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I. INTRODUCTION

There has been considerable interest recently, in using polarization-
diverse radar to improve target detection, tracking, and identification for
tactical land-combat weapon systems. Both linear and circular polarizations
are of interest, and also, a combination of the two, wherein circular
polarization is transmitted, while a two-channel receiver measures orthogonal
linear polarization components. This latter technique has been called
"polarimetric radar," but we would like to extend this definition to include
any radar which does more (with polarization) than transmit and receive the
same, single polarization state.

This report represents an in-depth study of radar cross section in terms
of transmitted and received polarizations in an attempt to better understand
the potential cf polarimetric radar. The basis for this analysis is the
polarization scattering matrix.

The polarization scattering matrix, as shown in section II, is a genera-
lization of the concept of radar cross section, and includes amplitude, phase,
and polarization. Through the use of unit vectors, equations for transforming
matrices from linear to circular polarization (and vice versa) are explicitly
derived.

The measurement of the elements of the polarization scattering matrix is
discussed in Section III. Matrix elements are shown to be related to
measureable radar parameters.

The polarization scattering matrices (both for linear and circular
polarizations), as discussed in section IV, are derived for three types of
simple targets: the dipole, the odd bounce reflector, and the dihedral
corner reflector.

In section V, the derivations of section II are applied to a "mixed"
polarization scattering matrix for which the transmitted polarization states
are different than the received polarization states. Transformation equations
for the mixed matrix are determined, and mixed matrices are given for the
simple tar5 ,ts discussed in section IV.

In section VI, the concept of the polarization scattering matrix is
extended to targets consisting of more than one reflector.

II. THE POLARIZATION SCATTERING MATRIX

The radar cross. section of a target is a (fictional) area such that if
this area scattered the incident power isotropically, the power received by
the radar would be the same u that from the target; radar cross section can
be defined mathematically as-'

a :- lim 4TrrR
2  JERI 2 

1

R- [ET

-/See Reference 1.
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*• where:

o - radar cross section,
"R - distance between radar and target,
ER - reflected field strength at radar,
ET - transmitted field strength at target.

Polarization is implicit in this definition of radar cross section, and
usually, it is assumed that a single polarization is employed for both the
transmitted and received fields. This assumption is noc required, however,
and radar cross sections can be defined for arbitrary polarization of
transmitted and received fields. An arbitrarily polarized plane wave2/can be
expressed as the sum of two plane waves having orthogonal, but otherwise
general polarizations. Following Long-, in phasor notation, the transmitted
field is expressible as

i •~~T -_-T --T
=E 1 + E 2 , (2)

where the subscripts 1 and 2 refer to any pair of orthogonal polarizations and
the overbar indicates a vector quantity. The received fields can be con-

Ssidered to be related to the transmitted fields by a set of reflection coef-
ficients, aij , as follows:

R T (3a)
El1  all E

-R T (3b)
E12 a a12 E 2

R T (3c)
21 21 1

R T (3d)
22 22 2

where the al are, in general, complex quantities.- By superposition, the
received fields can be combined as

,'R T + T :(4a)
_ . ill a2 2

and
E R a T + T (4b)

2 21 1 22 E2 "

-- The limit in equation (1) assures that the wave is planar.

* --/See Reference 2.

4 /Wher two subscripts are used, the first subscripc refers to the polariza-

*. tion of the received wave, and the second subscript refers to the polari-

zation of the transmitted wave.

