
10.1098/rspa.2000.0660

Polarization singularities in isotropic
random vector waves

By M. V. Berry a n d M. R. Dennis

H. H. Wills Physics Laboratory, University of Bristol,
Tyndall Avenue, Bristol BS8 1TL, UK

Received 24 May 2000; accepted 8 August 2000

Following Nye & Hajnal, we explore the geometry of complex vector waves by regard-
ing them as a  eld of polarization ellipses. Singularities of this  eld are the C lines and
L lines, where the polarization is purely circular and purely linear, respectively. The
singularities can be reinterpreted as loci of photon spin 1 (C lines) and 0 (L lines). For
Gaussian random superpositions of plane waves equidistributed in direction but with
an arbitrary frequency spectrum, we calculate the density (length per unit volume)
of C and L lines.
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1. Introduction

At each level of wave physics, singularities arise, and they are dissolved in the passage
to a deeper level of description (Berry 2000). In geometrical optics, the singularities
are caustics, that is, envelopes of families of rays (Arnold 1986; Berry & Upstill 1980;
Nye 1999). In complex scalar waves, the divergences at caustics are smoothed and
decorated by di¬raction. But the additional property that wave physics introduces
(phase) has its own singularities, namely, dislocations or optical vortices (Nye &
Berry 1974; Nye 1999; Freund 2000), in the form of lines where the intensity vanishes
(threads of darkness). When scalar waves are themselves an approximate description
of a vector theory, as with light, dislocations are in turn dissolved. However, in the
physics of vector waves, there is a further additional property (polarization) with its
own line singularities, where the polarization is purely circular or purely linear (Nye
1991; Nye & Hajnal 1987).

It is these singular lines in polarization  elds that we will study here, with an
emphasis on their statistics for vector waves that are random. Our aim is to generalize
to vector singularities our recent calculations of statistics of dislocation lines (Berry
& Dennis 2000). This work is prompted by renewed interest in wave singularities,
arising from interference experiments with lasers (Soskin 1997; Vasnetsov & Staliunas
1999), and also by random wave  elds that occur naturally, for example, black-body
radiation.

Section 2 is largely a review of the work of Nye & Hajnal (1987); we establish
notation for complex vector waves, describe the polarization ellipse that relates the
complex vectors to the real vectors and obtain conditions for the line singularities
of polarization. In addition, we derive formulae for the directions of the lines. In x 3
we reinterpret the polarization singularities in terms of photon spin operators and
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142 M. V. Berry and M. R. Dennis

their eigenstates, and relate the local wavenumber to the local quantum expectation
value of momentum. Section 4 introduces our statistical model of isotropic Gaussian
random vector waves and the tools for calculating averages. The calculations of the
averages themselves are carried out in x 5; for the two sorts of polarization line
singularity, we determine the average line length per unit volume (equal to twice the
mean number of lines piercing unit area).

2. Polarization ellipse and singularity geometry

We consider time-dependent three-dimensional complex vector  elds E(r; t), which
can be written in terms of their real and imaginary parts:

E(r; t) = P (r; t) + iQ(r; t): (2.1)

(In the following, all t dependence will be suppressed, and also all r dependence
when this will not cause confusion.) E can, for example, be regarded as the complex
electric  eld in a light wave, taken as the complex analytic signal (positive-frequency
part) of the real  eld (Mandel & Wolf 1995).

The polarization ellipse (Born & Wolf 1959; Nye & Hajnal 1987) is traced out by
the vector

Re E exp( ¡ i À ) = P cos À + Q sin À (2.2)

as the phase À is varied. The vector sweeps out equal areas of the ellipse for equal
intervals of À , and P and Q are conjugate radii (that is, each is parallel to the
other’s tangent). Nye & Hajnal (1987) consider monochromatic waves, for which À
is proportional to time, so the ellipse is repeatedly traced out in real time. There is a
special value À = À 0 (mod º ), such that E exp( ¡ i À 0) = P0 + iQ0; where P0 and Q0

are the (orthogonal) major and minor semiaxes of the ellipse. We thus have a ¯eld of
polarization ellipses (changing if the waves are non-monochromatic), with the ellipse
at each point lying in the P ; Q-plane.

