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I. INTRODUCTION

There has been considerable interest recently, in using polarization=-
diverse radar to improve target detection, tracking, and identification for
‘e tactical land-combat weapon systems. Both linear and circular polarizations
3 are of interest, and also, a combination of the two, wherein circular
- polarization is transmitted, while a two-channel recelver measures orthogonal
linear polarization components. This latter technique has been called
“polarimetric radar,” but we would iike to extend this definition to include
any radar which does more (with polarization) than transmit and receive the
- same, single polarization state.

This report represents an in—-depth gstudy of radar cross section in terms
. . of transmitted and received polarizations in an attempt to better understand
' the potential cf polarimetric radar. The basis for this analysis is the
- polarization scattering matrix.

The polarization scattering matrix, as shown in section II, 18 a genera-
lization of the concept of radar cross section, and includes amplitude, phase,
and polarization. Through the use of unit vectors, equations for transforming
matricas from linear to circular polarization (and vice versa) are explicitly
derived.

The meagsurement of the elements of the polarization scattering matrix is
discussed in Section III. Matrix elements are shown to be related to
measureable radar parameters.

The polarization scattering matrices (both for linear and circular
polarizatiouns), as discussed in section IV, are derived for three types of
simple targets: the dipole, the odd bounce reflector, and the dihedral
corner reflector.

In section V, the derivations of section II are applied to a "mixed"
polarization scattering matrix for which the transmitted polarization states
are different than the received polarization states. Transformation equations
for the mixed matrix are determined, and mixed matrices are given for the
simple tar¢ ‘ts discussed in section 1IV.

In section VI, the concept of the polarization scattering matrix is
extended to targets consisting of more than one reflector.

II. THE POLARIZATION SCATTERING MATRIX

The radar cross. section of a target is a (fictional) area such that if
this area scattered the incident power isotropically, the power received by
the radar would be the same 13 that from the target; radar cross section can
be defined mathematically as~’/

2

R

=1 2 |E2
g = lim 4T R £t ’ 1)

R0

l/See Reference !.
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where:
g = radar cross section,
R = distance between radar and target,
Eg = reflected field strength at radar,
E =

transmitted field strength at target.

Polarization is implicit in this definition of radar cross section, and
W usually, it i{s assumed that a single polarization is employed for both the
bt transmitted and received fields. This assumption is not required, however,
and radar cross sections can be defined for arbitrary polarization of

L transmitted and received fields. An arbitrarily polarized plane wave?/ can be
- expressed as the sum of two plane waveg having orthogonal, but otherwise

) general polarizations. Following Longl, in phasor notation, the transmitted
- field is expressible as

=E, +E :

o E E1 9 - (2)
A0

:3 where the subscripts 1 and 2 refer to any pair of orthogonal polarizations and
.»f the overbar indicates a vector quantity. The received fields can be con—~

gsidered to be related to the transmitted flelds by a set of reflection coef-
ficlients, asj , as follows:

2 R T (3a)
- Ep=3a, F

5:: R _ T (3b) .
> 2" %12 By

»

" (3C)
. oo . gl

o 21~ %1 &y
o R T (3d)
= Eap = 3 By |

‘ -

x>, where the ay4 are, in general, complex quantities.ﬁf By superposition, the

? received fiefds cat be combined as

2R

::_‘)‘ ,,R - a. ET N a, ET ;(Aa)
y . IS i1’1 12 2
.if and

LA R T T (4b)
“ = + .

o Eymagn B taph

.::«.

[ ]
o z/The 1imit in equation (1) assures that the wave is planar.
.:}: éjSee Reference 2.

YR E/When two subscripts are used, the first subscripc refers to the polariza-
Q. tion of the received wave, and the second subscript refers to the polari-
HﬁQ zation of the transmitted wave.




Tl

"

NS YT
AR AR

kG ”

=
L

it

". .'4

AP

WAPATRIEP™y f

-:J_.l‘

LA WS4

-

e

2

-
-

R

Nz

The matrix [S]j, given by

[s]

is defined as the polarization scatterving matrix.

[

aj1

a2

T

a E

12 1

|- (5)

822 2
a

12] , 6)
az2

Since the ay4 are, in

general, complex, the scattering matrix can be written as

(s] =

where, of course, the
respectively, of the ajq.

[z’

¢11

¢

|821|ej 21

¢
l812,83 12

e
¢22

|a22) eJ s

laijl and ¢14 represent the amplitudes and phase,
By using equations (1) through (7), the concept of

radar cross section can be generalized to the case of arbitrary polarization.
In terms of scattering matrix notation, the result would be

[8] = —
Vit R

a1 eJ

=P
V°11eJ 11

%

¢

,/3i? oJ 12

.9
0p3 e’ 22 1,

(8)

The gcattering matrix, for a given frequency an? given crientations of
radar and target, contains all the information concerning the scattering

properties of the target.