2
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In matrix notation equations (4a) and (4b) can be expressed as

AR

12 1(5)*E R"

The matrix [Sj, given by

a1Sa (6)[ .I••[ 
a l l a 1 2 3,

C' [sI S , I
Il",-., a21 a22I

is defined as the polarization scattering matrix. Since the ajj are, in
general, complex, the scattering matrix can be written as

[s] - (7)
Lla2e 2 la221e12

3 where, of course, the jamji and $ij represent the amplitudes and phase,
respectively, of the ajj. By using equations (1) through (7), the concept of
radar cross section can be generalized to the case of arbitrary polarization.
In terms of scattering matrix notation, the result would be

[5]-~ E iejU eJý12

":.IS ] (8
J021 42 Rj 022

The scattering matrix, for a given frequency ane given crientations of
radar and target, contains all the information concerning the scattering
properties of the target. The plausibility of this can be visualized by
noting that a plane wave can be represented by any orthogonal but otherwise

¾, general polarization(s), and that a polarization basis of one kind can be trans-
4 formed into any other polarization basis that satisfies the orthogonality

requirement5-/ Hence, a scattering matrix established by one polarization basis
V" can be transformed to any other basis.
N'

-- The orthogonality requirement could be reduced to the requirement that
.u x u 2 # O, where u1 and u are the unit vector for the two polariza-
"- tion components; this is noi done hecein, however, as the orthogonality

requirement greatly simplifies the mathematics.
.,

1
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Following a procedure simillar to that outlined by Ruck, et al,Wwe will
now consider specific forms of polarization and transformations among polari-
zations for both transmitted and recc -1 waves. With these transformations
we will have the tools needed for traiL forming scattering matrices from one
polarization basis to another. We begin by defining a Cartesian coordinate
system specified by unit vectors 2, ?, and T, where

X = 2. (9)

We are dealing with plane waves and these waves will be expressed in
forms so that transmitted waves propagate in the +•zdirection and receivedwaves propagate in the -T direction. Further, for linearly polarized waves, t

and ' will represent the direction of the horizontal and vertical components,
respectively.

Circular polarization can be formed by splitting a linear-polarized wave
of amplitude E into two orthogonal components, each of amplitude E/-,l then
phase shifting one of these components by 90*. Note that if we express a wave
travelling along the positive z axis by E exp [j (wt-kz)], a phase shift e
results in a wave expressed by E exp [j (wt-kz+6)]. Thus, a phase shift of
900 is given by exp (J/ 2 ) = cos 71/2+j sin u/2 = J. Circular polarization can
also be mathematically formed by advancing one component by 90*. In this case,
the phase shift is given by -J. Right circular polarization can be formed by
advancing the y component by 9t2; this results in an electric field vectcr of
magnitude E/v- which rotates about the z-axis as it travels down the axis.
Looking from the origin along the positive z axis, the tip of this vector is
seen to trace out a counterclockwise corkscrew as It travels in the t direction.
Consider, however, looking at a given plane parallel to the x-y plane and
observing the rotation of the electric field vector in this plane as a function
of time; looking from the origin in the positive S direction, the ro'ation in
time is clockwise. Hence, one must specify a spatial rotation or a temporal
rotation in order to define right and left-hand circular polarization

7/fclearly.-

-ýTAn arbitrarily polarized plane wave, E , propagating in the +* direction,
can be expressed in terms of horizontal and vertical components, i.e.

-T T T
E H + V 7, (10)

T Twhere, in general, H and V are complex. This same field can also be repre-
sented by the sum of right and left circularly polarized fields as

-=T T4- T-
ER r+L 1, (1r)-T T

ET + ET
rr

6/
- See Reference 3.

1 /The IEEE definition for circular polarization is used herein; i.e., for
right-hand polarization the electric field vector rotates CCW (in time)
for an approaching wave and CW for a receding uave, and for left-hand
polarization the electric field vector rotates CW for art approaching wave
and CCW for a receding wave.

4



where r" and ^I are unit vectors corresponding to right-hand and left-hand cir-
cularity.

