σ2
dB = K2DOP2

i

[

I2(L)− L2
polη(0)

2
]

. (29)

Fig. 3 depicts Eq. (29) as a function of δPMD for three different

configurations of input SOP (co-polarized, orthogonal and 45◦

polarized signals). It can be noticed that the variance of GdB

〈

η(z′)η(z′′)
〉

=







k1 exp
[

−k2

3 (z′ + 2z′′)
]

+ 1
3

[

−k2

3 (z′ − z′′)
]

if z′ ≥ z′′,

k1 exp
[

−k2

3 (z′′ + 2z′)
]

+ 1
3

[

−k2

3 (z′′ − z′)
]

if z′ < z′′.
(27)

I2(L) = 2







k1

αi +
2
3k2

·
1− exp

[

−(αi +
k2

3 )L
]

αi +
1
3k2

− k1

αi +
2
3k2

· 1− exp
[

−(2αi + k2)L
]

2αi + k2

+
1
3

αi − 1
3k2

· 1− exp
[

−(αi +
1
3k2)L

]

αi +
k2

3

−
1
3

αi − 1
3k2

· 1− exp [−2αiL]

2αi

]

. (28)
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for the co-polarized and orthogonal configurations coincide.

For low δPMD the variance of GdB goes to zero. Such behavior

is reasonable since in such case the input SOP of the optical

fields are maintained during propagation, thus GdB is com-

pletely deterministic. As δPMD increases, the two SOP do not

maintain their relative orientation and σ2
dB increases, showing

evidence of large fluctuations of GdB. This is especially true

for fiber lengths comparable with the PMD diffusion length

[32]. As the decorellation between the two signals increases,

σ2
dB start decreasing, reaching a zero value for infinitely large

δPMD. This is because for large δPMD the interaction of the

two fields occurs over many correlation lengths in which the

two fields orientation is random and uncorrelated. Therefore,

under this condition, GdB is the effective average of many

independent realizations hence tends to a deterministic value

because of the central limit theorem. In such conditions, the

variance of the fluctuations of GdB tends to zero.

10−3 10−2 10−1
0

5

10

15

20

δPMD

[

ps
√

km

]

σ
2 G

d
B

Co-polarized

45◦

Orthogonal

Figure 3. Variance of GdB(L) as a function of δPMD for a link length of
20 km, K = 1 dB/km, αi,dB = 0.2 dB/km and DOPi = 1. Three different
input SOP configurations are considered.

Considering both Fig. 2 and Fig. 3, it must be noticed that

from a certain value of δPMD, the statistics of GdB becomes

independent from the input SOP configuration. This is true

because under these conditions the SOP of the signal and the

pump will be completely uncorrelated from their input states

after few meters of propagations, therefore GdB(L) will not

depend on the input SOP of the two optical fields.

C. Probability density function of GdB(L)

In this Section we focus in deriving the probability density

function (PDF) of the Raman gain GdB(L). While the results

give in the previous two subsections on the mean and variance

requires relatively standard probability theory mathematical

background, the derivation of the PDF is much more involved

and requires advanced mathematical tools. We start by ob-

serving that the only random component of GdB(L) given by

Eq. (3) is the stochastic integral

I =

∫ z

0

η(z′)e−αiz
′

dz′. (30)

In order to compute the PDF of I we may apply the Markov

property of the process η(z) to efficiently obtain the PDF of

I through matrix multiplication.

x̂

ŷ

zz
0

ŝs(z)

ŝp(z)

η(z)

ŝp(z
0)

ŝs(z
0)

η
0(z0)

T(η(z), η
0(z0), z − z

0)

Figure 4. Qualitative description of Eq. (31). The two SOP of the involved
optical signal evolve randomly from z′ to z. Thanks to the Markov property,
we can write the probability density function of η in z, by appropriately
multiply the probability density function of η′(z′) by the transition probability
of the dot product of the two SOP from η′(z′) to η(z).

As a first step, we will derive the equations that determine

the evolution of the probability density function P (η, z) of

the random process η(z). In particular, the following equa-

tions allows to evaluate P (η, z) starting from P (η′, z′), as

schematically represented in Fig. 4, obtaining the following

equation:

P (η, z) =

∫

T (η, η′, z − z′)P (η′, z′) dη′, (31)

whereas T (η, η′) is the transition probability of the dot product

of the two SOP from η′(z′) to η(z). We show appendix A that

this transition probability is given by:

T (η, η′, z) =

∞
∑

n=0

exp

[

−γ

6
n(n− 1)∆ω2z

]

Ln(η)Ln(η
′),

(32)

where Ln(. . . ) are Legendre polynomials. Let us now consider

P (I, η, z), i.e. the joint probability of the variable η and of its

integral I . Using the Markov property we obtain

P (I, η, z + dz) =
∫

T (η, η′, dz)P [I − η′ exp(−αiz) dz, η
′, z] dη′. (33)