The polarization ellipse at each point in space has an orientation given by the unit
normal ne(r), which also de nes the direction of increasing À (that is, the sense of
circulation of the ellipse). ne(r) is given by

Ne(r) ² Ne(r)ne(r) = 1
2

Im[E ¤ (r) £ E(r)] = P (r) £ Q(r): (2.3)

Thus the ellipse  eld also de nes a  eld of orthogonal frames fP0(r); Q0(r); ne(r)g.
There are two types of line singularity of the polarization  eld. The  rst is where

the polarization is purely circular. For the ellipse (2.2) to be a circle, the real vectors
P and Q must be equal in length and orthogonal. These are two conditions, so
loci of pure circular polarization have codimension two and so are lines in space;
we refer to them as C lines (Nye & Hajnal (1987) used the term CT lines, with
T denoting `true’, to avoid confusion with analogous singularities in paraxial  elds
(Nye 1983)). The singularity in this case is the orientation of the axes of the ellipse,
which is not uniquely de ned for a circle, so the phase À 0 cannot be de ned on a
C line.

With the de nition of a complex scalar  eld

Á ² E E ² ¹ + i ² = P 2 ¡ Q2 + 2iP Q; (2.4)
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the C line condition implies

Á(r) = 0 (r on a C line) (2.5)

(that is, E is nilpotent).
Since a C line is the intersection of the zero surfaces ¹ = 0 and ² = 0, the unit

direction nC of the line, which lies in both surfaces, is perpendicular to their two
normals, and so is given by

NC ² NCnC = r ¹ £ r ² : (2.6)

A C line is generically a singularity with index § 1
2
, about which the local pattern

of (nearly circular) ellipses rotates by half a turn (this is consistent with C being an
index §1 dislocation singularity of Á, because Á involves E quadratically).

The second type of singularity is where the polarization is purely linear. For the
ellipse (2.2) to be a line, the vectors P and Q must be (anti)parallel, so the complex
vector E is the product of a real vector and a complex phase factor. We denote
the unit direction of this real vector (parallel to P ; Q) by eP . Parallelism of vectors
corresponds to two conditions, so loci of pure linear polarization have codimension
two and thus are lines in space; we shall refer to them as L lines (Nye & Hajnal used
the term LT lines). The L condition implies that, in terms of (2.3),

Ne(r) = 0 (r on an L line): (2.7)

This implies that an L line is a singularity with index §1 in the plane perpendicular
to eP , about which the local pattern of vectors Ne rotates by a full turn.

In Appendix A we show that the direction nL of the L line is given by

N L ² NL nL = 1
2
(ra £ rb)(Ne;a £ Ne;b eP ); (2.8)

where the su¯ xes a and b indicate the vectors on which the r operators act.
L and C lines can be interpreted as degeneracies of the r-dependent real symmetric

matrix PiPj + QiQj , whose eigenvalues are Q2
0, P 2

0 and zero, and whose eigenvectors
constitute the frame P0, Q0, ne. C lines are where the non-zero eigenvalues coincide
and L lines are where the zero eigenvalue coincides with one of the others. Degen-
eracies of real symmetric matrices have codimension two (i.e. they are diabolical
points (see, for example, Berry 1984, p. 50)), concordant with the fact that L and
C singularities are lines.

3. Relation with photon spin and momentum

It is interesting (especially in view of recent re-examinations of photon angular
momentum (Allen et al . 1999; Berry 1998; Simpson et al . 1997)) to recast the results
of the preceding section in a manner that evokes the quantum description of light.
This is based on the identity, for any vectors A and B,

A £ B = ¡ i(A Ŝ)B; (3.1)

where the three components of the Hermitian vector operator Ŝ can be represented
by the following matrices, acting on the column vector B:

Ŝ = fŜx; Ŝy ; Ŝz g =
0 0 0
0 0 i
0 ¡ i 0

;
0 0 ¡ i
0 0 0
i 0 0

;
0 i 0
¡ i 0 0
0 0 0

(3.2)
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in terms of the antisymmetric symbol, Si;jk = i"ijk. Ŝ satis es the commutation
relations for spin-1 quantum particles, namely (in units of ~),

Ŝ £ Ŝ = iŜ: (3.3)

Now let the  eld E be regarded as a state, parametrized by r and t, and represented
by its corresponding complex unit 3-vector e, using the convenient Dirac notation

e ² Ep
E ¤ E

;
ex

ey

ez

² jei; e¤
x e¤

y e ¤
z ² hej; he0jei ² e0¤ e: (3.4)

Then the expectation value S of the operator Ŝ can be written (after using the
antisymmetry of Ŝ) as

S ² hejŜjei = Im(e ¤ £ e) =
2Ne

E ¤ E
: (3.5)

Thus the local spin state can be regarded as a vector normal to the polarization
ellipse.