In order to understand the meaning of the unit vectors 4and , consider

a right circular transmitted field, E . In terms of circular polarization
r

-T TA T
E = R rE r. (12)
r

In terms of horizontal and vertical polarizations, a transmitted wave is right
. circular when (V/H) - -j, i * e.eI and the y component (vertical component) is

•"* advanced by 90*. Therefore, E can also be expressed as

r.. ::•-T ET x -j E
Er=-- (13)

where H E/y.and V jET/F2 - Equating (12) and (13) and solving for the
right circular unit vector we iave

(transmitted wave). (14)

V-2

Note that I~J= 1. In a similar manner, a left circular traesmitted field,

EP can be expressed in terms of circular polarization as

-T T ETm ~E =L l= .(15)

In terms of horizontal andyertical polarizations, a transmitted wave is left
circular when (T/H) = J. E1 can thus be expressed as

:T ET 5ý + JE
E1 =. -- E ' , (16)

T T
where H = E and V jET. Equating (15) and (16) and solving for • we have

+ j (transmitted wave). (17)

Now, using equations (14) and (17) in equation (11) and equating the
result to equation (10) one obtains

T[--] + L Tr+-t = H T ^ + VT •. (18)

By equating all •5 terms and by equating all ? terms in equation (18), two
equations are obtained. Solving these equations gives

717.
5
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--- HT +VT LT Z_=1j (19)

and

HT R +LT -JRT +JLT

" 'HT R (20)

It should be apparent that RT, for example, is defined by the magnitude and

phase of the initial linear electric field vector before it is broken into x

and y components and converted to right circular polarization. Equations (19)

and (20) can be expressed In matrix notation as

[ [ [ L (21)

"* and

rT 1 RT - I Tf1 RT (22)

The matrix [TLC] and its inverse [TLC]-' can be used to transform the repre-

sentation of the polarization from linear polarization to circular polariza-

tion and vice versa.

The transformation matrices for received fields are somewhat different,

due to the changes in propagation direction. However, the method used to

'* determine the transform matrices for transmitted fields can be used to deter-

mine the transform matrices for received fields. Consider an arbitrarily

polarized plane wave, ER propagating in the -4 direction. In terms of hori-

zontal and vertical components this wave can be expressed as

xR1 1 R ^ + VR (23)

and in terms of circularly polarized fields this field can be expressed as

(24)

ER- RR ' + LR1.

"6
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A right circular received field, , can be expressed as

SR - RR -E R. (25)

In terms of horizontal and vertical polarization, a received wave is right
circularly polarized when (V/H) - j; therefore, E can be expressed as

-Z ERE R

E --- E_ + J E (26)

where H E = and V s E/2. From equations (25) and (26) we obtain

2.+ J (received wave). (27)

-R
"For a left circular received field, E., can be written in terms of cir-

"cular polarization as

-R R- R't 1 L ER (28)

In terms of horizontal and vertical polarization, a received wave is left cir-
cularly polarized when (V/H) - -J; therefore, we can write

E -R _ j -- R
E - (29)

"where H = ERl/Fand V = -j ER/lWfrom equations (28) and (29) we obtain

(received wave). (30)

Note that the circular polarization unit vectors for the received wave are
complex conjuga-es of those for the transmitted wave.

From equations (23), (24), (27), and (29) it can easily be shown that

R R R
RR H1 - JV R R+ V (31)

and

R RR + JLR R R .RR - JLR
H +L vR~R j (32)

R
Again, R is the electric field (amplitude and phase) after the circularly

polarized wave has been converted back to a linearly polarized wave. This is

- achieved by delaying the same component as for the transmitted wave, and then

. vectorially summing 'Ž and 9 components. In matrix notation

*1~ 7
p"

...-, . . . . ..4. . . .. . .. . - . ,. 5 • . . . .
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*i [1 jFRl hRl (33)

with the reverse transformation given by

Rl I RR - R1 RRl (34)

Lv I 4 L -j LJ RCI [R
•-,r LR L •

Scattering matrices are generally expressed in terms of linear or cir-

cular polarizations. From equation (5), we have for linearly polarized fields

[VHR [arnH aulvi [PT1]
vR vay aw '

S L [H (35)

and for circularly polarized fields

(36)

It should be noted that we have abandoned the often used order of subscripts

(transmitted polarization first, received polarization second) for tha mathe-

matically conventional order.

