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The review describes general principles and characteristics of inhomogeneously
polarized paraxial optical fields and, especially, the polarization singularities (PSs).
Main parameters of the optical vector waves are discussed, with the emphasis on
the physical relevance and topological distinctiveness of the PSs. Special features
of the stochastic vector fields are considered in the context of the PSs’ genericity
and structural stability. A detailed attention is paid to interrelations between the
PSs and the phase singularities of scalar fields formed by the orthogonal
polarization projections of the total field, and their derivatives (complex Stokes
fields, phase-difference fields, etc.). On this base, the practical approaches are
discussed for the experimental PS identification and characterization. A particular
examination of the internal energy flows associated with the PSs, and
accompanying distributions of the optical momentum and angular momentum,
reveals meaningful dynamical features of PSs and supplies additional physically
transparent and informative means for their studies and characterization.
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1 Introduction

During the past years, an especial progress in optical research and technologies is
associated with the development of singular optics (SO). The corresponding literature is
practically spanless, but we can mention some most recent and popular review publications
[1–21]. The fruitful and meaningful concepts of SO deal with special points of a light field, at
which certain definitive field parameters (phase, direction or handedness of polarization,
etc.) are indeterminate, or “singular.” Such singular points, or “singularities,” are exceptional
in the sense that each such point, with its morphology and topological characteristics,
determines qualitatively the whole optical field in adjacent points of space. Accordingly, the
spatial distribution of separate singularities is not arbitrary but obey certain topologically
motivated laws due to which the singular points, lines and surfaces form a coherent and
interdependent network—“singular skeleton” which supplies a succinct and meaningful
characterization of the field as a whole. The SO, as a branch of physical optics, is, first of all,
the system of relations between the definitive elements of the optical-field fine structure, and
gives a general understanding of its physical nature and the mechanisms of its formation,
existence, and development [1–21].

Especially intricate and rich of details singular networks are coupled with the vector
nature of the electromagnetic field. A generic electromagnetic field represents a vector wave
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with spatially-variable polarization parameters, and its singularities
are classified as polarization singularities (PSs). Being the basic
structure elements of complex optical fields, the PSs have
attracted scrupulous attention of the research community since
the early 80-ies of the past century. Many exquisite studies were
dedicated to the description of PSs, identification and analysis of
their main characteristics, specific details of their formation,
detection, diagnostics and applications. The PSs and associated
issues are discussed in a huge massive of works among which we
would like to emphasize the brilliant book by J. F. Nye [22] and
works performed by his colleagues, founders of the SO as a scientific
direction, J. V. Hajnal, M. V. Berry, M. R. Dennis, I. Freund, etc.
[23–33].

However, to the best of our knowledge, some important aspects
related to the PSs are presented incompletely or even arguably.
Namely, we can formulate several topics where, in our opinion, there
are gaps in the cited literature. In the most general form, such
“imperfect” topics can be combined into the following items:

• Any vector field can be represented as a superposition of
“partial” fields of the basic orthogonal polarization
components [34]. Accordingly, a PS is always associated
with a singularity in a certain (scalar) partial field [1, 2, 5,
35–39], and there is no clear and consistent understanding of
the seemingly obvious connection between the PS
characteristics and the parameters of these scalar phase
singularities.

• Especially, a phase singularity is characterized by the specific
mechanical features of the field: emergence of the orbital
angular momentum (OAM) and the circulatory character
of the energy flows [5, 9, 35, 36, 40, 41] in its vicinity.
Naturally, the questions appear relating the mechanical
features and the structure of energy flows in the vicinity
of a PS.

• As topological objects, the PSs are structurally stable against
weak perturbations, e.g., the slight symmetry breaking. This
property makes them “generic” [22, 38, 42] which means that
they occur naturally in optical fields, without further specific
requirements. However, there are special “non-generic” sorts
of singularities which only exist under special conditions,
concerning, e.g., the spatial symmetry of the field. In this
context, important questions arise relating the “genericity”
and structural stability of the PSs.