C and L lines now appear as loci of special spin values. We have (cf. equations (2.4)
and (2.5))

S2 ² S S = ( ¡ ie ¤ £ e) ( ¡ ie ¤ £ e) = 1 ¡ je ej2 = 1 on a C line: (3.6)

Therefore, C lines correspond to spin-1 states; it is not hard to show that in this
case, jei is an eigenstate of the operator ne Ŝ, with eigenvalue +1 (the sign cor-
responds to the fact that ne gives the direction of circulation of e around the
ellipse). For the L lines, equation (2.7) shows that the expectation S=0, and indeed
jei is an eigenstate of the operator e Ŝ, with eigenvalue 0. These results gen-
eralize the familiar relations between photon spin and the polarization of light
 elds.

It is worth remarking that the spin and Dirac notations enable the formula (2.8),
for the direction of an L line, to be written in a slightly more transparent form,
namely,

N L = 1
2
N2

e Imhrnej £ (eP Ŝ)jrnei; (3.7)

where the cross product connects the gradients.
Within the same framework, the natural de nition of the wavevector k of the  eld

E is as the local expectation of the momentum operator in the state jei, namely,

k ² ¡ ihejrjei: (3.8)

As pointed out by Nye (1991), this is also the geometric phase 1-form connecting the
 elds at neighbouring points. Unlike the wavevector for a  eld of rays in geometrical
optics, k is non-integrable. Indeed, there is a geometric phase ® ( ¡ ), de ned by the
integral of k round a circuit ¡ in r, with the following meaning. Imagine a unit
vector e0, equal to e at each point r apart from a phase that is determined by
parallel transport from some starting point on ¡ where e0 = e, that is, by the rule
he0jrjei = 0. Then ® ( ¡ ) is the phase di¬erence between e0 and e at the end of the
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circuit. ® ( ¡ ) is also the ®ux through ¡ of a 2-form, which can be written, using the
su¯ x notation of (2.8), as

D ² r £ k = Imhrej £ jrei = Im ra £ rbe
¤
a eb: (3.9)

We have not found an interpretation of D in terms of the polarization geometry
of the  eld E. Singularities of D, analogous to the codimension-3 monopoles of
geometric phase theory (Berry 1984; Shapere & Wilczek 1989), occur where the  eld
strength E ¤ E vanishes, but this is a codimension-6 phenomenon and so will not
occur generically in a wave- eld in space (or spacetime).

4. Gaussian random vector waves

Generalizing the scalar theory of Berry & Dennis (2000), we write the complex
vector wave as a superposition of many transverse plane waves with wavevectors k,
frequencies !(k) and random phases · k ,

E(r; t) =

k

aknk expfi(k r ¡ !(k)t + · k)g: (4.1)

Each wave k is characterized by its real scalar amplitude ak and the complex unit
vector nk , perpendicular to k, representing its polarization. Thus n ¤

k nk = 1,
k nk = 0 (so r E = 0). Explicitly, using a temporary coordinate frame with
axes 1, 2, 3, with 3 along k, and polar angles ¬ and  on the Poincaŕe polarization
sphere (Born & Wolf 1959):

nk = fcos( 1
2
¬ k) exp( ¡ 1

2
i k); sin( 1

2
¬ k) exp( 1

2
i k ); 0g: (4.2)

(We could also incorporate randomness in the amplitudes ak , but this is not neces-
sary.)

The distribution of k is assumed su¯ ciently dense for the sum (4.1) to represent an
ensemble of Gaussian random functions, parametrized by · k , ¬ k ,  k , with averaging
de ned by

h i ²
k

1

2 º

2º

0

d · k

p h as e average

1

4 º

º

0

d ¬ k sin ¬ k

2º

0

d k

p olarization average

: (4.3)

(The assumption here, that polarizations are uniformly distributed on the Poincaŕe
sphere for each plane-wave component, can be shown to be equivalent to indepen-
dence of the Cartesian components of the complex nk).

The power spectrum ¦ (k) of the wave, for the case of isotropic randomness that
we consider here, is de ned by

k

a2
k ² dk

1

4 º k2
¦ (k) ; (4.4)

where here and hereafter dk = dkx dky dkz , etc. The singularity densities to be
calculated in xx 5 and 6 will depend on the second moment,

k2 ²
1

0

dk k2 ¦ (k)
1

0

dk ¦ (k): (4.5)
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Two important special cases are monochromatic radiation with wavenumber k, where
obviously k2 = k2, and black-body radiation with temperature T , for which (Berry
& Dennis 2000)

k2 = 40
21

º 2k2
T ² 40

21
º 2 kBT

~c

2

; (4.6)

where kB is Boltzmann’s constant.
To save writing, and without loss of generality, we use the normalization

1

0

dk ¦ (k) = 1: (4.7)

