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C

 

 points at which the polarization azimuth of a cir-
cularly polarized field is indeterminate and

 

 L

 

 lines
along which the azimuth of linear polarization varies
smoothly and the direction of electric-field rotation is
indeterminate are key objects in the singular optics of
strictly coherent nonuniformly polarized fields result-
ing from, e.g., the stationary multiple scattering of laser
radiation. The set of 

 

C

 

 points and 

 

L

 

 lines obeys the
known sign principles and constitutes the vector skele-
ton of a coherent polarization-nonuniform field [1–4],
i.e., the qualitative behavior of the field, in particular,
the variation in its polarization, can be forecasted using
the field parameters at its 

 

C

 

 points and on its 

 

L 

 

lines.
This feature of the polarization singularities called

 

genericity 

 

in [5] follows from their structural stability
under small perturbations of the initial conditions or
perturbations of a propagated beam. In addition, 

 

nonge-
neric

 

 polarization singularities formed due to the inco-
herent mixing of weighted Laguerre–Gaussian (LG)
modes with orthogonal polarizations and different
radial indices were considered in [6]. Universal theoret-
ical and experimental methods for studying vector sin-
gularities involve the determination of the Stokes
parameters as functions of the spatial coordinates in the
studied cross section of the field, the subsequent deter-
mination of the spatial distributions of the polarization
azimuth and ellipticity, and the separation of the singu-
lar elements of the field.

A new problem arises if at least one of two 

 

incoher-
ently

 

 mixed orthogonally polarized beams contains
phase singularities (optical vortices [7]), i.e., points in

the beam cross section at which the field amplitude is
zero and the phase is indeterminate and changes step-
wise by 

 

π

 

 upon crossing such a field point. The known
singularities such as optical vortices, 

 

C

 

 points, and 

 

L

 

lines are absent in the combined beam formed by the
incoherent coaxial superposition of the above-men-
tioned beam with an orthogonally polarized plane wave
or another vortex beam with an orthogonal polariza-
tion. The states formed at almost any point of the cross
section of the combined beam are “mixed” in the sense
of the quantum mechanics or statistical electrodynam-
ics [8, 9], i.e., correspond to a partially polarized com-
bined beam whose degree of polarization is generally a
function of the spatial coordinates. The states of the
field are “pure” only at the points corresponding to the
singular-beam vortices, where the degree of polariza-
tion reaches the maximum possible (unity) value and
the polarization state corresponds to the second (non-
zero) component of the combined beam. In this case,
the following question arises: can such a partially
coherent [10], nonuniformly polarized field be
described in the context of singular optics? In particu-
lar, can a vector skeleton similar to the set of 

 

C

 

 points
and 

 

L

 

 lines of a strictly coherent field be constructed for
such a field? It is known [11, 12] that phase singulari-
ties can exist not only for the complex amplitude of a
coherent monochromatic wave, but also for an arbitrary
complex parameter of the field. To solve the outlined
problem, a complex parameter of the field should be
constructed which includes both ellipsometry charac-
teristics (the polarization azimuth and the ellipticity
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Vector singularities are predicted and discovered experimentally in partially polarized combined fields formed
by incoherent superposition of orthogonally polarized beams. Such singularities are 

 

U

 

 contours with zero
degree of polarization and isolated 

 

P

 

 points with unit degree of polarization centered at vortices of the orthog-
onally polarized component of the combined beam. Crossing a 

 

U

 

 contour switches the polarization state to the
orthogonal one. The above-mentioned singularities are adequately described in terms of the complex degree of
polarization in the Stokes-space representation. It is shown that the field elements corresponding to the extrema
of the complex degree of polarization form the vector skeleton of a partially coherent nonuniformly polarized
field.
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angle), which are sufficient for describing completely
polarized beams, and the degree of polarization.