Therefore, in this paper, without claiming to be comprehensive
(for example, the problems of synthesizing fields with PSs are not
considered), we try to clarify, supplement, and, probably, correct the
understanding of certain PS-associated issues, briefly characterized
in the above points. The main materials of the present article are of a
review nature; however, they are mainly based on the results
obtained by the authors earlier.

The review is organized as follows. We start with a short
introduction to paraxial optics, general description of the
polarization state and the brief inventory of the polarization-
ellipse parameters, spatial distributions of which form the
mathematical fields whose singularities are studied as the PSs
(Section 2). Section 3 outlines the main types of the paraxial PSs,
their genesis, properties and characteristic features, including the

topological principles of their existence and combinations. A special
subsection of Section 3 is devoted to the interferometric methods of
the PS detection and experimental diagnostics as well as to questions
of their informativity and practical implementation. More general
questions of the PS genericity and structure stability are briefly
discussed in Section 4 based on their topological properties
discussed above. The PS-associated dynamical features of optical
fields (specific energy flows, mechanical momentum and angular
momentum) are considered in Section 5. Here, the special attention
is paid to singularities of the energy flow pattern and their relations
with the “usual” PSs. The whole presentation is summarized and
accentuated in Section 6.

2 Paraxial fields and the polarization
parameters

Prior to proceed with a detailed discussion of the PSs, it is
convenient to summarize the main ideas and parameters usually
employed for the description of the optical field’s polarization. Note
that in view of the vector nature of electromagnetic waves, the
polarization structure is essentially three-dimensional; however, in a
lot of practical situations, the field can be described by the paraxial
approximation [35, 36, 40]. As was shown at the dawn of the SO era
[22–25, 28], the PS systems in the 3D and paraxial case are rather
different. In this review, our subjects are the paraxial light fields
whose main properties and principles of characterization are briefly
outlined in this Section.

We consider monochromatic light fields in which the instant
electric and magnetic vectors can be represented as
E(t) � Re(Ee−iwt), H(t) � Re(He−iwt) where ω is the light
frequency, and E(R), H(R) are the vector complex amplitudes
[34] depending only on the spatial coordinates R = (x, y, z) ≡ (r,
z). In paraxial light beams, the well-defined physically selected
longitudinal direction z exists, and the field behavior along the
z-coordinate is qualitatively different from that in the transverse
plane r = (x, y). In such fields, the complex amplitudes E and H are
“almost transverse” and can be described through the paraxial
complex amplitude u (r, z) by equations [35, 36, 40]

E � E⊥ + ezEz � u + i

kn
ez ∇⊥ · u( )[ ]eiknz, (2.1)

H � H⊥ + ezHz �
��
ε

μ

√
ez × u( ) + i

kn
ez ∇⊥ · ez × u( )( )[ ]eiknz (2.2)

where k = ω/c is the vacuum wavenumber, ε and μ are the medium
permittivity and permeability, n � ��

εμ
√

is the refractive index, ∇⊥ �
ex(z/zx) + ey(z/zy) is the transverse gradient, ex, ey and ez are the
unit vectors of the Cartesian coordinates. The main (first) terms in
brackets of Eqs 2.1, 2.2 describe the predominant transverse field
components, whereas the longitudinal components (second terms)
are of the relative order γ � (kb)−1 in magnitude, with b being the
characteristic transverse scale of the complex amplitude u (r, z)
inhomogeneity. The quantity γ is the small parameter of the paraxial
approximation; the longitudinal characteristic scale of a paraxial
beam variations (usually called “Rayleigh length” [5, 40]) is much
higher and equals to zR � kb2.