The plausibility of this can be visualized by

noting that a plane wave can be represented by any orthogonal but otherwise
general polarization(s), and that a polarization basis of one kind can be trans-—
formed into any other polarization basis that satisfies the orthogonality
requirement.éf Hence, a scattering matrix establighed by one polarization basis
can be transformed to any other basis.

é/The orthogonality requirement could be reduced to the requirement that
are the unit vector for the two polariza-

done herein, however, as the orthogonality
requirement greatly simplifies the mathematics.

u, x u, # 0, where u, and u

tion components; this is nog
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‘j‘ Following a procedure similiar to that outlined by Ruck, EE.EL’Q/“e will

now consider specific forms of polarizatioa and transformations among polari-
zations for both transmitted and rece - 1 waves. With these transformations
we will have the tools needed for tran.rorming scattering matrices from one
polarization basis to another. We begin by defining a Cartesian coordinate
system specified by unit vectors ¥, 9, and €, where

RXY =2, (9)

We are dealing with plane waves and these waves will be expraessed in
forme so that transmitted waves propagate in the +% direction and received
waves propagate in the -2 direction. Further, for linearly polarized waves, §

and § will represent the direction of the horizontal and vertical components,
regpectively.

vy
s 4

<.

Circular polarization can be formed by splitting a linear-polarized wave
of amplitude E into two orthogonal components, each of amplitude E/y:; then
phase shifting one of these components by 90°. Note that if we expréss a wave
travelling along the positive z axis by E exp [j (wt-kz)], a phase shift 8
results in a wave expressed by E exp (j (wt-kz+8)]. Thus, a phase shift of
90° is given by exp (jn/,) = cos nw/,+j sin Tr/2 = j. Circular polarization can
also be mathematically formed by advancing one component by 90°. 12 this case,
the phase shift is given by ~j. Right circular polarization can be formed by
advancing the y component by 9C°; this results in an electric field vectcr of
magnitude E/y7 - which rotates about the z-axis as it travels down the axis.
Looking from the origin along the positive z axis, the tip of this vector is
seen to trace out a counterclockwise corkscrew as it travels in the 2 direction.
Consider, however, looking at a given plane parallel to the x-y plane and
observing the rotation of the electric field vector in this plane as a function
of time; looking from the origin in the positive Z direction, the ro‘'ation in
time is clockwise. Hence, one must specify a spatial rotation or a temporal
rotation,in order to define right and left-hand circular polarization
clearly.—

.
'

.
-~
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a0

An arbitrarily polarized plane wave, ET, propagating in the +2 direction,
can be expressed in terms of horizontal and vertical components, i.e.

. LR | ’ L L |

e nT @+ VI §, (10)

I
LN

{ ol
] e L

where, in general, HT and VT are complex. This same field can also be repre-
sented by the sum of right and left circularly polarized fields as

E=rIg+1T7, (11)

- =T , =T

-

~ = Er + E1

’!

,R

}

:% é/See Reference 3.

:% Z/The IEEE definition for circular polarization is used herein; i.e., for

- right-hand polarization the electric field vector rotates CCW (in time)

> for an approaching wave and CW for a receding wvave, and for left-hand

L. polarization the elecctric field vector rotates CW for an approaching wave

- and CCW for a receding wave.

- 4

- i
> |
l‘ i
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where 2 and /1\

cularity.

are unit vectors corresponding to right-hand and left-hand cir-

In order to understand the meaning of the unit vectors ?‘and'T, consider
a right circular transmitted field, Er' In terms of circular polarization
E =R 2=©£l % (12)
In terms of horizontal and vertical polarizations, a transmitted wave is right
circular when (V/H) = -3, i.e., and the y component (vertical component) is
advanced by 90°. Therefore, Er can also be expressed as

T A T A
B, = — " 1LY, (13)
2 V2
. T T .
-y where H = E /yg‘and V = -jE /{—: Equating (12) and (13) and solving for the
})j vight circular unit vector we gave
E:: £ { -3 ? . (transmitted wave). (14)
Y2
Note that I?I = 1., In a similar manner, a left circular trarsmitted field,