In this work, we show that the classical concept of
the degree of polarization can be generalized to a com-
plex polarization parameter representable in the Stokes
space. A new type of polarization singularity, namely,
phase singularities of the complex degree of polariza-
tion (CDP), is introduced in terms of this parameter,
and basic laws governing the formation and evolution
of such singularities in partially coherent vector fields
are demonstrated. Note that the introduced concept of
CDP is not identical to such a two-point polarization
parameter of a field as the complex degree of 

 

mutual

 

polarization [13].
The optical degree of polarization is conventionally

introduced as the real nonnegative quantity [8, 9, 14–
16]

(1)

where 

 

I

 

p

 

 and 

 

I

 

u

 

 are the intensities of completely polar-
ized and completely unpolarized beam components,
respectively, or in terms of the Stokes parameters

(2)

where 

 

s

 

i

 

 = 

 

S

 

i

 

/

 

S

 

0

 

, 

 

i

 

 = 1, 2, 3, are the normalized Stokes
parameters, 

 

S

 

0

 

 = 

 

I

 

0

 

 + 

 

I

 

90

 

, 

 

S

 

1

 

 = 

 

I

 

0

 

 – 

 

I

 

90

 

, 

 

S

 

2

 

 = 

 

I

 

+45

 

 – 

 

I

 

–45

 

, and

 

S

 

3

 

 = 

 

I

 

r

 

 – 

 

I

 

l

 

. All of the Stokes parameters of a nonuni-
formly polarized field are functions of the spatial coor-
dinates (

 

x

 

, 

 

y

 

). Note that 

 

P

 

 = 1 for a completely polarized
beam or at a cross-sectional point of a nonuniformly
polarized strictly coherent beam, 0 < 

 

P

 

 < 1 for a par-
tially polarized beam, and 

 

P

 

 = 0 for a completely unpo-
larized beam. The Stokes parameters can be both posi-
tive and negative. For example, the normalized second,
third, and fourth Stokes parameters for beams with
orthogonal polarization states are {

 

s

 

1

 

, 

 

s

 

2

 

, 

 

s

 

3

 

} and {–

 

s

 

1

 

,
–

 

s

 

2

 

, –

 

s

 

3

 

}. Thus, the Stokes parameters contain informa-
tion on the specific beam polarization state such as the
polarization azimuth 

 

α

 

 = 0.5arctan(

 

S

 

2

 

/

 

S

 

1

 

) 

 

≡

 

0.5arctan(

 

s

 

2

 

/

 

s

 

1

 

) (–

 

π

 

/2 

 

≤

 

 

 

α

 

 < 

 

π

 

/2) and the ellipticity
angle 

 

β

 

 = 0.5arctan(

 

S

 

3

 

/

 

S

 

0

 

) 

 

≡

 

 0.5arctan

 

s

 

3

 

(–

 

π

 

/4 

 

≤

 

 

 

β

 

 

 

≤

 

π

 

/4). However, this information is lost if the degree of
beam polarization is determined in terms of quadrature
quantities (2).

The notion of the CDP is based on the ideas devel-
oped in [16]. If the beam amplitude is not of interest
and only its polarization state is important, the beam
can be described in terms of the so-called circular com-
plex polarization variable

(3)

where 

 

E

 

r

 

 and 

 

E

 

l

 

 are the components of the circular
Jones vector. The quantity 

 

χ

 

r, l

 

 is a function of two real
variables, the amplitude ratio 

 

|

 

E

 

r

 

|

 

/

 

|

 

E

 

l

 

|

 

 of the right and
left circularly polarized beam components and their

P
Ip

Ip Iu+
---------------; 0 P 1,≤ ≤=

P s1
2 s2

2 s3
2+ + ,=

χr l, Er/El( ) Er / El( )e
i ϕr ϕl–( )

,= =

phase difference ϕr – ϕl. In the proper coordinates of the
polarization ellipse, the quantity χr, l is written in terms
of the polarization azimuth and ellipticity angle as fol-
lows:

(4)

The polarization variable unambiguously determines
the polarization state of a completely (in general, ellip-
tically) polarized beam on a circular complex plane
[16] and, in the stereographic projection, on the
Poincaré sphere of unit radius. The use of the Poincaré
sphere is preferred, because it admits the mapping of
not only completely polarized beams corresponding to
the sphere surface, but also partially polarized beams
corresponding to the sphere interior. The origin of the
coordinate system corresponds to zero degree of polar-
ization: s1 = s2 = s3 = 0 (see Fig. 1). The points outside
the Poincaré sphere do not correspond to any polariza-
tion state. The use of the CDP defined as

(5)

and the corresponding polarization vector s = s1i + s2j +
s3k (|s | = P) in the Stokes space ensures the description
of beams of an arbitrary state and polarization.