Equations 2.1, 2.2 clearly show that an optical field can be
equally characterized via the electric or magnetic vector
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distributions. The electric and magnetic fields are interrelated but
can be considered independently, with revealing their separate
polarization structures and systems of singularities, sometimes
rather different [26, 31]. However, the principles of their
description and the physical contents are common, and in this
review, the optical fields are considered in terms of the electric vector
distribution.

The total vector complex amplitude u (r, z) of the field can be
represented in the transverse bases as [5, 37, 40, 42]

u � exux + eyuy � e+u+ + e−u− � P + iQ

� ex Px + iQx( ) + ey Py + iQy( ), (2.3)
where

e+ � 1�
2

√ ex + iey( ), e− � 1�
2

√ ex − iey( ) (2.4)

are the unit vectors of right and left circular polarization. The
functions ux, uy and u+, u–describe the partial field contributions
in Cartesian (x, y) and complex Eq. 2.4 orthogonal frames and can be
called “planar” (ux, uy) and “circular” (u+, u–) polarization
projections of the field. Eq. 2.4 mean that in the right-polarized
wave, the field vector u � e+u+ rotates positively (counter-
clockwise) when observed against the beam propagation (from
the positive end of axis z). This convention contradicts to the
classical-optics tradition associating the “right” circular
polarization with the clockwise rotation [34, 43] but fully
complies with the standard concepts of wave-field helicity and
spin in quantum physics and electromagnetic theory, and
dominates in the modern literature [see, for example, (1, 2, 4, 7,
13, 35, 36, 40, 42)]. That is why it is accepted in this review.

The state of polarization in the transverse plane is completely
determined by the complex vector Eq. 2.3 or its components

ux � ax exp iεx( ), uy � ay exp iεy( ), u+ � a+ exp iε+( ),
u− � a− exp iε−( ), (2.5)

and can be exhaustively characterized by the Stokes parameters [1, 9,
22, 42]

S0 � u| |2 � ux| |2 + uy

∣∣∣∣ ∣∣∣∣2 � u+| |2 + u−| |2 � P2
x + P2

y + Q2
x + Q2

y;

S1 � ux| |2 − uy

∣∣∣∣ ∣∣∣∣2 � 2Re u+*u−( ) � P2
x + Q2

x − P2
y − Q2

y;

S2 � 2Re u*
xuy( ) � 2Im u+*u−( ) � 2 PxPy + QxQy( );

S3 � 2Im u*
xuy( ) � u+| |2 − u−| |2 � 2 PxQy − QxPy( ) � 2ez · P × Q( ).

(2.6)

The zero-index Stokes parameter coincides with the local
intensity of the wave; for the coherent beams

S21 + S22 + S23 � S20; (2.7)

the last Stokes parameter S3 expresses the field “helicity” (degree of
circular polarization; see, for example, [34, 36]). In many cases,
where the field spatial distribution is important but its absolute
values are of minor interest, the normalized Stokes parameters are
introduced, sj � Sj/S0 (s0 = 1).

In addition to the usual Stokes parameters, complex Stokes fields
can be introduced:

S12 � S1 + iS2 � 2u+*u−, S23 � S2 + iS3 � 2u*
xuy,

S31 � S3 + iS1 � 2 Im u*
xuy( ) + iRe u+*u−( )[ ]

� u+| |2 − u−| |2 + i ux| |2 − uy

∣∣∣∣ ∣∣∣∣2( ). (2.8)

Instantaneous behavior of the electric field in the beam Eq. 2.3
cross section can be seen from equations

Px cosωt + Qx sinωt � Ex t( ), Py cosωt + Qy sinωt � Ey t( ).
(2.9)

This is a parametric representation of an ellipse in coordinates
Ex, Ey (see Figure 1); for example, at the moment t = 0, vector E(0)
coincides with P whereas at t = ti = π/(2ω), E(ti) � Q. Excluding the
time variable t, one can derive an explicit equation of the ellipse in
the form