ET, can be expressed in terms of circular polarization as

qu: =T %=1 (15)
- In terms of horizontal and yertical polarizations, a transmitted wave is left
tg- circular when (V/H) = j. E1 can thus be expressed as
.
'_\:::' fT,,_ET.?"’j_EE?, (16)
s vz

where H = ET and V = jET. Equating (15) and (16) and solving for T we have

;:" 4 - L+ig (transmitted wave). a7
R vz
o
T .
pCN Now, using equations (l4) and (17) in equation (1ll) and equating the
l:: result to equation (10) one obtains
V\ -
:(-:. D 3 D N
o RT[-}-(——/_—J_—-X] + LT[" :,_ =H £+ vl 4. (18)
2 2
:jt By equating all ® terms and by equating all § terms in equation (18), two
:3f equations are obtained. Solving these equations gives
N
WU
[
R
o
o 5
\,‘v
hN
»
e R e e £t R WA ST T A




T T . 19
Rr.ﬂﬁ_m_ , LT_if{;jvT a9
2
and
T T T 4T
pt « B 2L oor ZIR ML 20
VYT V7 (20)

It should be apparent that RT, for example, is defined by the magnitude and
phase of the initial linear electric field vector before it is broken into x

and y components and converted to right circular polarization. Equations (19)
and (20) can be expressed in matrix notation as

R L HT
T - \[2- - [TLC] vT (21

and

%

gT] 1 |1 1] |RrT

1 -1 (22)
yT -.JZ— -3 3 ‘LT - [TLC:] I :

The matrix [Tyc] and its inverse [TLC]'1 can be uged to transform the repre-
sentatlon of the polarization from linear polarization to circular polariza-
tion and vice versa.

The transformation matrices for received fields are somewhat different,
due to the changes in propagation direction. However, the method used to
determine the transform matrices for transmitted fields can be used to deter-—
aine the transform matrices for received. fields. . Consider an arbitrarily
polarized plane wave, ER, propagating in the -2 direction. In terms of hori-
zontal and vertical components this wave can be expressed as

BRagR % + VR § (23)

and in terms of circularly polarized fields this field can be expressed as
(24)

_.R
E =« RRE+LRT,

-~

AENCAE AR RN
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i;\j A right circular received field, Eﬁ, can be expressed as

u E-re=E 1 (25)
::{::'-' In terms of horizontal and vertical polarization,_a received wave is right
RS circularly polarized when (V/H) = j; therefore, Er can be expressed as

R _ER+IES
s
9 . N
R R
where H = E //E‘ and V = jE V2. From equations (25) and (26) we obtain
2 - R+ i 9 (received wave).

: 27

(26)

e For a left circular received field, E?. can be written in terms of cir-
o cular polarization as

.;l;:.

- 'E*; =187 =R (28)
s

bi? In terms of horizontal and vertical polarization, a received wave is left cir-
N cularly polarized when (V/H) = -j; therefore, we can write

\\‘

i R_ERGES

(29)

Loz V2

gﬂ: where H = ER//Eﬁand V= -] ER/VEHfrom equations (28) and (29) we obtain

.:;£ .

At

?f{ 2w R-19 (received wave). (30)
. 7

:;f Note that the circular polarization unit vectors for the received wave are

is; complex conjuga-es of those for the transmitted wave.

:if From equations (23), (24), (27), and (29) it can easlly be shown that

s

® RN A A S Gl ) a1

“a e ’

g V2 V2

o

LY

b and

R R_RY+ gif R R - qiR

,_ . H = ___._j___ . v = .J.———j——. (32)

o V2 A

e R

iJQ Again, R~ is the electric field (amplitude and phase) after the circularly

o polarized wave has been converted back to a linearly polarized wave. This is

SN achieved by delaying the same component as for the transmitted wave, and then

L vectorially summing & and % components. In matrix notation

T_EE‘}

g

S

3 7

hirly
T

e
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RR 1 -3| |uR HR (33)
- ‘f" = |R
LR 2 1 3 vR [ LC-] R ’
with the reverse transformation given by
HR 1 {1 1] [&R 1 |RR (34)

——

- = [?Lé]‘ .
Wi 42 |3-3] DR LR

Scattering matrices are generally expressed in terms of iinear or cir-
cular polarizations. From equation (5), we have for linearly polarized fields

HR agH A4aHv HT
vR ayy avy vT
HT (35)
- [
vT ,
and for circularly polarized fields
RR arr  arn]| |[RT
=
LR aLrR aLL LT
(36)
P o
R
qu

It should be noted that we have abandoned the often used order of subscripts
(transmitted polarization first, received polarization second) for th2 mathe-
matically conventional order.

Using the transforms given in equations (21), (22), (33), and (34), the
elements of [Sy] and [Sc¢)] can be related, giving

[sc] - [RLC] [SL] [TLC] ; (37)

[SL] - [F:':]-l [SC] [TLC] . (38)

LI I S AP

R U T A

N T N e e e e St e A e AR T



(X

.. . w oy - -
:ﬂ*]lliﬂﬁffu

" S
l."'-ﬂ “'."..' .