If we now perform the following change of variable

ζ =
1− exp(−αiz)

αi
, (34)

z = − 1

αi
ln(1− αiζ), (35)

into Eq. (33), we obtain

P (I, η, ζ + dζ) =
∫

T

(

η, η′,
dζ

1− αiζ

)

P (I − η′ dζ, η′, ζ) dη′. (36)
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Integrating over a finite ∆ζ we obtain

P (I, η, ζ +∆ζ) =
∫

T (η, η′,∆z)P (I − η′∆ζ, η′, ζ) dη′, (37)

where

∆z = − 1

αi
log

(

1− αiζ +∆ζ

1− αiζ

)

. (38)

Equation (37) can be solved iteratively from 0 to z, with initial

condition

P (I, η, 0) = δ(I)δ(η − η0). (39)

Furthermore, to approximate the integral of Eq. (37) with a

discrete sum over a grid, we integrate it over the interval














[ηk − ∆η
2 , ηk + ∆η

2 ], for ηk 6= ±1,

[−1,−1 + ∆η
2 ], for ηk = −1,

[1− ∆η
2 , 1], for ηk = 1,

(40)

for the variable η, whereas for the variable I we integrate over
[

Ih − ∆I

2
, Ih +

∆I

2

]

, (41)

therefore we have

Q(yh, ηk, ζ +∆ζ) =

∫

T (ηk, η
′,∆z) dη′

∫ Ih+
∆I
2

Ih−
∆I
2

P (I − η′∆ζ, η′, ζ) dI, (42)

where

T (ηk, η
′,∆z) =

∫ ηk+
∆η

2

ηk−
∆η

2

T (η, η′,∆z) dη (43)

is the transition probability inside the interval of amplitude

∆η centered on ηk, and

Q(Ih, ηk, ζ) =

∫ Ih+
∆I
2

Ih−
∆I
2

dI

∫ ηk+
∆η

2

ηk−
∆η

2

P (I, η, ζ) dη (44)

is the probability that the point (η, I) lies within the area

centered in (ηk, Ih). Let us now start with the iterative

procedure starting from z = ζ = 0. Using the initial condition

Eq. (39) at the right-hand side of Eq. (44), yields, at the first

step, Q(Ih, ηk,∆ζ) exactly. If the value of the discretization

step ∆z is large enough, then we may assume that P (I, η, z)
depends weakly on I and η within the quantization area, hence

we may approximate the integral over I of the right-hand side

of Eq. (42), for η ≃ ηk as

∫ Ih+
∆I
2

Ih−
∆I
2

P (I, η′, ζ) dI ≃
∑

m

Q(Ih, η
′

m, ζ)δ(η′ − η′m). (45)

In other words, P (I, η′, ζ) has been replaced with a sum of

delta functions with center in the quantization areas that gives

the same probability over the quantization area. Thus, plugging

Eq. (45) into Eq. (42), and integrating over η′ yields

Q(yh, ηk, ζ +∆ζ) =
∑

m

T (ηk, η
′

m,∆z)

Q(Ih − η′m∆ζ, η′m, ζ), (46)

where, using the results of Appendix A,

T (η, η′,∆z) =

∞
∑

n=0

(

2n+ 1

2

)

Pn(η)Pn(η
′)

exp

[

−γ

6
n(n+ 1)∆ω2∆z

]

, (47)

with

Pn(η) =

∫ η+∆η

2

η−∆η

2

Pn(η
′) dη′

= Gn

(

η +
∆η

2

)

−Gn

(

η − ∆η

2

)

, (48)

and where Gn(η) is defined in Eq. (92) of appendix A.

Equation (46) can be iterated to reach the final point of

propagation z = L. The normalization condition
∑

h,k

Q(Ih, ηk, ζ) = 1 (49)

is rigorously verified at every step of the iterative procedure.

In order to obtain the PDF of GdB, one can simply marginalize

Eq. (46) at the end of the iterative procedure, and then scale

and shift the result. In the implementation of the iterative

procedure described above, particular attention should be

placed in the choice of the discretization step ∆z. In particular

∆z should be chosen smaller than the diffusion length, or

normalized length, of the fiber i.e. the length over which

the η variable loses correlation. but not very small, because

otherwise the transition probability T (η, η′,∆z) becomes very

narrow in η − η′, and the number of grid points for a good

accuracy increases, causing potential memory problems. For

this reason this iterative procedure is not very efficient in two

regimes: for very large or very small values of δPMD.