Using the transforms given in equations (21), (22), (33), and (34), the

elements of [SLl and [Sc] can be related, giving

- C LC J1 (37)

and
-I

E SL] IF-] [SC] [TLC] (38)

8
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The relationship between the linear and circular scattering matrices, as
expressed in equations (37) and (38), have been expanded; the results are pre-
sented in Table 1 below.

TABLE 1. FUNCTIONAL RELATIONSHIPS AMONG THE COMPONENTS OF THE LINEAR
AND CIRCULAR SCATTERING MATRICES

Linear to Circular Circular to Linear

(aHH - a )VV ( aHV + aVH) aHH (aRL + aLR)+ (aRR + aLL)

aR (HH H'J aj all al)(V - ( RR a LL) (an aLR )

2 aVV\ 2a -22

S.~l 
(aHV -aV(a aR

aLR 22 aVI 2 a2 \,
LL 2 _j 2

By invoking the reciprocity theorem, Berkowitz8 has shown that for a
monostatic radar, the scattering matrix is symmetrical about its main diago-
nal. In terms of equation (6), the scattering matrix for a monostatic radar,

can be expressed

r ] (39)

a 1 2  a 2 2

The functional relationships amoag the components of the linear and circular
scattering matrices for the monostatic radar can be determined from equations
(37) and (38), or they can be de•.ermined from Table 1 by setting aLR aRL and
aHV z avH. Results are presented in Table 2 below.

8/ See Reference 4.

9
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TABLE 2. FUNCTIONAL RELATIONSHIPS AMOUNG THE COMPONENTS OF THE
LINEAR AND CIRCULAR SCATTERING MATRICES FOR THE
"MONONSTATIC RADAR CASE.

Linear to Circular Cicrular to Linear

'(aHH - aVV) (apR + aLL)

aRR 2 -jaHV HH RL 2

""a(aHH + aVV) (aRR - aLl.)
RL LR 2 aHV aVH 2

_LL (aHH - 'VV) + j aHV (aRR + aLL)

"2 R 2

III. POLARIZATION SCATTERING MATRIX MEASUREMENT

In general, four amplitudes and four phases are required to completely
specify the scattering matrix. The phases are measured relative to the
"transmitted wave, and include the change in phase of the transmitted wave over
the two way path, from radar to target and return, plus the phase change
experienced upon reflection from the target. Using equations (3a) through
(3d), the elements of the scattering matrix can be expressed in terms . the
transmitted and received fields, i.e.,

a 11  ,1 
(40a)

"" 12] (40b)
12

2E T'

a' [E21] (40o)

S 21[ET]

and

22 (40d)

a2

10
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where it should be remembered that the double subscript, iJ, refers to the
polarization state of the received and transmitted fields, respectively. In
matrix notation

[IS - -[(- 1 2 (41
I22•E L ,) ý

Clearly, measuring the aij's requires first transmitting one polariza-
tion state while receiving that state and the orthogonal state simultaneously,
followed by transmitting the orthogonal polarization and again receiving both
polarizations. A "two-pulse" measurement is needed.

The amplitude of the signals in each of the two receive channels can be
achieved by square-law detection. To determine the phases, the received
signal must be processed coherently; that is, it must be mixed with the
transmitted signal to produce a dc voltage which is a function of the relative
phase. Such a measurement is not easy, particularly for a pulsed system,
since the transmitted signal must be stored.

It is much easier, for the monostatic case, to measure the phases of the
received signals relative to each other.

Using the notation, as given in equation (7) and choosing ý12 as the
phase term to be factored, the scattering matrix can be written as

[iiiei~P11~ 12~ a2

IS] - eJ12 I j~lj ei4 2 1  (42)lan e- (' 1-12) ja221 e'!(ý22-*12)

Note that, in general, one must retain the first pulse received signals to com-
pare phase with the second pulse received signals.

For the monostatic radar case, which is of primary interest herein, 012 -

4'21. and lal2I =a2l ; therefore, for this case, equation (42) can be rewritten
as

jalli ei l 11- l2) a12

[S]M eil12
1a121 1a221 eJ (22- 12)43

LII
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All that is required is a relative phase measurement between the orthogonal
receive channels for each pulse separately.