A A A

c, )" 70,

2y
4 »
[ AR X :,

D
"
e'e o

.’ -D'ﬁ.l' :: )

[
K
.
.

The relationship between the linear and circular scattering matrices, as

expressed in equations (37) and (38), have been expanded; the results are pre-
sented in Table 1 dbelow.

TABLE 1., FUNCTIONAL RELATIONSHIPS AMONG THE COMPONENTS OF THE LINEAR
AND CIRCULAR SCATTERING MATRICES

Linear to Circular Circular to Linear

- _(aHH ; avv) iy ("Hv : aVH) agy ™ (aRL ;’ aLR) s (aRR : aLL)
)+J (a“v ; av“) ay = j[(a‘m ; al-l-\) _ (aRL ; aLR)}

ap .(i*i:z;al") -3 (a_HV__;;_f_V_H_) ayy = 3 I:(ama ; a1_1.) +(aRL ;%a)]
). (59)

3Lt aLR) _ (aRR M aLL)

= (2

2

8/

By invoking the reciprocity theorem, Berkowitz — has shown that for a
monostatic radar, the scattering matrix is symmetrical about its main diago-
nal. In terms of equation (6), the scattering matrix for a monostatic radar,
[S]“, can be expressed

- a1 ag2
[s) = (39)

a2 a2

The functional relationships amoag the components of the linear and circular
scattering matrices for the monostatic rader can be determined from equations
(37) and (38), or they can be deiermined from Table 1 by setting a g = apy and
agy = ayy. Results are presentel in Table 2 below.

8/ See Reference 4.
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TABLE 2, FUNCTIONAL RELATIONSHIPS AMOUNG THE COMPONENTS OF THE
LINEAR AND CIRCULAR SCATTERING MATRICES FOR THE
MONONSTATIC RADAR CASE.

Linear to Circular Ciecrular to Linear
_ Gy m ) I Sl
3RR 2 1 Ay 3y = 3L 7
i o~ a (Gug * ayy) . (agg = 3y1)
RL LR 2 v = Ay ] 3
. (agy = &) + 1 ay (agg + a,;)
aLL 2 aVV = aRL - 2

III. POLARIZATION SCATTERING MATRIX MEASUREMENT

In general, four amplitudes and four phases are required to completely
specify the scattering matrix. The phases are measured relative to the
transmitted wave, and include the change in phase of the transmitted wave over
the two way path, from radar to target and return, plus the phase change
experienced upon reflection from the target. Using equations (3a) through
(3d), the elements of the scattering matrix can be expressed in terms . ° the
transmitted and received fields, i.e.,

R
a = Ell-‘ , (40a)
11 T
El_
-R—\
- ElZ . (40b)
42 £l
[E2 _
ERT (4009
e =|-2L] c
21 T
1
and r-ERT
I 221, (404)
22 T
10
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where it should be remembered that the double subscript, 1j, refers to the

polarization state of the received and transmitted fields, respectively. In
matrix notation

s1 =7 L\ /g . (1)
a21 az2 EE;_ Ezg_
) &)

Clearly, measuring the a4 i's requires first transmitting one polariza-
tion state while recelving that state and the orthogonal state simultaneously,
followed by transmitting the orthogonal polarization and again receiving both
polarizations. A "two—pulse" measurement is needed.

The amplitude of the signals in each of the two receive channels can be
achieved by square-law detection. To determine the phases, the received
signal must be processed coherently; that 1s, it must be mixed with the
transmitted signal to produce a dc voltage which 1is a function of the relative
phase. Such a measurement is not easy, particularly for a pulsed system,
since the transmitted signal must be stored.

It 18 much easier, for the monostatic case, to measure the phases of the
received signals relative to each other.

Using the notation, as given in equation (7) and choosing ¢35 as the
phase term to be factored, the scattering matrix can be written as

| lalllej (¢11-¢12) Ialzl

912
[s] = el . 5 _ (42)
lazs] e? @217%12)  fagg[edP22712) .

Note that, in general, one must retain the first pulse received signals to com-
pare phase with the second pulse received signals.

For the monostatic radar case, which 1s of primary interest herein, ¢j2 =
¢2) and ,alzl = |az1|; therefore, for this case, equation (42) can be rewritten
8

|aqy] o (11 7 012) lalzl

[s]y = 312
(43)

|a12] azzlej(¢22_¢12)

11
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All that is required is a relative phase measurement between the orthogonal
receive channels for each pulse separately.