In the first case, the diffusion length becomes very small,

and so it does ∆z, causing a proportional increase in the

integration steps to be performed over z. When the effective

length of the fiber comprises a large number of correlation

length, the stochastic integral Eq. (30) is the sum of a large

number of independent contributions and therefore, because of

the central limit theorem, its distribution is well approximated

by a Gaussian. In this case, the distribution of GdB is fully

characterized by its mean and variance given by Eq. (13) and

(29). This Gaussian approximation works well for large δPMD,

or long link lengths, as it has also been shown experimentally

[28]–[31], [33].

As for the very low PMD regime, the iterative procedure that

we have described can be troublesome due to the fact that good

accuracy would require very small ∆z and a large number

of integration steps. However in this regime, for co-polarized

or orthogonal input SOP (i.e. η0 = ±1 respectively), some

approximations can be applied in order to efficiently compute

the PDF of GdB. If η0 6= ±1, or, more precisely, if the distance
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Figure 5. Comparison of theoretical and simulative results. Fiber length L = 20 km, K = 1.3 × 10−2 dB/km, ∆λ = 110 nm, Cr(∆λ) = 3 × 10−4

1/mW/km, Pi = 10 mW, DOPi = 1, αi,dB = 0.2 dB/km. Eight different value of δPMD were considered. Three different input polarization configurations
were considered: co-polarized optical fields η0 = 1, 45◦ oriented optical fields η0 = 0, orthogonally polarized optical fields η0 = −1. Notice that the
variance of GdB for orthogonal and co-polarized input configurations completely overlaps.

between η0 and ±1 is significantly larger than half of the

standard deviation of η, the statistics of GdB is Gaussian and

can be characterized by its mean and variance. Even though the

low PMD regime may not be of significant practical interest,

because in such case GdB is practically deterministic, a detailed

derivation of an analytic approximation of the PDF of GdB in

such scenario is described in details in appendix B.

III. COMPARISON WITH SIMULATIVE RESULTS

In order to verify and confirm the analytical results and their

range of validity we have performed a Monte Carlo simulation

campaign over a link under different PMD scenarios. In

particular a fiber emulator based on the well- known coarse

step method [35], [36], also known as waveplate model, was

used. Such method approximates the continuous birefringence

variations of a realistic fiber by the concatenation of fixed

length birefringent plates, each of them characterized by a

random orientation of its principal states of polarization (PSP)

and a given differential group delay (DGD) that is determined

by:

∆τp =

√

3π

8
δPMD

√

Lp, (50)

where Lp is the length of each section. Lp is chosen to be

larger-equal than the correlation length of the fiber birefrin-

gence, that is typically of the order of few hundreds of meters.

In order to verify the correctness of the previous analytical

results, we have considered 2 millions realization of GdB(L)
obtained by the fiber emulator described above. The results are

depicted in Fig. 5 for the mean and variance. The simulated

results agree well with the theoretically calculated lines. The

results shows that as δPMD increases the input configuration

of the two SOP becomes completely irrelevant. The average

of GdB becomes equal to the average GdB for random input

polarization [33]. The variance of GdB goes instead to zero

as δPMD is sufficiently large, and the PDF of GdB becomes a

Dirac delta. This is due to the fact that variations of GdB are

averaged out because the stochastic integral η is in this regime

the sum of a large number of independent contributions.

In Fig. 6, a comparison between the simulated and theo-

retical PDF is depicted, for some intermediate PMD regimes,

i.e. δPMD ≤ 0.04 ps/
√

km that are those most common in

modern SMF fibers. From the theoretical and simulative data,

it is evident how for such PMD values of practical interest,

the PDF of GdB has a significan asymmetry around its mean,

hence the Gaussian approximation proposed in [32], [33] is

inadequate. Fig. 7 reports as an illustrative example the PDF

of GdB for a link length of L = 20 km and δPMD = 0.01
ps/

√
km: the PDF is clearly non Gaussian. This fact is even

more evident for shorter link lengths (L < 20 km), due

to the fact that the two optical fields maintain their relative

polarization state for a significant fraction of the propagation,

and therefore the input polarization configuration significantly

affects the SRS induced gain or depletion. Such short link

scenario is of extreme practical interest for PON, where the

the links are always shorter than 40 km. Fig. 6 shows good

agreement between simulative and theoretically calculated re-

sults. In Fig. 6d, the approximation for the low PMD scenario

developed in appendix B is used.

The excellent agreement shown in the previous figures

between our analytical formulas and the extensive waveplate

model simulations confirms the validity of our formalism and,

from the other side, the accuracy of the waveplate model (that

we will use again in the following section).