Suppose now we have a monostatic radar that is designed to sequentially
transmit and and simultaneously receive ER and ER for both

transmissions, where subscripts 1 and 2 indicat, orthogonal polarization sta-"
tes. For this radar, the relative phase measurements can be made directly
from the received fields; the importance of this is that it is not required to
retain the phases of the transmitted fields. Using equations (40a) through
(40d) we readily obtain

a (44a)

-p I I T_ __

a a 121 1 E211 (44b)

SRE

a 21 R(44c)""a221 E ET

e 2 (44d)

R .R

= exp [i (phase of E22- phase of E2 1)]

and

ej14 2 - 1 22 1121(4 e
e~~22 12/ 12~(4e

re exp si (phase oT Eaty phase of EI. As can be seen by inspection of the latter two equations, the relative
phases are not functions of the phases of the transmitted fields. In fact,
with the assumed dual channel receiver (i.e., a receiver that simultaneouslaY
measures ER an ER the relative phase measurements are determined solelyK1  from simultaneously received signals. This greatly eases the phasemeasurement burden.

12
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For completeness, we substitute equations (44a) through ( 4 4e) into

equation (43); the result is

(R lI) R (

(S]M = e J 1 2  (45)

KW9KT41T (JE T I ER/

The term eJl12 is a funccion of radar-to-target distance, and is therefore not
easily measurable. Thus, except for this phase term, (SIM can be specified in
terms of readily measurable radar quantities. We now specifically address
circular and linear polarization states.

In terms of circular polarization, equation (43) can be written as

5 Rt [ : eI ( R a RLR) ½a iL ej @LL - RL)J '46

and, for linear polarization, we have

a hI : ei(@HH 
-

NH, la,

Using these two equations we define (S5Cm and 1SL]m, via

[Sc]M = eJRL [S cm (48)

"and
f[SLIM e e]RV [S LIM (49)

It is of importance to note that (ScIm and 1SL]m are those portions of ESCIM
and [SLIM, respectively, that can be quantified in terms of the radar measures
specified by equations (44a) through (44e) or by equation (45). By substi-
tuting equations (48) and (49) into equations (37) and (38), and then
rearranging slightly, we obtain

Ye- 13

L'p
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4

- .' .r . t . jr.. •. .• - ,41. •7w "74w x ,• n

ej6 RL - 'HV) (S c = [R ic] [SL m ITLC]T - 1 
(50)

and

e3 •RL - cHV HS1 LIm ¾c[RLC-I [S 1  [TLc]. (51)

Except for the constant phase difference of + (ORL-4HV), these equations are
the same as equations (37) and (38), respectively; the functional relation
listed in Table 2 are essentially valid for [SC]m and [SLIm.

In this section we have developed relationships specifying scattering
matrix elements in terms of received and transmitted fields. However, we have
been somewhat lax in our use of these field quantities. In particular, we
have equated the received field to the field reflected by the target, and we
have equated the transmitted field to the field incident on the target.
Although the received and transmitted fields can be scaled to the reflected and
incident fields, respectively, we should be more specific about these field
quantities.

Consider a monosta.tic radar operating in a lossless homogeneous medium.

From the radar range equation, the received power, Pri, is related to the
transmitted power, Ptj, by

i 4n R2  k 4iR 2  
(52)

where the subscript i and j refer to the polarization states of the received

and transmitted fields, respectively; G is the effective antenna gain, aij is
the cross section of the target for the case of received polarization of state
"i" and transmitted polarization of state "J", A is the effective area of the
antenna, and R is the distance between radar and target. Let us further sup-
pose that there are two permissible polarization states denoted by (1,2), with
the two polarization states being orthogonal. In general then, i and j can
take on any combination of values denoted by

i,j - 1,2 -

Rearranging equation (52), we can express ajj as

IP
Cjj 4 R2  2(53)

14
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The quanity (Pri/A) is the power density (power per unit area), or the

intensity, of reflected signal at the radar, and the quanity is theintensity of the radar signal incident on the target. Referr to equation

(1), it should be obvious that the magnitudes of the reflected fields at the
radar and the transmitted fields at the target are given by

ij = a PrYA (54a)

and Ij= a P5b

-=-.4.7._ (54b)

where the subscripts are included so as to maintain the polarization referen-
ces, and a is a constant.