Thus

hE ¤ Ei = 1: (4.8)

It is not hard to show from (4.2) and (4.3) that all components of the real and
imaginary parts P and Q of E (cf. (2.1)) are independent and identically distributed
random variables, with probability densities and variances

« (P ) =
3

º

3=2

exp( ¡ 3P 2); « (Q) =
3

º

3=2

exp( ¡ 3Q2);

hP 2
x i = hP 2

y i = = hQ2
zi = 1

6
:

(4.9)

We will also require the following averages over derivatives of P and Q, derived in
Appendix B:

h(@xPx)2i = h(@yPy)2i = = 1
30

k2;

h(@xPy)2i = h(@yPx)2i = = 1
15

k2;

h@xPx@yPyi = h@xPy@yPxi = = ¡ 1
60

k2:

(4.10)

5. Density of C lines

From (2.5), C lines are de ned by the vanishing of the complex scalar Á de ned
by (2.4) and hence by the vanishing of its real and imaginary parts ¹ and ² . Inte-
grating ¯ ( ¹ ) ¯ ( ² ) over a volume, including the appropriate Jacobian, and averaging
(see Berry & Dennis (2000) for several examples of this procedure), we obtain, for
the mean length of C line per unit volume,

dC = h ¯ ( ¹ ) ¯ ( ² )jr ¹ £ r ² ji: (5.1)

The required averages involve the probability densities of P and Q, and the gra-
dients of these quantities. Although the ¯ -functions are not independent of the Jaco-
bian, the following stratagem enables the averages to be evaluated separately. We
denote by « (U ; V ; P ; Q) the conditional probability density of U ² r ¹ and V ² r ²
with P and Q  xed, that is, averaging only over the gradients of P and Q, rather
than the vectors themselves. Thus, in an obvious notation,

« (U ; V ; P ; Q) ² h ¯ (U ¡ r ¹ ) ¯ (V ¡ r ² )i(P ;Q): (5.2)
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Then (5.1) can be written

dC = dP dQ « (P ) « (Q) ¯ (P 2 ¡ Q2) ¯ (2P Q)

£ dU dV « (U ; V ; P ; Q)jU £ V j: (5.3)

Writing the ¯ -functions in (5.2) as Fourier integrals, and making use of the fact that
the resulting exponent depends linearly on the Gaussian variables rPx, etc., we
obtain

« (U ; V ; P ; Q) ² 1

(2º )6
ds dt expf¡ i(U s + V t)g

£ hexpfi(s r ¹ + t r ² )gi(P ;Q)

=
1

(2º )6
ds dt expf¡ i(U s + V t)gexpf¡ 1

2
T g; (5.4)

where (introducing an obvious su¯ x notation)

T ² h(s r ¹ + t r ² )2i(P ;Q) = 4[(sisk + titk)(PjPl + QjQl)h@iPj@kPli]: (5.5)

Anticipating the integrations over the ¯ -functions in (5.3), we can incorporate the
orthogonality and equal length of P and Q, and exploit isotropy, by writing

P = (P; 0; 0); Q = (0; P; 0): (5.6)

Thus

T = 4P 2[(s2
x + s2

y + t2
x + t2

y)(h(@xPx)2i + h(@xPy)2i)+2(s2
z + t2

z)h(@xPy)2i]
= 4P 2k2[ 1

10
(s2

x + s2
y + t2

x + t2
y) + 2

15
(s2

z + t2
z)]; (5.7)

where (4.10) has been used.
The s and t integrations in (5.4) are Gaussian, leading to

« (U ; V ; P ; Q)(P = Q;P Q = 0) =
375

256 º 3k3
2P 6

exp ¡ 5

4k2P 2
(U2 + V 2 ¡ 1

4
(U2

z + V 2
z )) :

(5.8)

After rescaling U and V , the P and Q integrations in (5.3) are elementary, and the
C line density becomes

dC =
9k2

320 º 4
dU dV jU £ V j expf¡ 1

2
[U 2 + V 2 ¡ 1

4
(U2

z + U 2
z )]g: (5.9)

In Appendix C this six-fold integral is evaluated, giving

dC = k2
3

10 º
+

1

5
p

3
= 0:210 96 k2: (5.10)

This is the main result of this section. We make three remarks.

(i) Just as for dislocation lines in scalar waves (Berry & Dennis 2000), the mean
density of points where C lines cross a plane is 1

2
dC.
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(ii) 1
2
dC is close to the result k2=(3 º ) = 0:106 10 k2 for the density (length per unit

volume) of scalar dislocation lines (Berry & Dennis 2000) (the appearance of
1
2
dC is unrelated to that in (i)).