In the following section, we briefly discuss about a potential



8

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−4

10−3

10−2

10−1

100

101

GdB [dB]

P
(G

d
B
)

Simulations

Theoretical PDF

δPMD = 0.01 [ps/
√

km]

δPMD = 0.02 [ps/
√

km]

δPMD = 0.04 [ps/
√

km]

(a) Co-polarized optical fields η0 = 1

5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−4

10−3

10−2

10−1

100

101

GdB [dB]

P
(G

d
B
)

Simulations

Theoretical PDF

δPMD = 0.01 [ps/
√

km]

δPMD = 0.02 [ps/
√

km]

δPMD = 0.04 [ps/
√

km]

(b) Orthogonally polarized optical fields η0 = −1

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−4

10−3

10−2

10−1

100

101

GdB [dB]

P
(G

d
B
)

Simulations

Theoretical PDF

δPMD = 0.01 [ps/
√

km]

δPMD = 0.02 [ps/
√

km]

δPMD = 0.04 [ps/
√

km]

(c) 45◦ oriented optical fields η0 = 0

0.29 0.3 0.31 0.32 0.33 0.34
10−3

10−2

10−1

100

101

102

GdB [dB]

P
(G

d
B
)

Theoretical PDF - δPMD = 10−3 ps/
√

km

Simulations - δPMD = 10−3 ps/
√

km

(d) Copolarized signals η0 = 1 - Low PMD case

Figure 6. Comparison of theoretical and simulative PDF. Fiber length L = 20 km, K = 1.3 × 10−2 dB/km, ∆λ = 110 nm, Cr(∆λ) = 3 × 10−4

1/mW/km, Pi = 10 mW, DOPi = 1, αi,dB = 0.2 dB/km. Three different value of δPMD were considered. Three different input polarization configurations
were considered: co-polarized optical fields (η0 = 1) Fig. 6a, orthogonally polarized optical fields (η0 = −1) Fig. 6b, 45◦ oriented optical fields (η0 = 0)
Fig. 6c. In Fig. 6d the low pmd approximation developed in appendix B is used. Note that for the last case, we had to use a different scaling range on the
x-axis compared to the previous three cases, since the resulting pdf is extremely compressed around its mean.

field of application of the analytical results previously devel-

oped.

IV. PON CASE STUDY AND APPLICATION

ITU-T has recently releases the new physical layer specifi-

cation for the new standard for passive optical networks, titled

NG-PON2 under Recc. G.989.2. Such standard introduces

the new TWDM-PON (Time and Wavelength Division Mul-

tiplexed PON) high-performance transmission and considers

NTWDM , 100 GHz-spaced lambdas at 10 Gbit/s each in the L-

band [42]. TWDM-PON is being designed in order to be fully

compatible with the previous PON standards. However in full-

coexistence scenarios, i.e. when the TWDM-PON will coexist

on the same PON tree with previous standards (cfr. Fig. 8),

namely GPON, XG-PON, and RF-Video, SRS may become

detrimental. When the TWDM-PON power will be above a

given threshold, lower wavelengths (e.g. GPON) channels will

act as Raman pumps for TWDM-PON channels: the former

will undergo significant depletion, whereas the latter will be

negligibly amplified.

In the last couple of years, the ongoing standardization

process of NG-PON2 has required to study in details the

effects of SRS in the full-coexistence scenario, in order to

understand under what circumstances compatibility among

different PON standards may exist. The works existing in

literature [21], [24], [38] have always made use of simulations

in order to take into account the stochastic nature of SRS. Such

simulations are long and computational intensive, that may

require several weeks of CPU time in order to produce reliable

results. Thanks to the analytical results developed in this paper,

such computational burden can be removed. To do so, however

few consideration shall be made. All the results developed in

section II refers to the SRS interaction between two optical

signals, whereas in the previously described full coexistence
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Figure 7. Simulated PDF of GdB and relative Gaussian fitting. The data
are relative to the following scenario: L = 20 km, η0 = 1, K = 1 dB/km,

∆λ = 110 nm, δPMD = 0.01 ps/
√

km, αi,dB = 0.2 dB/km. The inaccuracy
of the Gaussian approximation is clear.
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…

Figure 8. TWDM-PON full coexistence scenario. Downstream spectrum is
depicted.
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Figure 9. Comparison of empirical and theoretical survival functions of SRS
induced depletion on GPON due to NTWDM = 4 TWDM-PON channels
with PTWDM = 10 mW. L = 20 km, αdB = 0.2 dB/km. All TWDM-PON
channels are co-polarized with respect to the GPON channel.

scenario such interaction is between more than two optical

fields. For example the GPON channel may suffer some SRS

induced depletion due to the presence of NTWDM TWDM-

PON channels. Under such circumstances, readily adapting

Eq. (3), such depletion can be written as

GdB(L) =10 log10(e)Cr(∆ω)PTWDM (z = 0)Leff,i [1+

+

NTWDM
∑

n=1

∫ L

0

ηi(z) exp(−αz) dz



 , (51)

where PTWDM is the power of each TWDM-PON channel,

and it is assumed to be constant across the TWDM-PON

channel signal set. All TWDM-PON channels are also con-

sidered here to have the same DOP=1. ∆ω is the spectral

distance between the GPON and TWDM-PON channels, i.e.

approximately 13 THz. The polarization averaged Raman gain

coefficient can be assumed constant for all TWDM-PON

signals, since it is almost flat on a scale of few hundreds of

GHz.