E2
x uy

∣∣∣∣ ∣∣∣∣2 + E2
y ux| |2 − 2ExEy PxPy + QxQy( ) � PxQy − QxPy( )2

or

E2
x uy

∣∣∣∣ ∣∣∣∣2 + E2
y ux| |2 − ExEyS2 � 1

4
S23. (2.10)

The ellipse configuration is usually characterized by the set of
parameters [9, 22, 30, 42]:

(1) major and minor semi-axes a1 = |P0|, |a2| = |Q0|, equal to

a1,2 � 1�
2

√ u+| | ± u−| |( ) � 1�
2

√ S0 ±
������
S20 − S23

√( )1/2

(2.11)

where the sign of a2 gives the sense of the instantaneous field vector
E rotation;

(2) azimuth (orientation of the ellipse main axes with respect to the
Cartesian axes)

δ � 1
2

argu− − argu+( ) � 1
2
arctan

S2
S1

( ); (2.12)

FIGURE 1
“Polarization ellipse” (Eq. 2.10) seen against the beam
propagation axis z, and its main parameters. During the oscillation
period, the end of the instantaneous electric field vector E (Eq. 2.9)
(red arrow) slides along the ellipse: anti-clockwise (clockwise)
rotation corresponds to the right-hand (left-hand) polarization. The
meanings of the parameters a1, a2, α, δ, P, P0, and Q0 are explained in
the text.
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(3) the ellipse eccentricity ε

ε2 � 4 u+| | u−| |
u+| | + u−| |( )2 �

2
S23

S0 −
������
S20 − S23

√( ) ������
S20 − S23

√
; (2.13)

(4) the main phase (“phase of vibration”, “rectifying phase”) χ is
defined by the condition that in the phase-transformed function
u0 � ue−iχ � P0 + iQ0, the vectors P0 and Q0 are orthogonal,
P0·Q0 = 0:

χ � 1
2
arctan

2P ·Q
P2 − Q2

� 1
2

argu+ + argu−( ). (2.14)

The vectors P0 and Q0 determine the orthogonal semi-axis
frame of the ellipse. The phase transformation u → ue−iχ of the
field Eq. 2.3 is equivalent to the time shift, ωt → ωt + χ, and specifies
the starting point for the instantaneous vector motion Eq. 2.9 along
the elliptic trajectory. The value Eq. 2.14 means that the initial phase
of the oscillations Eq. 2.9 is chosen such that for t = 0, the
instantaneous vector E(0) � P0 and coincides with the major
semi-axis of the polarization ellipse. Geometrically, χ is
proportional to the ellipse area between P and P0 and can be
linked to the angle α counted from P to P0,

χ � arctan
a1
a2

tan α( ), (2.15)

while the positive rotation is dictated by the polarization handedness
(in Figure 1, the positive rotation is counter-clockwise, and χ, α are
thus negative).

3 Classification and characterization of
the polarization singularities

In paraxial fields, the polarization structure is always considered
in the transverse (x, y)-plane, and the small longitudinal component,
inevitably present in the field according to Eqs 2.1, 2.2, 2.3, is
discarded. This fact stipulates two important aspects of the
“paraxial” singularities: (i) only the singularities of the transverse
field described by the transverse complex amplitude u (x, y) are
discussed, and (ii) the field pattern observed in a single transverse
plane is, actually, a planar section of a 3D pattern evolving with the
beam propagation along the longitudinal direction. Accordingly,
each singular structure observed in the transverse plane is, generally,
a “part” of the “genuine” spatial singularity with the dimension
exceeding the dimension of its “planar” counterpart by 1: viz., a
singular point (line) in the plane corresponds to the singular line
(surface) in the 3D space, etc.