Note the significant difference in the motion of a
representation point in the Stokes space, which corre-
sponds to the motion in the beam cross section, for
strictly and partially coherent fields. The representation
point of a coherent field moves only on the sphere sur-
face, so that, e.g., a path connecting a Cr and Cl point

χr l, β π/4+( )e i2α– .tan=

� Pχr l, ,=

Fig. 1. Stokes-space representation of the completely and
partially polarized beams. The Poincaré sphere represents
completely polarized fields. The interior of this sphere cor-
responds to partially polarized fields; the coordinate origin
corresponds to an unpolarized field. The vectors scp and spp
describe the polarization vectors of completely (P = 1) and
partially (P = 0.64) polarized fields. The path from spp to –
spp passes through a U singularity.
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corresponding to the right- and left-circular polariza-
tion, respectively, inevitably crosses the large-diameter
circle, i.e., the Poincaré-sphere equator (L contour).
The representation point of incoherently mixed orthog-
onally polarized beams moves along the Poincaré-
sphere diameter containing the initial point. In this
case, the CDP is singular, i.e., P = 0 and the polarization
state is indeterminate, for the field elements where the
intensities of two orthogonally polarized, mutually
incoherent beams are equal. The signs of the second,

third, and fourth normalized Stokes parameters change
simultaneously upon the crossing of such a field ele-

ment. Note that 0.5  = 0 for the vectors
spp and –spp (see Fig. 1). This is indicative of the orthog-
onality of the polarization states [6].

Thus, the Poincaré-sphere center corresponds to
specific vector singularities absent in strictly coherent
nonuniformly polarized fields. A singularity of such a
type can be called the U (unpolarized) singularity or
CDP phase singularity. The Poincaré-sphere points
describing a completely polarized field at the points
where the amplitude of one partial beam is zero corre-
spond to the P (polarized) singularities. The set of U
and P singularities constitute the vector skeleton of a
partially coherent combined beam.

The experimental algorithm for constructing such a
skeleton involves measuring the coordinate distribu-
tions of the intensities corresponding to six polarization
states (see Eq. (2)) and plotting the CDP spatial distri-
bution

(6)

Then, the field elements at which the CDP has the lim-
iting values are determined.

Figure 2 presents the result of the numerical simula-
tion of U singularities for the case of the incoherent
superposition of orthogonal LG01 and LG11 modes
with a power ratio of 1 : 0.45 [6, 10]. The figure shows
the distributions of the intensity and CDP in the cross
section of the combined beam in the direction of the
controlled displacement ∆ between the mode centers
(vortices). The distributions are plotted versus the
dimensionless radial coordinate ρ/wz specifying the
typical transverse scale of an LG mode. The external U
contour on the ring ρ/wz ≈ 1.5 corresponds to zero CDP
modulus. The inner U contour has the same meaning,
but appears for very low CDP values near the ring
ρ/wz ≈ 0.15 and, therefore, is not identified in the left
panels. It is seen that both U contours are deformed
only slightly even if the transverse displacement is
fairly large (up to ∆ ≈ 0.4ρ/wz). With a further increase
in the distance between the mode centers, a new U sin-
gularity appears from infinity on the right and crosses
the external initial contour for some ∆ value. However,
such U contour crossing is unstable. A further increase
in the mode displacement leads to the formation of a
new U contour closing at infinity. It is interesting that,
as ∆ varies in a narrow range from 0.45ρ/wz to 0.5ρ/wz,
the coordinate distribution of the combined-beam
intensity (left) remains almost unchanged, while the
CDP undergoes a complete evolution cycle. The ± signs
correspond to the cases of the dominant LG01 and
LG11 modes, respectively. According to the figure, the
following sign rule holds in all cases: the U singulari-

si
pp( )si

pp–( )
i 0=
3∑

� s1
2 s2

2 s3
2+ +=

× 0.5 s3arcsin π/4+( ) i s2/s1arctan–( )exptan[ ].

2

3

–1
–1 1 3–3 –2 2

2

3

–1
–1 1 3–3 –2 2

2

3

–1
–1 1 3–3 –2 2

2

3

–1
–1 1 3–3 –2 2

2

3

–1
–1 1 3–3 –2 2

1

1

1

1

1

∆ = 0.5 p/wz

∆ = 0.45115 p/wz

∆ = 0.45 p/wz

∆ = 0.4 p/wz

∆ = 0 p/wz

(p/wz)

(p/wz)

(p/wz)

(p/wz)

(p/wz)

Fig. 2. Left panels: the distributions of the (dashed curve)
combined-beam intensity and (solid curve) CDP over the
dimensionless parameter ρ/wz along the direction of the dis-
placement of the LG01- and LG11-mode centers for various
values of this displacement ∆. Right panels: U singularities
in the beam cross section. The signs ± denote the orthogonal
states of partial polarization.
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ties separate regions with orthogonal polarization
states.