In order to use our pump-probe analytical results also in

such scenario, one can assume the NTWDM channels to

be a single equivalent channel with total power given by

NTWDMPTWDM and having a composite degree of polar-

ization DOPcomp given by the normalized sum of all SOP of

the TWDM-PON channels at the transmitter in z = 0. This

assumption is legitimate since the TWDM-PON channels are

only spaced 100 GHz one from the other, therefore during

propagation, under standard PMD regimes and typical PON

lengths (< 40 km), they will not decorrelate in polarization,

and thus they will maintain the same DOPcomp (that was set

at the transmitter) along the full fiber link. We will verify this

assumption a posteriori by checking the obtained analytical

result with an extensive waveplate simulation that on the

contrary does not make any assumption on the evolution of

the individual TWDM-PON channels.

This being said, Eq. (51), can be rewritten as

GdB(L) =10 log10(e)Cr(∆ω)NTWDMPTWDM

[

Leff,i

+ DOPcomp

∫ L

0

η(z) exp(−αz) dz

]

. (52)

Equation (52) can then be evaluated using the previously

discussed analytical results, in order to perform several system

analysis about this scenario. Figure 9 depicts the comparison

between the analytical survival function (sometimes also in-

dicated in the literature as the complement of the cumulative

distribution function) of Eq. (52) i.e.

F (x) = Pr {GdB > x} (53)

and the simulated survival function. The latter one has been

obtained with the same Monte Carlo based fiber emulator

described above. There is good agreement between the results,

proving the validity of the previous assumptions.

A possible use of our theory is in the study of the probability

that the SRS-induced depletion GdB of a lower lambda channel

(e.g. GPON) drops below a given system margin µSRS [38] and

in the design of possible polarization launching strategies able
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to reduce such probability [23], [24]. This outage probability

is given by

POOS = Pr {GdB ≥ µSRS} . (54)

Such outage probability can be evaluated numerically using

Eq. (54), developing plot such as the one depicted in Fig. 9,

thus avoiding the use of computationally expensive Monte

Carlo simulations.

V. CONCLUSION

In this paper some novel theoretical results for the polar-

ization related statistics of Raman crosstalk in single mode

optical fiber are presented. In particular, closed formula for

the average and variance of the Raman gain as function of

the input states of polarization of the optical signals has been

derived. In addition to this, a numerical method to exactly

compute its probability density function has been explained.

The obtained theoretical results show that the PDF of the

Raman gain can be approximated as a Gaussian PDF, only for

sufficiently long fibers. For fiber lengths shorter than 40 km, as

frequently encountered in PON, the Gaussian approximation

fails, whereas the theory presented in this paper maintains

the same degree of accuracy of Monte Carlo simulations.

The use of this theory may therefore be a valid alternative

to computationally expensive Monte Carlo simulations to

analyze PMD effect and Raman crosstalk interactions in PON.

As an exemplary case, we have applied this theory to the

study of propagation impairments caused by Raman crosstalk

in a full-coexistence PON scenario, where a legacy GPON

channel is randomly depleted by TWDM-PON channels. We

believe that the results of this analysis, beside their obvious

interest inside the standardization process for NG-PON2, can

be useful in analyzing any optical communication systems

where stimulated Raman scattering and polarization dispersion

phenomena are simultaneously present.

APPENDIX A

MOMENTS AND PDF OF η(z)

In this section we provide a detailed derivation of the

moments and probability density function of η(z), i.e. the dot

product of the Stokes vector of two continuous wave optical

fields separated by an angular frequency ∆ω propagating

through an optical fiber in the presence of polarization mode

dispersion.