(iii) For monochromatic radiation with wavelength ¶ = 2 º =k, and for black-body
radiation with thermal wavelength ¶ T = 2 º =kT (cf. (4.6)), the densities are

dC =
8:3283=¶ 2; monochromatic ;

156:57=¶ 2
T ; black-body:

(5.11)

6. Density of L lines

Following Appendix A, we consider an L line through r = 0, for which P and Q
have the common direction eP = ez , and whose direction nL is parallel to A £ B,
de ned in (A 1) and (A 2). We seek the density which, when integrated over a small
volume surrounding r = 0, gives the length of L within the volume. From (A 2),
¯ (A r) restricts the integral in x, and ¯ (B r) restricts the integral in y, so the
product ¯ (A r) ¯ (B r) restricts the integral to L; to give the correct density, it
must be multiplied by the transverse Jacobian @A r @B r=@x@y, and divided by
the cosine of the angle between N L and ez . It is not hard to show that the required
density is

¯ (A r)̄ (B r)jA £ Bj (6.1)

(note that jA £ Bj is the length of the vector NL in (2.8)).
Now, A r and B r are the x and y components of the vector P £ Q that lies in

the xy-plane; therefore, we can use the identity

¯ (a) ¯ (b) =
¯ (

p
a2 + b2)

º
p

a2 + b2
: (6.2)

The mean length of L line per unit volume can now be written as the average

dL =
¯ (jP £ Qj)
º jP £ Qj jA £ Bj : (6.3)

Now the procedure is similar to that of the last section. We de ne the condi-
tional probability density « (A; B; P ; Q) of the quantities A and B de ned in (A 1)
and (A 2), for P and Q  xed (and parallel). Thus

« (A; B; P ; Q) = h ¯ (A + P rQy ¡ QrPy) ¯ (B ¡ P rQx + QrPx)i(P ;Q); (6.4)

and so (6.3) can be written as

dL = dP dQ « (P ) « (Q)
¯ (jP £ Qj)
º jP £ Qj

dA dB « (A; B; P ; Q)jA £ Bj: (6.5)

The single-vector densities are given by (4.9). We calculate (6.4) by writing the
¯ -functions as Fourier integrals and evaluating the resulting average (cf. (5.4)). Thus

« (A; B; P ; Q) =
1

(2 º )6
ds dt expf¡ i(A s + B t)g expf¡ 1

2
F g; (6.6)
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where

F = h[s ( ¡ P rQy + QrPy) + t (P rQx ¡ QrPx)]2i(P ;Q): (6.7)

The averages over derivatives are given in (4.10), which, after exploiting the fact that
P and Q are parallel, lead to

F = k2(P 2 + Q2)[ 1
30

(s2
y + t2

x ¡ sxty ¡ sytx) + 1
15

(s2
x + s2

z + t2
y + t2

z)]: (6.8)

The s and t integrals in (6.6) are now Gaussian, and give

« (A; B; P ; Q) =
450

p
5

[ º k2(P 2 + Q2)]3
exp ¡

H(A; B)

2k2(P 2 + Q2)
; (6.9)

where

H(A; B) = 16(A2
x + B2

y) + 8AxBy + 40(A2
y + B2

x + AyBx) + 15(A2
z + B2

z ): (6.10)

Rescaling A and B in (6.5) enables the P and Q integrals to be evaluated, using

dP dQ expf¡ 3(P 2 + Q2)g
(P 2 + Q2)

jP £ Qj
¯ (jP £ Qj) = 2

9
º 3: (6.11)

Thus the L line density becomes

dL =
2700

p
5k2

º 4
dA dB jA £ Bj expf¡ 1

2
H(A; B)g: (6.12)

In Appendix D this six-fold integral is evaluated, giving the  nal result of this section,

dL = 0:213 60 k2: (6.13)

Comparison with (5.10) shows that the densities of L and C lines are nearly but
not quite equal.

These predictions are in rough agreement with numerical calculations in  gure 8
of Nye & Hajnal (1987), showing a section of a monochromatic  eld of the form (4.1)
containing six plane waves. The section, with area 100=k2, is pierced by seven C lines
and eight L lines, whereas (5.10) and (6.13) would predict about ten lines of each
type.

7. Concluding remarks

We have studied the C and L lines identi ed (Nye & Hajnal 1987) as the singularities
of complex vector waves, that is, singularities of  elds of polarization ellipses. But the
following naive argument leads to the fallacious conclusion that the L singularities
would be surfaces rather than lines. On the Poincaŕe sphere (Born & Wolf 1959)
that represents polarization, the two circular polarizations correspond to two points
(the poles), while the linear polarizations correspond to a line (the equator), so
C singularities would have codimension two, corresponding to lines in space, and
L singularities would have codimension one, corresponding to surfaces in space.