Another general note is that each PS, as a singularity of a vector
field, is associated with certain singularities in the scalar fields of the
partial polarization projections ux, uy and u+, u– Eq. 2.3. The scalar
point-like singularities of a 2D fields are the prototype of other, more
complex, singularities, and the corresponding ideas and concepts [1,
2, 5, 9, 35, 40] are widely used in the studies of PSs. For this reason,
we remind that the generic scalar singularity of a complex field u (x,
y) is associated with the isolated zero of the function u (x, y) where its
phase is indeterminate (phase singularity). Upon a round trip near
the singular point, the phase acquires an increment 2πl where l is the
positive or negative integer topological charge (TC) of the

singularity (generically, l = ±1). Accordingly, the surface of
constant phase (wavefront) possesses a helical shape forming the
“screw wavefront (phase) dislocation”. As the wave energy
propagates, normally, along the wavefront normals, the phase
dislocation inspires the helical pattern of the energy propagation
(“optical vortex”). These terms and notions will be frequently
employed in the following presentation.

3.1 Disclinations, s-contours and C-points

We start the discussion of planar polarization singularities with
singling out the “temporary zero” singularities—so called
“disclinations” [22–27]. These are the points where the
instantaneous field E(r, t) = 0 and, consequently, the field-vector
direction is indeterminate. In contrast to other characteristics of
monochromatic light fields, the disclinations are essentially non-
stationary objects that move during the oscillation and restore
periodically with the oscillation frequency.

Eq. 2.9 and the polarization ellipse they describe (see Figure 1)
testify that, generically, the transverse electric field never takes a zero
value. Therefore, the sets of points in which the total field vanishes at
certain moments of time (this event may only occur twice during the
oscillation period) should also be considered as singularities—and
these singularities are stationary. The existence of such structures
can be easily understood by referring to Figure 2A.

Let the field be linearly polarized at some point d (Figure 2A).
Let us decompose the total transverse-field vector u (Eqs 2.1, 2.2, 2.3)
into orthogonal linearly polarized components with projections ux,
uy in accordance with the basis shown in the figure. As follows from
the figure, the x-component is identically equal to zero:
Ex(d, t) � ux(d) × ei(kz−wt) ≡ 0, i.e., the orthogonal component
Ey(d, t) represents the total transverse field. Obviously, Ey(d, t)
vanishes twice during the oscillation period, and so does the total
transverse electric field. As a result, a disclination is observed in the
point d twice per period.

Note that the disclinations may only exist in points where the
field is linearly polarized. It can be easily shown that, due to the field
continuity, such points form closed, simply connected lines in the
transverse plane, separating regions with different polarization
handedness (see Figures 2B, C). These lines are sometimes called
l-lines (see, for example, Refs. [4, 29, 31]), or, according to the
terminology of the authors who first considered them [22–27],
s-contours (s-surfaces in 3D [22–25]). The latter terminology is
accepted here. Generally, the s-contours appear as transverse cross
sections of the 3D s-surfaces, on which the field polarization is linear.

At different timemoments, the field vanishes in different points, and
the disclinations “run” along the s-contour. Sometimes, the disclination
pairs may emerge and/or annihilate. At a fixed moment of time, the
spatial structure of the field near the disclination can be analyzed with
employing the full set of vector-field singularity parameters, which will
be considered below. This practice is important for various physical
wave fields [22] but in optics, the stationary singularities are of the main
interest, and disclinations appear only in discussion for indirect
illustrations and supplemental reasonings.

The possibility of the disclination “presence” on an s-contour
imposes no restrictions on the polarization azimuth at its points.
Moreover, it can be argued that the azimuth of this linear
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polarization continuously changes along a s-contour, since
otherwise one would have to admit that one of the plane
polarization projections of the field identically vanishes on the
s-contour. That means the existence of an edge phase dislocation
[5] for this polarization projection, i.e., a 3D surface, at each point of
which the field projection is equal to zero. However, the existence of
such field structures is problematic.

The relation between the s-contours and disclinations is natural
and serves a manifestation of the fact that all special manifolds of the
same physical field are interrelated [22–28]. The proper singular
nature of s-contours, as well as their belonging to the PS family, is
expressed by the fact that in points where the field is polarized
linearly, the polarization handedness is indeterminate.