A. Moments

We start considering the law of infinitesimal rotation for

birefringence [26], [27] in its Ito sense [43]

dŝ = ω d ~W (z)× ŝ− γ

3
ω2ŝ dz. (55)

Such equation describes the evolution of a Stokes vector of

an optical field at distance ω from the central frequency when

travelling through a fiber affected by PMD. In particular γ is

given by Eq. (11). d ~W (z) is the increment of a zero-mean,

isotropic, three-dimensional Wiener process such that

d ~Wi(z) • d ~Wj(z
′) = γδ(z − z′) dz dz′, (56)

d ~Wi(z) d ~Wj(z
′) =

γ

3
δijδ(z − z′) dz dz′, (57)

where δij is the Kronecker delta. We now consider the dot

product of two Stokes vectors η(z), defined by Eq. (5), placed

at a spectral distance ∆ω from one another. Using one of the

two Stokes vector as reference, here indicated as ŝ0, the dot

product η(z) is equivalent to the projection of the unit Stokes

vector ŝ onto a fixed direction of the Stokes space. Finding

the statistics of η(z) is equivalent to find the statistics of the

x coordinate of a particle that is diffusing over the surface of

a sphere. Using Eq. (55) and Eq. (56) one can write

dη = ∆ω d ~W • ŝ∆ω × ŝ0 −
1

3
∆ω2ηγ dz. (58)

Differentiating using the rules of Ito calculus and Eq. (57) one

gets

(dη)2 =
(

∆ω d ~W • ŝ∆ω × ŝ0

)2

=
γ

3
∆ω2 dz |ŝ∆ω × ŝ0|2

=
γ

3
∆ω2(1− η2) dz. (59)

Using the Ito lemma

df(η) =
df(η)

dη
dη +

1

2

d2 f(η)

dη2
(dη)2, (60)

one obtains

dηn = nηn−1 dη +
1

2
n(n− 1)ηn−2(dη)2. (61)

Plugging into this Eq. (58) and (59) and averaging with respect

to the Wiener process yields a differential equation for the n-th

order moment of η

d〈ηn〉 =− 1

6
n(n+ 1) 〈ηn〉∆ω2γ dz

+
1

6
n(n− 1)

〈

ηn−2
〉

∆ω2γ dz, (62)

which can be solved iteratively from n = 1 using

〈

ηn(z)
〉

=ηn(0) exp

[

−1

6
n(n+ 1)∆ω2γz

]

+
1

6
n(n− 1)∆ω2γ

∫ z

0

〈xn−2
ω (z′)〉

exp

[

−1

6
n(n+ 1)∆ω2γ(z − z′)

]

dz′. (63)

For n = 1 the average of η(z) is obtained, i.e.

〈

η(z)
〉

= η(0) exp

[

−1

3
∆ω2γz

]

, (64)

whereas the second order moment is given by

〈

η2(z)
〉

=η2(0) exp(−∆ω2γz)

+
1

3
[1− exp(−∆ω2γz)]. (65)
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B. PDF of η(z)

In order to derive we probability density function of η(z)
we consider the generating function of η(z), i.e. the Fourier

transform of the PDF P (η, z)

G(λ, z) =
〈

exp
[

−jλη(z)
]

〉

=

∫ 1

−1

P (η, z) exp(−jλη) dη. (66)

The previous equation can be differentiated using once again

the rules of Ito calculus, yielding

dG =

〈

−jλG dη +
1

2
(−jλ)2G(dη)2

〉

. (67)

Plugging in it Eq. (58) and (59) and removing the zero average

terms one gets

dG =

〈

−jλG

(

−1

3
∆ω2ηγ dz

)

1

2
(−jλ)2G

γ

3
∆ω2(1− η2) dz

〉

. (68)

Using now the relationship 〈ηnG〉 = jn∂n
λG one gets

∂zG = −1

3
γ∆ω2λ∂λG− 1

6
γ∆ω2λ2(G+ ∂2

λG). (69)

From the previous partial differential equation one may derive

the equation for the probability density function P (η, z) by

exploiting the well known properties of the Fourier transform,

in particular

(∂n
λ ) 7→ (jη)n, (70)

λn 7→ (j∂η)
n. (71)

Using such relations one obtains

∂P (η, z)

∂z
=−

[

∂

∂η

(

−γ

3
∆ω2η

)

P (η, z)

]

+
1

2

∂2

∂2η

{

[

γ

3
∆ω2(1− η2)

]

P (η, z)

}

. (72)

This is the Fokker-Planck equation that describes the evolution

of the probability density function of the dot product along the

fiber. Eq. (72) has a non constant diffusion coefficient given by

D(η) = γ
3∆ω2(1−η2) ≥ 0, and is defined for −1 ≤ η ≤ +1.