The error lies in the use of the Poincaŕe sphere to describe waves that do not have
a unique direction of propagation and so require all three spin-1 components rather
than the familiar two (cf. Berry 1987, x 5). A correct version of the argument can
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be given in terms of the Majorana sphere (Hannay 1996, 1998), where a spin-1 state
(e.g. light at a point) can be represented by two dots on a sphere. It can be shown
(Hannay 1998) that circular polarization is represented by two coincident dots, and
linear polarization by two antipodal dots. Both these situations are codimension two,
leading to the correct prediction that L, as well as C, singularities are lines.

Although we have regarded E as the complex electric  eld vector, we do not claim
that this is the  nal framework for describing the polarization singularities of light.
Just as in Nye & Hajnal (1987), we lack a description of singularities in which the
magnetic and electric  elds appear on an equal footing. It might be argued that the
appropriate  eld to consider is the complex vector potential A, but even after  xing
the gauge (so that, for example, the scalar potential vanishes (Born & Wolf 1959))
and observing that (for monochromatic waves at least) the C and L singularities of
A correspond to those of the electric  eld, these are completely unrelated to those
of the magnetic  eld.

Indeed, all our conclusions apply if E represents the magnetic  eld (or any other
complex vector  eld). We do not regard this as a defect of the theory, but as a
re®ection of an important physical fact, recognized by Nye (1999) but not widely
appreciated: for general (non-uniform) optical  elds, polarization patterns of the
electric and magnetic  elds are di¬erent. Nevertheless, the statistics of singularities
(for example, the C and L line densities that we have calculated) are the same for
the electric and magnetic  elds.

A pointer towards an intrinsically electromagnetic singularity theory could be the
fact that many of our conclusions survive if the vectors P and Q are reinterpreted as
the real electric and magnetic  elds of light, so that Ne in (2.3) is the instantaneous
Poynting vector and the L singularities are loci of vanishing energy ®ow.

The possible existence of yet undiscovered singularities, where electric and mag-
netic  elds are involved equally, should not be misinterpreted as implying that the
electric C and L lines are unphysical. Indeed, electric (and magnetic) polarization sin-
gularities closely related to those we consider here have been observed in microwave
experiments (Hajnal 1987a,b, 1990). (In this connection we should also point out
that caustics and dislocations are also observable features of the physics of light,
even though they dissolve under close examination.)

C and L line singularities are generic, that is, stable under perturbation. Intersec-
tion of two C lines is a codimension-4 phenomenon, because from (2.4) this event
requires the complex Á, de ned in (2.4), to vanish at two points. Such collisions can
be expected to occur as collisions between C lines when an additional parameter
is varied; in non-monochromatic waves this can happen naturally as time evolves.
The local behaviour can be complicated, and the lines may change their topology.
Similar arguments suggest that the intersection of two L lines is a codimension-4
phenomenon. By contrast, collisions between a C line and an L line are much harder
to produce, because the polarization ellipse would have to be both a line and a circle;
this is only possible if E = 0, which is a codimension-6 phenomenon and so is not
expected to occur generically in space or spacetime (this event would be a singular-
ity of the geometric phase 2-form, as explained after (3.9)). The two types of line
singularity repel each other.

We emphasize that our considerations are essentially three dimensional: they apply
to general waves in space, for which the propagation direction k (r) (equation (3.8))
varies with position. In paraxial waves, where there is a unique direction of propa-
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gation, di¬erent singularities can occur stably (Nye 1983, 1999). And, in the general
case, although it is legitimate to regard places where L and C lines intersect a plane
of observation as singular points, the labelling of these points by index or `topological
charge’ must take account of the fact that the associated ellipses are not con ned to
the plane.

Finally, we draw attention to the fact that our statistical calculations of C and
L line densities involve only the most elementary geometrical features of these sin-
gularities. It is possible to write expressions for the analogues of the other quantities
calculated for dislocation lines in scalar waves (curvature, velocity and correlations
between points where the lines intersect a plane (Berry & Dennis 2000)), but in the
vector case these take the form of multiple integrals so complicated that we have
not been able to penetrate them analytically. In addition, we would like to be able
to calculate statistics related to the propagation wavevector k (equation (3.8)), and
also densities of two types of singular point peculiar to the vector case (Nye & Hajnal
1987): where a C line touches its (circular) polarization ellipse (that is, nC ne = 0)
and the C index switches sign, and where an L line is perpendicular to its (linear)
polarization ellipse (that is, nL eP = 0) and the L index switches sign.