Although notquite as straight forward, the above procedure can be
*.used to determine ER and 1E3 for the case of a rnonostatic radar operating in

a homogenous, lossy medium. The results are expressible as

~~ = a ( PAen u , o s

and
E = a Pt e-2aR ,

r4aG') (55b)

where a represents the attenuation coefficient of the medium.

We ~ ~ ~ ~ ~~I wis temhsz thtE jand 1E i I are not direct radar measures,
but they can be related to measures of received and transmitted power. In
addition, by determining the phases of the radar signals, the phases of ER
and ET can also be determined. Thus, when we refer to received and ij

"I R T
- transmitted fields we are, strictly speaking, referring to E and E

-J j-

IV. POLARIZATION SCATTERING MATRICES FOR SIMPLE TARGETS

In this section, we heuristically derive monostatic scattering matrices
for a dipole, an odd-bounce reflector (e.g., plate, sphere, curved surface, or
trihedral corner reflector), and a dihedral corner reflector. Results are
oresented for both linear and circular polarizations. It will be noted that

*O these scattering matrices provide for partitioning polarization and for the
phase change of each polarization component, but they do not account for
amplitude. To account for amplitude, the scattering matrix must be multipled
by a real non-negative constant. This constant can be estimated in the
following manner: first determine the cross section of the target under con-
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'C 9/
sideration, via the procedures given in many radar texts- (this cross section
is usually given for same sense linearly polarized transmitted and received
signals), and then scaled via the radar range equation; the constant is the
square root of this scaled cross section.

A. DIPOLE TARGET

Assume that a thin wire (diameter << wavelength) or a sharp edge of
a conducting body is constrained to lie parallel to the I, ! plane and at an
angle a with respect to the ', z Qlane (see Figure 1). Assume further that a
transmitted field ET - HT ' + vT y is normally incident on the wire. For
such a field, the induced current along the dipole is proportional to the pro-
jection of incident electric field along the axis of the dipole. The rera-
diated field is proportional to the induced current, and it is polarized along
the axis of the dipole. Thus, the induced current, Id, is expressible as

id a HT cos Y + VT sin Y, (56)

and the reradiated field, id, is, therefore, given by

Ed a (HT Cos Y + VT sin Y) Y. (57)

where 7 is a unit vector parallel to the wire. This ,,nit vector, expressed in
terms of x and j, can be written

a cos Y .+ sin Y ^. (58)

The reradiated field and the received field, E a HRx + V'y, are also
proportional; therefore,

- R a HT cos 2 Y + VT sin I cosY, (59a)

and

VR a HT sin Y cos Y + VT sin2 Y. (59b)

Referring to equations (3a) through (3d), one can easily show that the dipole

scattering matrix, [SLI dipole, for linear representation of polarization is
given by

[21
cos sin y cosy

-SL] (60)

dipole in y cos y sin y

9/ See Reference 5.
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ER -HT VT?. (62)

The linear scattering matrix, ISLI odd-bounce' is thus obviously given by1: 0
[aL] ,(63)

odd-bounce
0 1

where we have suppressed the (-1) coefficient.lO-/

"Again using Table 1, it can be readily shown that in circular represen-
"tation the scattering matrix can be expressed

[Sc] -. (64)
odd-bounce

1 0

It is of some interest to compare the linear and circular scattering
matrices given by equations (63) and (64). In linear notation, the retIrn is
co-polarized (same polarization received as transmitted), and in circular
notation, the return is cross-polarized (opposite polarization received as
transmitted).