The length of s-contours can generally vary from zero (the
degenerate case, where an s-contour transforms into a point) to
infinity, and the mean length of the s-contour depends on the
predominant polarization of the vector field [8, 44]. This mean
length reaches minimum (maximum) when the polarization of the
inhomogeneous field is predominantly circular (linear).

The separate s-contours are not independent and obey the laws
of topological compatibility. In particular, for absolutely random
fields (globally depolarized with Gaussian statistical characteristics
[8, 45–47]), only the structure of s-contours is possible where a
region with a certain polarization handedness (or several such
regions) is embedded inside a region with the opposite
polarization (Figure 2B), which, in turn, is surrounded by a
region in which the handedness of the field-vector rotation
reverses again, and so on. Figuratively speaking, for such a field,
the structure of s-contours of the “matryoshka” type is realized. At
the same time, the maximum size of the “largest” s-contour is not
limited. Another possible type of s-contour structure (“islands in the
ocean”) is realized in fields with predominantly circular polarization
(Figure 2C) [8].

s-Contours constitute the first main type of the paraxial PSs;
another type is the C-points [4, 8, 22, 31, 38] (see Figure 2D). In such
points, the polarization ellipse degenerates into the circle, and,
accordingly, the orientation of the polarization ellipse main axis
(see Figure 1) is indeterminate. Simultaneously, there become

indeterminate the polarization azimuth δ Eq. 2.12 together with
the main phase (vibration phase) χ Eq. 2.14 which determines the
position of the vector P = Re(u) Eq. 2.3 with respect to the ellipse’s
main axes [8, 39].

The s-contours and C-points illustrate the relations of the PSs
with the scalar singularities in the partial fields of orthogonally
polarized components, discussed in the Introduction. Each point of
an s-contour is a phase singularity of a certain plane-polarization
projection of the field (in Figure 2D, the points with vertical
polarization are highlighted as the vortices Vx of the planar
x-projection ux, and the points with horizontal polarization—as
the vortices Vy of the planar y-projection uy, see Eq. 2.3), and a
C-point coincides with the phase singularity of a circular-
polarization projection Eqs 2.3, 2.4 [4, 8, 22].

As the point of indeterminacy of the polarization azimuth δ Eq.
2.12 and the main phase χ Eq. 2.14, the C-point topology can be
characterized by the corresponding phase increment on a round
trip along any trajectory enclosing the C-point [8, 39, 42].
Accordingly, the 2 TCs can be introduced: the TC of the main
phase

SC � 1
2π

∮ dχ (3.1)

and the TC of the azimuth

IC � 1
2π

∮ dδ. (3.2)

The quantity IC Eq. 3.2 coincides with the Hopf—Poincare
index of the C-point [30, 42]. In what follows, SC will be called the
C-point charge and IC—its index. As both δ and χ are determined
modulo π, the integer and half-integer values of SC and IC are
admissible (this is in contrast to the phase singularities of scalar
fields where only the integer TC values are possible [4–7]). For
example, the polarization azimuth may rotate by ±π, ±2π, . . . ±Nπ
on a loop around a C-point [4, 8, 42]. In principle, any natural
number N is possible but only the case of N = ±1 is topologically
and physically stable (generic) and occurs in general optical fields
without special symmetry.

FIGURE 2
(A) Illustration of the transverse-field disclination; (B) s-contour structure of the “matryoshka” type; (C) the structure of s-contours (“islands in the
ocean”), forbidden for an absolutely random field, but which can be realized in fields with predominantly circular polarization; (D) area of the field
containing C-points enclosed by the s-contour where the field is linearly polarized with variable azimuth; points of x-oriented (y-oriented) polarization
are highlighted as vortices of the vanishing component Vy (Vx).
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Obviously, the charge and index of the same C-point are
interrelated [34, 47], and their connection can be easily seen
from Eqs 2.12, 2.14. Near a left-handed C-point, u–(r) is regular
while u+(r) possesses a phase dislocation, SC and IC are determined
solely by arg (u+) and differ by sign; near a right-handed C-point, the
situation is opposite, which leads to a conclusion

SC � hIC. (3.3)

Here, h is the handedness factor, h = ±1 for the right (left)
handedness of the elliptical polarization (counter-clockwise or
clockwise motion of the instant field vector E in Figure 1).