Suppose now we have a monostatic radar that is designed to sequentially

T 0
transmit | E1 | and | 7| and to simultaneously receive E% and E%

E
0 2
transmissions, where subscripts 1 and 2 indicat - orthogonal polarization sta--
tes. For this radar, the relative phase measurements can be made directly
from the received fields; the importance of this is that it is not required to
retain the phases of the transmitted fields. Using equations (40a) through
(40d) we readily obtain

for both

AR A A A R N i A A

1l
E
a - I 11i , (44a)
| 11! i
y
bl [
E
,a , a - , 1 S Y (44b)
21 12, IET ' il
2 I 1
R
E
- , 22| ’ {44c)
lazzl ET
= |
R | R |
. E E
S -0g) o i P (44d)
'ER , R
11 21
= exp [j (phase of Elfl - phase of Egl)]
and R R
. 2,
182, ¢15) N (46e)
IEzz| El2

= exp [j (phase of Egz - phase of E?z)].

As can be seen by ingpection of the latter two equations, the relative
phases are not functions of the phases of the transmitted flelds. 1In fact,
with the assumed dual channel receiver (i.e., a receiver that simultaneously
measures ER and ER), the relative phase measurements are determined solely
from simuléaneously received signals. This greatly eases the phase
measurement burden.
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For completeness, we substitute equations (44a) through (44e) into
equation (43); the result is

[/ & EX lERl B '\ |
T SR 3 12l } Pl
E1w =)\
(Sly = 912 . (45)
' B&_ o[ 153 E22 li?z_'
HACTACIRE
L

The term eJ¢12 i8 a funccion of radar—to-target distance, and is therefore not
easily measurable. Thus, except for this phase term, ([S}y can be specified in
terms of readily measurable radar quantities. We now specifically address
circular and linear polarization states.

In terms of circular polarization, equation (43) can be written as

. a . |ed(®rr ™ PR) a
(Scly = eI9RL , RR, , , (46

laRLI ‘ !aLLI .ej (¢LL - ¢RL)

and, for linear polarization, we have

e
E
\-

J(byy — ¢
e \ 'aHHI eI (P ™ Pvn) BN
‘,.;::. [S.lm = eJPHY ' '| (b - ¢HV) (47)
.:':' la[{vl laVV|
o
-g._.
o Using these two equations we define [Sglp and [Sp]ms via
. io
:.::: [sC]M = @’ RL [sc][n (48)
&
- and )
‘o i
A (5.0 = ' *HV (5] (49)
:::f 1t 1s of importance to note that [Sclp and [Sp]lp are those portions of [Scly
::«.' and [Sp]M, respectively, that can be quantified in terms of the radar measures
oy specified by equations (44a) through (44e) or by equation (45). By substi-
_!‘ tuting equations (48) and (49) into equations (37) and (38), and then
. rearranging slightly, we obtain :
>,
N i
N 13 i
",
o !
e |
=
: |
\ )
yor
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-1 (5C)
o Cre ™ Puv) (s 1, = (Ryg) (5] (Trc)

and
: - -1
od v T Puv 1], = (R (Sg), [Tycl (51)

4 AP ~ Xty

Except for the constant phase difference of + (égr;-¢yy), these equations are
the same as equations (37) and (38), respectively; the functional relation

fﬁ listed in Table 2 are essentially valid for [Sc]  and [SL]m.
jH In this section we have developed relationships specifying scattering
oL matrix alements in terms of received and transmitted fields. However, we have
o been somewhat lax in our use of these field quantities. In particular, we
have equated the received field to the field raflected by the target, and we
SN have equated the transmitted field to the field incident on the target.
-f: Although the received and transmitted fields can be scaled to the reflected and

incident fields, respectively, we should be more specific abeut these field
quantities.

PACAAE A
. ¢ 8
2%

Consider a monostatic radar operating in a lossless homogeneous medium.
From the radar range equation, the teceived power, Pr4y, is related to the
transmitted power, Ptj' by

".""'.l."'%

P..G ) A
P, = (__tj_) A3,
i 4 R2 4n R2 (52)

where the subscript i and j refer to the polarization states of the received
and transmitted fields, respectively; G is the effective antenna gain, o1y 1s
the cross section of the targat for the case of received polarization of state
"i" and transmitted polarization of state "j", A is the effective area of the
antenna, and R is the distance batween radar and target. Let us further sup-
pose that there are two peruissible polarization states denoted by (1,2), with
the two polarization states being orthogonal. In general then, 1 and j can
take on any combination of values denoted by

1,3 = 1,2 .
Rearranging equation (52), we can express dij gg

' P
ri )
e o1 = 4n R2 ( é

L2 . (53)

= (Teiins?)

v,
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The quanity (Pp4/A) is the power density (power per unit area)6 OE the S
- M .’.
t
intensity, of reflected signal at the radar, and the quanity ‘“lf is the .
intensity of the radar signal incident on the target. Referr ng to equation e
(1), 1t should be obvious that the magnitudes of the reflected fields at the s
radar and the transmitted fields at the target are gliven by

lEiji= a (PriA>;5' (54a)

ks

T.=a<P c) .
i ) 4y 18

and

where the subscripts are included so as to maintain the polarization referen-
ces, and a is a constant.