The scheme of the experimental reconstruction of U
and P singularities and the vector skeleton of partially
coherent, nonuniformly polarized combined beams is
shown in Fig. 3. A path difference much larger than the
laser coherence length is set in the lower arm of the
interferometer. The half-wave plate at the interferome-
ter input is used to smoothly vary the arm-intensity
ratio for a constant total intensity at the interferometer
output. The interferometer arms are equipped with
polarizers which form the orthogonal linear polariza-
tions. The quarter-wave plate at the interferometer out-
put makes the mixed-beam polarizations orthogonal
elliptical or circular depending on the plate orientation.
One interferometer arm includes an object generating a
beam with phase singularities. This object is a com-
puter synthesized hologram for the LG-mode recon-
struction or a diffuser forming a speckle field. A quar-
ter-wave plate and a linear analyzer in front of a PC-
linked CCD camera are used to record the spatial inten-
sity distributions necessary to determine the Stokes
parameters and the CDP.

Figure 4 presents the first experimental results on
the reconstruction of the vector skeleton of a combined
beam formed by the incoherent superposition of a sca-
lar (uniformly polarized) speckle field (Fig. 4a) and a
coaxial plane wave with the orthogonal polarization.
Figures 4b–4d show fragments of the parametric
dynamics of U singularities for various ratios 〈IS〉/IR of
the mean speckle-field and the reference-wave intensi-
ties. The number, sizes, and shapes of the U contours
vary with this ratio, while the locations of the P points
remain the same. As expected, the number and sizes of
the U contours decrease with the ratio 〈IS〉/IR. The frag-
ments exhibit regions in which the pattern is close to the
U-contour crossing.

Thus, the concept of CDP introduced in this work
makes it possible to describe beams of arbitrary types,
states, and degrees of polarization. A new class of opti-
cal fields formed due to the incoherent superposition of

orthogonally polarized beams is analyzed for the first
time using the concept of CDP. It is shown that vector
singularities called U contours and P points, which are
absent in strictly coherent beams and corresponding to
CDP extrema, are formed in such combined beams.
Note that the U contours can appear due to the incoher-
ent superposition of beams free of phase singularities.
On the contrary, the P points can appear only if zero-
amplitude points exist in at least one beam. P singular-
ities are structurally stable and observed for any inten-
sity ratio of the mixed beams, while U singularities
appear only if the partial-beam intensities are equal on
a line at which a CDP phase singularity exists, i.e., the
degree of polarization is zero and the polarization state
is indeterminate. The CDP extrema determine the spe-
cific vector skeleton of a partially coherent, spatially
nonuniform polarized field. In the general case of the
incoherent mixing of elliptically (orthogonally) polar-
ized beams, the experimental reconstruction of the vec-
tor skeleton of the combined beam requires the com-
plete Stokes-polarimetric analysis of the field.

Note that the analysis based on Eq. (3) was per-
formed under the assumption of monochromatic radia-
tion. However, the final result given by Eq. (6) is more
general, because the Stokes-parameter definitions do
not include the radiation wavelength, the photon
energy, and the degree of coherence. The CDP singular-
ities can also be found in the case of the superposition
of orthogonally polarized beams with different fre-

Fig. 3. Scheme of the experiment: L, laser; λ/2 and λ/4, half-
and quarter-wave plates, respectively; BS1 and BS2, beam
splitters; P1 and P2, polarizers; M1and M2, mirrors; SGO,
singularity-generating object; A, analyzer; CCD, CCD cam-
era; and PC, personal computer.

(a) (b)

(c) (d)

Fig. 4. (a) Studied speckle-field region and (b–d) the frag-
ments of the parametric dynamics of U singularities for var-
ious intensity ratios 〈IS〉/IR of the mean speckle field and the
orthogonally polarized reference wave: 〈IS〉/IR = (b) 1, (c)
0.5, and (d) 0.25. The grey scale corresponds to the orthog-
onal forms of partial polarization. The corresponding areas
are separated by the U contours. The crosses mark the P sin-
gularities.
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quencies, which have phase singularities, as well as
polychromatic (white-light) beams. The reconstruction
of the vector skeleton of such a field certainly implies a
special choice of the polarization elements and detec-
tors.
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