Eq. (72) can be rearranged as

∂P (η, z)

∂z
=

γ

6
∆ω2 ∂

∂η

[

(1− η2)
∂

∂η
P (η, z)

]

. (73)

Solution of Eq. (72) is given by

P (η, z) =

∞
∑

n=0

cn(z)Ln(η), (74)

where Ln(η) are the Legendre polynomials, solutions of the

eigenfunction equation

∂

∂η

[

(1− η2)
∂

∂η
Ln(η)

]

= −n(n+ 1)Ln(η). (75)

Ln(η) are the Legendre polynomials that can be defined by

means of the Rodrigues formula [44], properly normalized

Ln(x) =

(

2n+ 1

2

)1/2
1

2nn!

dn

dxn

[

(x2 − 1)n
]

. (76)

The Legendre polynomials, with the considered normalization,

are orthonormal in the interval of interest [−1, 1] with respect

to the L2 inner product

∫ +1

−1

Lm(x)Ln(x) dx = δmn, (77)

moreover they are a complete set in the same interval [45]

∞
∑

n=0

Ln(x)Ln(x
′) = δ(x− x′), for x ∈ [−1, 1]. (78)

Plugging Eq. (74) into Eq. (73), multiplying both sides by

Lm(η), integrating and using the orthonormality condition

gives
dcn
dz

= −γ

6
n(n+ 1)∆ω2cn, (79)

thus the general solution of the Fokker-Planck equation (72)

is given by

P (xω, z) =

∞
∑

n=0

cn(0) exp

[

−γ

6
n(n− 1)∆ω2z

]

Ln(η).

(80)

The initial coefficient cn(0) can be computed by the initial

condition via

cn(0) =

∫ 1

−1

P (η, 0)Lm(η) dη. (81)

Being L0(η) = 1/
√
2, the normalization of P (η, 0) requires

that c0(0) = 1/
√
2 always. This condition, together with

∫ 1

−1

L0(x)Ln(x) dx =
1√
2

∫ 1

−1

Ln(x) dx = 0, ∀n 6= 0

(82)

insures the normalization for all z of the probability density

function, that is

∫ 1

−1

P (η, z) dη = 1, ∀z. (83)

In the most interesting case of a deterministic initial condition

with η(z = 0) = η0,

P (η, 0) = δ(η − η0), (84)

the final result is obtained

P (η, z) =

∞
∑

n=0

exp

[

−γ

6
n(n− 1)∆ω2z

]

Ln(η0)Ln(η). (85)

For γ∆ω2z/3 ≫ 1, that correspond to the case of high

PMD and fast decorellation of the states of polarization of

optical fields, the known result that η approaches a uniform

distribution in the interval [−1, 1] is obtained

P (η, z) ≃ 1

2
, −1 ≤ x ≤ 1. (86)
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It can be noticed that Eq. (85) has an interesting reciprocity

property. The transition probability from η0 to η, is equal to

the transition probability from η to η0.

For z > 0, the convergence of the series is ensured by

the coefficient cn(z) dropping proportionally to a negative

exponent of n2. For z = 0, the convergence to a delta function

can be also numerically tested, although in general requires

a large number of terms (larger than a hundred) to achieve

a good accuracy. The vast majority of numerical computing

software includes routines to efficiently compute Legendre

polynomials, therefore Eq. (85) can be efficiently calculated.

Furthermore the Legendre polynomials can be obtained by the

recursive relation

P0(x) = 1, (87)

P1(x) = x, (88)

Pn(x) =
2n− 1

n
xPn−1(x)−

n− 1

n
Pn−2(x), (89)

followed by the normalization

Ln(x) =

√

2n+ 1

2
Pn(x). (90)

Finally a useful relation for the calculation of the cumulative

distribution function of η is

Pn(x) =
1

2n+ 1

d

dx
[Pn+1(x)− Pn−1(x)], (91)

so that
∫ η

−1

Pn(η
′) dη′ =

1

2n+ 1
[Pn+1(η)− Pn−1(η)] = Gn(η),

(92)

from which the CDF of η can be easily evaluated. The analytic

expression of P (η, z), Eq. (85) may be useful in all cases

where the mutual polarization of two initially copolarized op-

tical fields at different frequency is of interest after propagation

in a long optical fiber.

APPENDIX B

PDF OF GDB IN LOW PMD REGIME

In this section, an approximation to efficiently compute

the PDF of GdB for low values of δPMD and co-polarized or

orthogonal input SOP (η0 = ±1) will be proposed. During the

following derivation we will consider η0 = 1.

A. Lossless scenario

We start our analysis by considering the case αi = 0, that

corresponds to no lossless propagation. It may be shown that

in this case the variable I of Eq. (30) can be approximated to

first order in ∆ω2γz as

I = z − 1

2
γ∆ω2

∫ z

0

[W1(z
′)2 +W2(z

′)2] dz′, (93)

where W1(z
′) and W2(z

′) are real and independent Wiener

processes whose independent increments are characterized by

dWi(z
′) dWj(z

′′) = 1
3 dz

′ dz′′δ(z′ − z′′). The generating

function of I is given by

G(λ, z) =
〈

exp (−jλI)
〉

. (94)

Even thought its apparent simplicity thanks to the Gaussianity

of W1(z
′) and W2(z

′), the calculation of G(λ, z) is not trivial.