Although not qﬁite as sﬁ;aight forward, the above procedure can be
used to determinelEij| andlE | for the case of a monostatic radar operating in

3

a homogenous, lossy medium. The results are expressible as

1
R -20R | 2 (55a)
= P e
Bag| = * |\ P
A
and -2
IE§ l = aPi® ar % o

4TRZ e (55b)

where o represents the attenuation coefficlent of the wedium.

T
We wish to emphasize that IE?j land,E j! are not direct radar measures,
but they can be related to measures of received and transmitted power. In
addition, by determining the phases of the radar signals, the phases of ER
and Ej can also be determined. Thus, when we refer to received and )

transmitted fields we are, strictly speaking, referring to E?j and E?.
Iv, POLARIZATION SCATTERING MATRICES FOR SIMPLE TARGETS

In this section, we heuristically derive monostatic scattering matrices
for a dipole, an odd-bounce reflector (e.g., plate, sphere, curved surface, or

 ’;}: ) trihedral corner reflector), and a dihedral corner reflector. Results are
: ﬁ:. presented for both linear and circular polarizaticns. It will be noted that
e theses scattering matrices provide for partitioning pelarization and for the
NG ) phase change of each polarization component, but they do not account for
A amplitude. To account for amplitude, the scattering matrix must be multipled
O by a real non-negative constant. This constant can be estimated in the
TS following manner: first determine the cross section of the target under con-
- XY .
h“,
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sideration, via the procedures given in manv radar textsgl (this cross section
1s usually given for same sense linearly polarized transmitted and received
signals), and then scaled via the radar range equation; the constant is the
square root of this scaled cross section.

A. DIPOLE TARGET

Assume that a thin wire (diameter << wavelength) or a sharp edge of
a conducting body is constrained to lie parallel to the %X, § plane and at an
angle @ with respect to the §; Z plane (see Figure 1). Assume further that a
~ransmitted field EI = HT ¥ 4 vT ¥ is normally tncident on the wire. For
such a field, the induced current along the dipole is proportional to the pro-
jection of incident electric field along the axis of the dipole. The rera-
diated field i{s proportional to the induced current, and it is polarized along
the axis of the dipole. Thus, the induced current, 14, is expressible as

13 a HT cos ¥ + VT gin Y, (56)
and the reradiated fizld, fa, i1s, therefore, given by

Ey o (8T cos Y + VT sin Y) V- (57)

where ¢ ig‘a uniF vector parallel to the wire. This rnit vector, expressed in
terms of X and ¥, can be written

T=cosY £+sinY T . (58)

—t R
The reradiated field and the rcceived field, ER’- HX + VR?; are also

proportional; therefore,

- HR a HT co82 Y + VT gin Y cos Y, ' (59a)

;{\

L$£ and _

r"*." VR ¢ HT sin Y cos Y + VI sin2 Y. (59b)
g

)

:}; Referring to equations (3a) through (3d), one can easily ghow that the dipole

:{; scattering matrix, [SL] dipoles [OFr linear representation of polarization is

e given by

e

:jf‘ cos2 sin Y cos Y

o {sL} = 5 (60)

_:; : dipole sin Yy cos Y sin” Y

-

NI 9/ See Reference 5.
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Figure 1, Dipole parallel to the ?, ? plane.

The dipole scattering matrix for circular polarization, ISC]dipole» can
be obtained directly from equation (47) and Table 1. The result is

" \ 0%

¥ A
RIRICR Vo

e~ 32y 1
[Sc) - (61)
dipole
1 ejZY

A .
o
i

(AL

4
.