We thank Dr J. H. Hannay and Professor J. F. Nye for many helpful conversations. M.V.B. is
supported by The Royal Society. M.R.D. is supported by a University of Bristol postgraduate
scholarship.

Appendix A. Direction (2.8) of an L line

Let the origin r = 0 lie on an L line, with the vectors P and Q having the common
direction ez . For small r, we can expand

P (r) = Pzez + a rex + b rey ; Q(r) = Qzez + c rex + d rey; (A 1)

where
a = rPx; b = rPy ; c = rQx; d = rQy :

Then the condition (2.7) that r lies on an L line becomes, using (2.3),

P (r) £ Q(r) = ( ¡ Pzd + Qzb) rex + (Pzc ¡ Qza) rey

² A rex + B rey = 0: (A 2)

This implies A r = B r = 0, so that the direction of the L line is parallel to

nL / A £ B = ( ¡ PzrQy + QzrPy) £ (PzrQx ¡ QzrPx)

= r(P £ Q)x £ r(P £ Q)y

= 1
2ra £ rb(P £ Q)a £ (P £ Q)b eP ; (A 3)

where the penultimate equality depends on the fact that the x and y components of
P and Q vanish at r = 0. The desired equation (2.8) follows immediately.

Appendix B. Averages of derivatives of P and Q

This is the derivation of (4.10). From (4.1) we have, averaging over the phases · k ,

hj@zEz j2i = 2h(@zPz)2i =

k

k2
za2

khjez nk j2i: (B 1)
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The average is over polarizations; to evaluate it, we de ne explicitly the coordinate
system 1, 2, 3 used to de ne n in (4.2),

e1 ² ek £ ez

jek £ ez j
; e2 ² ek £ e1; e3 ² ek : (B 2)

If k has polar angles ³ , ¿ (we do not write the su¯ xes k), then

e1 = (sin ¿ ; cos ¿ ; 0);

e2 = (¡ cos ³ cos ¿ ; cos ³ sin ¿ ; sin ³ );

e3 = (sin ³ cos ¿ ; sin ³ sin ¿ ; cos ³ ):

(B 3)

On using (4.4) and (4.5), and integrating over the angles of k and polarizations,
equation (B 1) becomes

hj@zEz j2i =
k2

(4º )2

2º

0

d ¿
º

0

d ³ sin ³ cos2 ³
2º

0

d
º

0

d ¬ sin ¬ (sin ³ sin 1
2
¬ )2

= 1
15

k2; (B 4)

giving the  rst set of equations in (4.10). Similarly,

hj@zExj2i = 2h(@zPx)2i

=
k

k2
za2

khjex nk j2i

=
k2

(4 º )2

2º

0

d ¿
º

0

d ³ sin ³ cos2 ³
2º

0

d
º

0

d ¬ sin ¬

£ jsin ¿ cos 1
2
¬ exp( ¡ 1

2
i ) ¡ cos ³ cos ¿ sin 1

2
¬ exp( 1

2
i )j2

= 2
15

k2; (B 5)

giving the second set of equations in (4.10).
The third set of equations in (4.10) follows from r P = 0, whence

h(r P )2i = 3h(@xPx)2i + 6h@xPx@yPyi = 0; (B 6)

so that

h@xPx@yPyi = ¡ 1
2h(@xPx)2i: (B 7)

Appendix C. Evaluation of integral (5.9) for C line density

We require

IC ² dU dV jU £ V j expf¡ 1
2
[U2 + V 2 ¡ 1

4
(U2

z + U 2
z )]g: (C 1)

The length of a vector X can be represented as

jXj = ¡
1

2 º 2
dt

1

t2
r2

t exp(iX t): (C 2)

Proc. R. Soc. Lond. A (2001)



Polarization singularities in isotropic random vector waves 153

Thus the U and V integrals are Gaussians, giving

IC = ¡ 4 º dt
1

t2
r2

t

1p
det M

; (C 3)

where M is the matrix

M =

1 0 0 0 itz ¡ ity

0 1 0 ¡ itz 0 itx

0 0 3
4

ity ¡ itx 0
0 ¡ itz ity 1 0 0

itz 0 ¡ itx 0 1 0

¡ ity itx 0 0 0 3
4

: (C 4)

A short calculation gives

IC = ¡ 32 º dt
[ ¡ 33 + 20(t2

x + t2
y) + 3t2

z ]