A detailed derivation of it can be found in appendix D of [46].

The final result is

G(λ, z) = exp(−jλz)sech

(

√

−j
1

3
λγ∆ω2z2

)

. (95)

The PDF of I can be then computed numerically by consider-

ing the inverse fast Fourier transform of Eq. (95) or evaluated

by truncation of an infinite series as shown in section B-B

below.

B. Lossy Scenario

When considering a lossy scenario, i.e. αi 6= 0, it can be

shown that in this case I can be approximated to first order

in ∆ω2γz as

I = Leff,i −∆I, (96)

where Leff,i is given by Eq. (4), and ∆I is given by

∆I =
1

2
γ∆ω2

∫ z

0

exp(−αiz
′)[W1(z

′)2+W2(z
′)2] dz′. (97)

If we define the auxiliary function

u(z) =
1

αi

√

2[1− (1 + αiz) exp(−αiz)]
, (98)

such that
du

dz
=

z

u
exp−αiz, (99)

we can write the integral (97) as

∆I =
1

2
γ∆ω2

∫ z

0

u′

z′
[W1(z

′)2 +W2(z
′)2] du′. (100)

Using the self-similarity property of the Wiener process [41],

according to which two Wiener processes W (z) and W ′(z)
related by the identity

√
cW ′(z) = W (cz) ⇒ cW ′(z) = W (cz)2 (101)

are equivalent processes, one can write

∆I =
1

2
γ∆ω2

∫ u(z)

0

[W1(u
′) +W2(u

′)2] du′. (102)

It can be noticed that in Eq. (102), Eq. (97) has been reduced to

the lossless case by using the scaled distance u(z) of Eq. (98).

The generating function is then

G(λ, z) = sech

(

√

j
1

3
λγ∆ω2u(z)2

)

. (103)

The PDF of ∆I is obtained by inverse Fourier transform of

Eq. (103)

P (∆I) =

∫

1

2π
exp(jλ∆I)G(λ, z) dλ, (104)

that can be computed numerically by means of fast Fourier

transform algorithm, or evaluated by truncation of an infinite
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series as shown in the next subsection. The SRS gain or

depletion GdB is thus given by

GdB = K(Leff,i + DOPiI) (105)

= K(Leff,i(1 + DOPi)− DOPi∆I), (106)

where K is a gain constant in dB/km and is given by

10 log10(e)Cr(∆ω)Pi(z = 0). The PDF of GdB can thus be

obtained by simple shift and scale of the PDF of ∆I .

As sanity check, it can be verified that the average gain

obtained in the limit case of low δPMD is identical to the first

order expansion with respect to γ of Eq. (13).

C. Inverse Laplace transform

As it has been highlighted in the previous paragraph, the

probability density function of the SRS gain or depletion in

the low PMD limit, can be computed by numerically inverse

Fourier transforming the generating function of GdB . In this

section we give an expression of the PDF of GdB as an

infinite series, which once restricted to the first two terms

gives an excellent analytic approximation of the PDF. We start

transforming Eq. (103) in its Laplace transform equivalent

G(s, u(z)) = sech

(

√

1

3
γ∆ω2su(z)

)

= sech
(

ε
√
su(z)

)

, (107)

where

ε =

√

1

3
γ∆ω2. (108)

Eq. (107) can be conveniently rewritten as a Laurent series,

considering that its poles are given by

sn =
π2

4(εu(z))2
(1 + 2n)2, n = 0, 1, 2, . . . (109)

and its residues

κn = lim
s→sn

sech
(

ε
√
su(z)

)

= (−1)n
2
√
sn

εu(z)
(110)

= (−1)n
π(1 + 2n)

(εu(z))2
. (111)

The Laurent expansion of Eq. (107) can thus be written as

G(s, u(z)) =
∞
∑

n=0

κn
1

s− sn
(112)

=

∞
∑

n=0

(−1)n
π(1 + 2n)

(εu(z))2
1

s− π2

4(εu(z))2 (1 + 2n)2
.

(113)

Taking the inverse Laplace transform of the previous equation

yields

P (∆I, u(z)) =H(∆I)

∞
∑

n=0

(−1)n
π(1 + 2n)

(εu(z))2

exp

[

− π2

4(εu(z))2
(1 + 2n)2∆I

]

, (114)

where H(·) is the unit Heaviside step function. Equation

(114) can thus be used with a finite n in order to obtain an

approximation of the PDF of GdB in the low PMD scenario.

In addition, the explicit analytic expression obtained retaining

only the first two terms, corresponding to n = 0 and n = 1,

is indistinguishable from the exact distribution for all values

of ∆I (including at the position of the maximum of the

distribution), with the exception of a very small region around

∆I = 0.
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