B. ODD-BOUNCE TARGETS

e

Odd-bounce targets refer to area targets having dimensions >>
. wavelength; this includes flat plates, trihedrals, and curved surfaces, where

)

RN the curved surfaces are also conditioned by the requirement that their radii
N of curvature >> wavelength. Consider a flat, perfectly conducting plate
= aligned parallel to the ®, § plane, with a transmitted field EI = HIR + VI§
20N incident on the plate. To maintain the boundary requirement of zero field on
A the surface of the plate, the reflected fleld, TR must be equal to -ET at the
@ surface of the plate; therefore, we have

o

o~

N 17
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FR m TR -VIF. (62)

The linear scattering matrix, {Si]

1 ]
(51 - \ (63)
odd-=bounce

odd-bounce’ is thus obviously given by

0 1

—

where we have suppressed the (-1) coefficient.1d

Again using Table 1, it can be readily gshown that in circular represen-
tation the scattering matrix can be expressed

0 1
(5¢) - . (64)
odd-bounce
1 0

It is of some interest to compare the linear and circular scattering
matrices given by equations (63) and (64). 1In linear notation, the retrn is
co-polarized (same polarization received as transmitted), and in circular
notation, the return 1s cross-polarized (opposite polarization received as
transmitted).

C. DIHEDRAL TARGET

Assume that a dihedral is located so that its seam is parallel to the
X, ¥y plane, that its seam makes an angle O with respect to the x, z plane,
that its retro-reflecting face is composed of perfectly conducting planes, and
that all dihedral dimensions >> wavelength. The incident radiation 1s normal
to the seam.

Now consider a transmitted field, El = TR + VvI§ , incident on the
dihedral. This incident field can be written as

Bl = (BT cos a + VI sin a) @+ T sina - VT cos a) B, 65?

where % 18 a untt vector paralled to the dihedral gseam, ﬂ is a unit vector
perpendicular to %, and B x QG =Z. In terms of the unit vectors x and y we
have,

i

'&-cosa?+sina?, (66a)

10/ This turn would not affect relative phase, and therefore, since we are
inteieated only in relative phase, Suppressing it does not affect our
results.
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ﬁ-sinaﬁ-—cosa?. (66b)
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Figure 2. Dihedral parallel to the ¥, ¥ plane.

The term (HT cos a + VI sin @) @ is the portion of the incident fileld that is

polarized parallel to the d;hgdral seam; the remaining portion of the incident

field (HT sin « - VT cos a) B 1s polarized perpendicular to the dihedral seam.
First, consider the parallel component of the incident field; boundary con~
ditions of zero field on the dihedral surfaces require that, upon ‘each reflec-—
tion, the phase of the field be shifted by 180°. Thus, for two reflections,
the reflected field would be <ne same as the incident field. 1In a similiar
manner, it can be reasoned chat the perpendicular portion of the incident field
experiences a total of 1809 phase shift upon reflection from the dihedral;
thus, the refected portion is (~H sin a + V cos a) B. The total reflected
field, ER, can therefore be expressed as
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ER w (HT cos a + VI gin a) & + (-HT gdna + VT cos a) B . (67)

Using equations (66a) and (66b) we can write

=R .
E = (HT cos2 a + VT sin2 a) X + (HT sin2 a -vT cos2 a) Y. (68)

Setting ER = HRX + VR, and using matrix notation we have

HR cos2 « sin2 « | HT

.
.
-

o vR sin2 @ = cos2 & vT . (69)

Therefore, the linear scattering matrix for a dihedral can be written

. cos2 a sinZ «
-5 (L) - (70)
- dihedral -
[ © sin2 «o -c082 «
N
L,
. The corresponding circular scattering matrix can be obtained directly from
Ay this equation and Table 1;
i
-t [Scl - e‘Jza 0 (71)
: diherdral o ed2a ] .
Vo
2 V. MIXED POLARIZATION SCATTERING MATRIX
At
“.:-\: The polarization scattering matrix, as previously stated, is dafined for
< a pair of orthogonal polarizations and for transmitting and receiving these
o4 same polarizations. We can, however, define a matrix that relates different
- received and transmitted polarizations, that is, a "mixed matrix.”
®
"\{. A mixed matrix, of some interest, is that resulting from relating cir-
‘\-{ cularly polarized transmitted fields to linearly polarized received flelds.
- O This mixed matrix can be defined, via equation (5), as
R |
. AR agR AL RT
.f R B T
::: l_-V ayr ayr, L
G rT (72)
. = [McL]
- .' L L]
B
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e
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‘:j

- et Tttt At
{4 T ¥ PR BTN SO S WY
o .