C. DIHEDRAL TARGET

Assume that a dihedral is located so that its seam is parallel to the
x, y plane, that its seam makes an angle U with respect to the x, z plane,
r.hat its retro-reflecting face is composed of perfectly conducting planes, and
that all dihedral dimensions >> wavelength. The incident radiation is normal
to the seam.

Now consider a transmitted field, ET - HTt + VT , incident on the
dihedral. This incident field can be written as

I . (HT cos a + VT sin a) S + (HT sin a - VT cos a) • , (65)

where a is a unit vector paralled to the dihedral seam, * is a unit vector
perpendicular to 2, and L x - z. In terms of the unit vectors x and y we
have,

II

a - cos a x + sin a y , (66a)

10/ This turn would not affect relative phase, and therefore, since we are
interested only in relative phase, suppressing it does not affect our
results.
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and

si- nin X - coB a 5?. (66b)

Y

;.°

1 I

,°t4%

field (H7T sin a - VT cos a) ý is polarized perpendicular to the dihedral seam.
First, consider the parallel component of the Incident field; boundary con-

* ~ditions of zero field on the dihedral surfaces require that, upon each reflec-
tion, the phase of the field be 3hif ted by 1800. Thus, for tvc reflections,
the reflected field would be toe same as the incident field. In a similiar
manner, it can be reasoned chat the perpendicular portion of the incident field
"experiences a total of 1800 phase shift upon reflection from the dihedral;
thus, the refected portion is (-H sin a + V cos a) The total reflected
field, MR, can therefore be expressed as

a1.

119
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SR (HT Cos a + VT sin a) + (-HT sin a + VT cos a) (67)

Using equations (66a) and (66b) we can write

= (HT cos2 a + VT sin2 a) I + (HT sin2 a _VT cos2 a) 7 (68)

Setting 7R -HR. + VRy, and using matrix notation we have

[vi] L[.o. a sin2 a [

VR sin2 - cos2 a(69)

Therefore, the linear scattering matrix for a dihedral can be written

Fos2 a sin2a
[SL] (70)

dihedralj]
V* sin2 a -cos2 a

The corresponding circular scattering matrix can be obtained directly from
this equation and Table 1;

(SC] = [ei2a o(

.... diherdral Lee:a] j2 * (71)

V. MIXED POLARIZATION SCATTERING MATRIX

The polarization scattering matrix, as previously stated, is defined for
a pair of orthogonal polarizations and for transmitting and receiving these
same polarizations. We can, however, define a matrix that relates different
received and transmitted polarizations, that is, a "mixed matrix."

A mixed matrix, of some interest, is that resulting from relating cir-
cularly polarized transmitted fields to linearly polarized received fields.
This mixed matrix can be defined, via equation (5), as

, "R F a H R a l lL R T ]

.vR avR aVL IL T

- MCLI [RT (2

_L
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•I>. Using equation (34), the mixed matrix can be expressed in terms of the cir-

cular scattering matrix as

[MCLI - [RLCJ [Sc] (73)

The reverse transformation is therefore given by

(SCI [RLC] [MCLI. (74)

Using equation (22), the mixed matrix can be related to the linear scattering
matrix, i.e.,

IMCL] - [SLI [TLC] ; (75)

"the reverse relationship is expressed as

[SLI - [MCLI [TLC]. (76)

The relationship among the matrix components, as specified in equations (73)

through (76) are tabulated in Tables 3 and 4 below. For the monostatic radar
-." case, 812 - a21 for both linear and circular scattering matrices. However, in

general, the mixed matrix is not symmeterical about the main diagonal. This
results from the fact that the mixed matrix is defined for different states of
transmitted and received polarizations; whereas, scattering matrices are
defined only for orthogonal transmitted and received polarizations pairs.