Contrary to the scalar field singularities, the index (or charge)
provides inexhaustive characterization of the PS: for any index value,
three topologically different types of the polarization-ellipse
behavior near a C-point are possible. These structures are known
as “star”, “monstar”, and “lemon” [4, 7–9, 48] (see Figure 3).

For cases (b) and (c), the major axis of polarization ellipses
rotates in a counter-clockwise sense for a counter-clockwise
circulation around the C-point. Conversely, in case (a), ellipses
rotate in the opposite, clockwise sense, for a counter-clockwise
circulation. The lemons (Figure 3C) have only one direction
where the major semi-axis is radial: the major semi-axis rotates
at half the rate of circulation about the C-point, and so there is
undoubtedly one direction where the axis points to the centre
(C-point). The same is true with the star (Figure 3A): since here
the ellipses rotate in the sense opposite to the path, the axis must be
radial in three places. For the monstar (Figure 3B) the pattern is not
obvious. This is because the monstar is part of a more general class of
C-points where the rate of rotation is not constant: the rotation rate
may be greater and lower than the circulation rate, creating more
than one angular direction where the polarization ellipses axes are
radial. In Figure 3B, there are three angles where this is true. These
radial directions are separatrices of line morphologies. Also, in the
monstar of Figure 3B, in two of the sectors delineated by the
separatrices, all the lines, along which the major axes are
oriented, have the C-point as an end point.

Note that the TC Eq. 3.1 and index Eq. 3.2 can be defined for any
area including any number of singularities. For this, the contour
integral should be calculated along a singly connected closed
trajectory l enclosing the considered area (see, e.g., Refs. [8, 22]):

IC tot � 1
2π

∮
l
dδ. (3.4)

If an s-contour is taken as the integration trajectory l, then Eq.
3.4 dictates the relationship between the s- and C-singularities, the
essence of which is that the total number and the sense of
revolutions of the linear polarization vector along the s-contour
coincides with the sum of indices of all C-points ICtot bounded by
this contour [8, 39, 47]. For example, in Figure 2D, the total
topological index of the C-points situated inside the s-contour is
ICtot = +1/2, which corresponds to the rotation of the field vector by
π on the complete counter-clockwise circulation along the
s-contour. In other words, the polarization structure inside a
region enclosed by an s-contour is homomorphically “mapped”
on the s-contour, and the parameters of both the s- and
C-singularities determine the characteristic behavior of the
whole field in any point of the region. One can state that, as in
case of scalar optical fields, the set of PSs form a coherent and self-
consistent “singular skeleton” of the vector field qualitatively
determining the whole field in each its point.

3.2 Relations between the C-points and the
singularities of partial scalar fields of the
components

It was mentioned in previous sections that PSs are related
with the phase singularities of scalar partial fields of the separate
orthogonal projections of the field Eq. 2.3. In particular, the
C-point where the field possesses a perfect circular polarization
(u(r) = e±u±(r)), spatially coincides with the isolated zero of the
opposite polarization component (u∓ (r) � 0) associated with
the phase dislocation and optical vortex in the field u∓ (r) [1, 2,
5]. Similarly, the s-contours are the locus of the vortices of
linearly polarized components for any orientation of the planar
decomposition basis (see Eqs. 2.3, 2.4 and the discussion
nearby).