AT T LTSN N

At a® e
) .
.} A o a V}-’:




Using equation (34), the mixed matrix can be expressed in terms of the cir-
cular scattering matrix as

;u -1

(McL] = [Rrcl [Scl - (73)
~ o

:kt The reverse transformation is therefore given by

R [Sc] = [Rec] (McLl- (74)

Using equation (22), the mixed matrix can be related to the linear scattering
matrix, i.e.,

-1

McL) = ISL] [Trel (75)

the reverse relationship 1s expressed as

(L] = McL]l [Trcl. (76)

o The relationship among the matrix components, as specifled in equations (73)
:{? through (76) are tabulated in Tables 3 and 4 below. For the monostatic radar
o case, ajp = ag] for both linear and circular scattering matrices. However, in
O general, the mixed matrix is not symmeterical about the main diagonal. This

. results from the fact that the mixed matrix is defined for different states of
transmitted and received polarizations; whereas, scattering matrices are
defined only for orthogonal transmitted and received polarizations pairs.
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TABLE 3. FUNCTIONAL RELATIONSHIPS AMONG THE COMPONENTS OF THE
CIRCULAR SCATTERING MATRIX AND THE MIXED MATRIX
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TABLE 4. FUNCTIONAL RELATIONSHIPS AMONG THE COMPONENTS OF THE
LINEAR SCATTERING MATRIX AND THE MIX MATRIX

Linear to Mixed Mixed to Linear
o om0y W ol
HR ‘ﬁz‘ HH ‘[5-
- oo e T tw
w T W T
N LT3y oA _Ar t Ay
R 22 "R vz
_ 32wy + Pwm avv'j yr " %vL
aVL VE- Vid

As a further result of this nonsymmetry, the ability to determine all
essential parameters of the polarization scattering matrix, using two~channel
relative phase measurements, 1s lost.

T
LY

Using the relations in Table 3 or Table 4, cne can derive the mixed

matrix for the simple targets discussed in Section IV. These matrices are
given in Table 5.
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&y’} TABLE 5. MIXED MATRICES FOR SIMPLE TARGETS
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Target Mixed Matrix
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VI. POLARIZATION SCATTERING MATRIX FOR COMPLEX TARGETS

The concept of the polarization scattering matrix, in the following deve-
lopment, {8 extended to complex (i.e., “complicated ") targets under the
assymption that the target RCS 13 dominated by specular reflections. The
target consists of n reflectors each described by a matrix

ai ai

‘ 11 12
[s7] = * (17

1 1

21 472

where the superscript denotes the ith reflector.

The total scattering matrix elements will be a phasor sum of each of the
a}k taking into account the phase shifts resulting from the range distribution

of the reflectors. If the matrix for the total target is

Ay Ay ' (78)
[sl‘] - ’
Ay A2

and if Ry 1s the range to the 1th reflector, then, for the momnostatic case,

o n
- Ay = Z ai ex [- 2n Eﬁ) f] (79)
- 11 11 P ] < »

i=1

)

2 n 2R

?2-: Agg = E 822 exp | j2nw e (80)
NN i=}

K

ML

® and
- i 2R
. . :E: i . i

;.'_:~.j , Ajg = Ay = a , exp [-JZTT —c—)]f , (81)

[

" Again, the various phase shifts resulting from surface reflections need to be
N included in the a's. It is argued, however, that since the target extent is
%}':-:. much larger than the wavelength, and since any given phase shift 1s equivalent

Ca

to a range displacement of less than a wavelength, the general polarization
properties of the target can be grasped without including these phasa ghifts.
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Equations (79) through (81) demonstrate very clearly the dependence of
the matrix elements of transmitted frequency and target orientation, even 1f
the zarget 18 a collection of gpheres. Note that it has been assumed, that
all reflectors are equally illuminated by the radar. Also, the equations
indicate that the returns from a pair of reflectors may comstructively or
destructively interfere, and the nature of the interference changes with
changing target orientation or with changing transmitted frequency. The first
phenomenon is well known as amplitude scintillation. The latter phenomenon
has been investigated as a target classification tool referred to as
“frequency-diverge target scintillation.'}l

Applying equation (79) to the case of same—sense linear polarization and
recalling that

ag = Jorx ed®ik, (82)
and

o1k = ,aiklz . (83)

iﬁ the total radar cross section is found to be the well-known result,
- 2
3 BTN
}...: OT = IA, 2 Oi e] i > (84)
- . d=1
_15_ where the phase factors ¢4 include phase change on reflection and phase delay
g because of the distance from the radar.
g,
)
R An important, although perhaps intuitive, result of equations (79)
~ through (81) 1is that the target retains the polarization character of its
_,{" individual reflectors. For example, if the individual reflectors are largely
N odd-bouce (aﬁL), then Agy, will, on the average, be large, and the target can
e be considered an odd-bounce target. The "average” referred to above is an
) average over a number of frequencies, a number of aspect angles, or a number
}: of different targets (clutter patches, for example) with random spatial
.- distributions.
® a4
K¢
P
0
R
. 11/ See Reference 6.
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