(t2
x + t2

y + t2
z)[3 + 4(t2

x + t2
y) + 3t2

z ]3
: (C 5)

This integral can be evaluated in cylindrical polar coordinates. The azimuthal inte-
gral is trivial, and the radial integral can be determined by elementary methods,
leading to

IC = ¡ 32 º 2 dt [g(t) + h(t)]; (C 6)

where

g(t) =
(19 + 16t2 + 5t4)

(t2 ¡ 3)3(1 + t2)2
; h(t) =

(33 + 17t2)

(t2 ¡ 3)2
log

3(1 + t2)

4t2
: (C 7)

Although both f(t) and g(t) have singularities on the real axis at t = §
p

3, the
sum f(t) + g(t) is regular. Therefore, the t-contour can be deformed from the real
axis to the curve ¡ , descending in the upper left half-plane, touching the origin
horizontally and ascending in the upper right half-plane. For the integral over g(t),
¡ can be further deformed to enclose the double pole at t = i, leading to

¡

dt g(t) = 7
8
º : (C 8)

In h(t), there are logarithmic branch points at t = 0 and t = § i; the correct phase
is determined by replacing t2 by t2 + "2, and ¡ deformed to enclose the branch cut
between t = i" and t = i, leading to

¡

dt h(t) = ¡ 2 º
1

0

dy
(33 ¡ 17y2)

(y2 + 3)3
= ¡ 29

24
º ¡

2 º 2

9
p

3
: (C 9)

Thus

IC = 32 º 3 1
3

+
2 º

9
p

3
; (C 10)

from which (5.10) follows immediately.
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Appendix D. Evaluation of integral (6.12) for L line density

We require

I L ² dA dB jA £ Bj expf¡ 1
2
H(A; B)g; (D 1)

with H(A; B) given by (6.10). Following the procedure for the similar (but simpler)
integral (C 1), we use the identity (C 2) and evaluate the resulting Gaussian integrals
in A and B. This leads to

IL = ¡ 8 ºp
5

dt
u( ¹ ; ½ )

t2v( ¹ ; ½ )
; (D 2)

where

¹ ² t2
x + t2

y ;

½ ² tz ;

u( ¹ ; ½ ) ² 22 016 ¹ 3 + 192 ¹ 2( ¡ 8400 ¡ 40i ½ + 169 ½ 2)

+ 36 ¹ ( ¡ 205 920 000 + 768 000i ½ ¡ 349 600 ½ 2 ¡ 800i ½ 3 + 277 ½ 4)

+ 135(20i + ½ )2(30 240 000 + 2 275 200i ½ ¡ 68 640 ½ 2 + 392i ½ 3 ¡ 11t4);

v( ¹ ; ½ ) ² [128 ¹ 2 + 24 ¹ (3600 ¡ 40i ½ + 7½ 2) + 45(20i + ½ )2( ¡ 720 ¡ 72i ½ + ½ 2)]5=2:

(D 3)

The integral can be evaluated in cylindrical polar coordinates. The azimuthal
integral is trivial and the radial integral is elementary (albeit complicated). This
leaves the integral over ½ as the sum over a part that can be evaluated by residues
and a second part, namely,

IL =
º 3 87

p
10 ¡ 254 419=5 + 77 285

p
5=2

864 000
¡

1

º

1

¡ 1
d ½

¬ ( ½ )

 ( ½ )
log

® ( ½ )

¯ ( ½ )
; (D 4)

where

¬ ( ½ ) = 8º 3(5 443 200 000i + 225 504 000 ½

¡ 13 478 400i ½ 2 ¡ 599 040 ½ 3 + 9372i ½ 4 + 205 ½ 5);

 ( ½ ) = 25[( ½ + 12i ¡ 24)( ½ + 12i + 24)]5=2(½ ¡ 60i)4;

® ( ½ ) = 4½ 2[ ¡ 10 800 + 120i + 11 ½ 2

¡ 2
p

10 sgn ½ ( ½ + 12i ¡ 24)( ½ + 12i + 24)( ½ ¡ 60i)];

¯ ( ½ ) = 3( ½ + 20i)[216 000i ¡ 10 800 ½ + 60i ½ 2 + 13 ½ 3

¡ 5( ½ ¡ 60i)3=2 ( ½ + 12i ¡ 24)( ½ + 12i + 24)( ½ ¡ 12i)]:

(D 5)

We have not been able to evaluate the second contribution to (D 4) analytically, but
numerical evaluation is easy and gives

IL = ¡ 0:003 423 97 + 0:006 870 19 = 0:003 446 22: (D 6)

The result (6.13) follows immediately.
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