TABLE 3. FUNCTIONAL RELATIONSHIPS AMONG THE COMPONENTS OF THE
"CIRCULAR SCATTERING MATRIX AND THE MIXED MATRIX

Circular to Mixed Mixed to Circular

.•a-eRR + aLR HR- JaRa HR -RR 4 _

-- aLL + aRL aHL - JaVL1 1. T R a R L H 2

j . aLR - a H aVR
:2:: VR= - 4r2 47"

".-JaLL- aaL. aHL + JaVL
aLVL"-, VL ;2 -LL "
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TABLE 4. FUNCTIONAL RELATIONSHIPS AMONG THE COMPONENTS OF THE
LINEAR SCATTERING MATRIX AND THE MIX MATRIX

Linear to Mixed Mixed to Linear

"- ja a + a"HR aHH HR IL

aHH + ja jai - a

aHL aV• "-. ,, HV

-JaVV -+ a a + aVL
-RHH 

_______

Jaw + a j aR aVL
VH J__ ___ ___1-•'.aVL aVV

As a further result of this nonsymmetry, the ability to determine all
essential parameters of the polarization scattering matrix, using two-channel

relative phase measurements, is lost.

- Using the relations in Table 3 or Table 4. one can derive the mixed
matrix for the simple targets discussed in Section IV. These matrices are
given in Table 5.

TABLE 5. MIXED MATRICES FOR SIMPLE TARGETS

Target Mixed Matrix

+ 2a 1+ej2a
Dipole j 2a J

•<-": 2 J2" LJ 1-e32 J 1-e2

SI J I
Odd Bounce

-je 2a j 2a

Dihedral .j e2 2

-;12; •-2o eJ2]l

Corner e -je
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VI . POLARIZATION SCATTERING MATRIX FOR COMPLEX TARGETS

The concept of the polarization scattering matrix, in the following deve-
lopment, is extended to complex (i.e., "complicated ") targets under the
assumption that the target RCS is dominated by specular reflections. The
"target consists of n reflectors each described by a matrix

-i i
a a 12

S(77)

2La2 a22

where the superscript denotes the ith reflector.

The total scattering matrix elements will be a phasor sum of each of the

ajk taking into account the phase shifts resulting from the range distribution

of the reflectors. If the matrix for the total target is

, All A1 2  (78),.,: .- [ST ] -
' . A2 1  A2 2

"and if Ri is the range to the ith reflector, then, for the monostatic case,

'- 
All . n

eA 2 2  a a2 2 exp (80)

"* and n 2R
A12  A2 1  a1 2 exp j j2r 12 (81)

Again, the various phase shifts resulting from surface reflections need to be
included in the a's. It is argued, however, that since the target extent is
much larger than the wavelength, and since any given phase shift is equivalent

,"• to a range displacement of less than a wavelength, the general polarization

" properties of the target can be grasped without including these phase shifts.
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Equations (79) through (81) demonstrate very clearly the dependence of
the matrix elements of transmitted frequency and target orientation, even If
"the target is a collection of spheres. Note that it has been assumed, that
all reflectors are equally illuminated by the radar. Also, the equations
indicate that the returns from a pair of reflectors may constructively or
destructively interfere, and the nature of the interference changes with
changing target orientation or with changing transmitted frequency. The first
phenomenon is well known as amplitude scintillation. The latter phenomenon
has been investigated as a target classification tool referred to as

. "frequency-diverse target scintillation." 1 1 /

Applying equation (79) to the case of same-sense linear polarization and
recalling that

aik " 4ok ej•ik, (82)

and

-ik I aik 2 (83)

the total radar cross section is found to be the well-known result,

2 n1 .. 2
a T IA I j e 1 I (84)

where the phase factors 40 include phase change on reflection and phase delay
becduse of the distance from the radar.

An important, although perhaps intuitive, result of equations (79)

through (81) is that the target retains the polarization character of its

individual reflectors. For example, if the individual reflectors are largely
odd-bouce (ajn), then ARL will, on the average, be large, and the target can
be considered an odd-bounce target. The "average" referred to above is an
average over a number of frequencies, a number of aspect angles, or a number
of different targets (clutter patches, for example) with random spatial
"distributions.

11/ See Reference 6.
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