Obviously, the topological characteristics of the accompanying
vortices are related with the C-point morphology, which is
illustrated by examples presented in Figure 4. The images
represent the polarization ellipses at eight angular positions
surrounding the C-point. For each ellipse, the local vectors P =
Reu (red arrows) andQ = Imu (red lines without arrows) are shown
as well as the ellipse major-axis orientation vectors P0 (blue arrows).
Vector P indicates the instantaneous electric field at the time
moment t = 0. The polarization-ellipse azimuth δ (see Figure 1)

FIGURE 3
Possible structures of the polarization-ellipse field near a C-point (A) “star” (the index IC Eq. 3.2 is negative); (B) “monstar” and (C) “lemon” (IC is
positive).
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is merely the angle between the axis X and P0 counted from the axis
X in the counter-clockwise direction (it changes by ±π on a full
circulation). The main (rectifying) phase χ can be seen in the
ellipses of Figure 4 from the angle α (see Eq. 2.15) counted from P
to P0, with the positive direction dictated by the polarization
handedness (e.g., in Figures 4A, B, the positive direction for χ is
counter-clockwise whereas in Figures 4C, D the positive direction
is clockwise). According to these rules, the charge and index Eqs
3.1, 3.2 of the C-point can be determined geometrically from the
images presented, and their values are indicated in the legends of
each Figures 4A–D.

One can see that not only the C-point morphology but even
its type (as classified in Figure 3) are determined by the common
influence of the C-point handedness and the opposite-
component singularity. The “lemon” structure (Figure 3C) is
realized when the signs of the C-point handedness h and of the
accompanying-vortex TC coincide (Figures 4A, D). If the signs
are opposite, the C-point of the star type (Figure 3A) takes place
(Figures 4B, C).

Other interesting aspects of the PS morphology concern the
important circumstance, already mentioned in Section 3.1, that the
polarization situation inside the region (in the vicinity of a C-point)
can be homomorphically, along lines of the same azimuth, reflected
onto the s-contour enclosing this C-point. Accordingly, one can

expect a closer relationship between the characteristics of the field at
the s-contour points and the C-point parameters. It turns out that
this is indeed the case. In any case, such a statement is true, and
emerges from the analysis of the main phase behavior on the
s-contour with considering the disclinations moving along it [26].
By using Eqs 3.1, 3.2, 3.3, 3.4, one can derive the expression for the
total index of such an s-contour

IC tot � hSC tot � h

2π
∮

s
dχ. (3.5)

Generally, the rectifying phase χ is not constant along the
s-contour but varies smoothly with position. The field zeros
(disclinations) exist in points and moments at which the
following condition holds:

χ − ωt � π

2
+mπ, m � 0,± 1,± 2, ... (3.6)

Where the distribution of χ on the s-contour has a minimum,
pairs of disclinations are born, and then move off along in opposite
directions. Likewise, maxima of χ on the s-contour result in
annihilation events in which two disclinations move towards one
another, coalesce and then disappear. The number nd of
disclinations on a closed s-contour depends on the total index
Eq. 3.5 of the C-points enclosed by the contour:

FIGURE 4
Polarization structure of the field near a C-point depending on the polarization handedness (central circle with an arrow) and on the TC l of the
singular component: (A) right polarization, u+(r) ≠ 0, u–(r) ~ x + iy (l = +1); (B) right polarization, u+(r) ≠ 0, u–(r) ~ x—iy (l = −1); (C) left polarization, u–(r) ≠ 0,
u+(r) ~ x + iy (l = +1); (D) left polarization, u–(r) ≠ 0, u+(r) ~ x—iy (l = −1). Upper left ellipses of each panel illustrate the geometric definitions of the
polarization azimuth δ and the angle α corresponding to the main phase χ Eq. 2.15; further explanations see in text.
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nd � 2 IC tot| | + 2l t( ) (3.7)
where 2l(t) is the variable in time number of “temporary”
disclinations caused by the “birth” and “annihilation” events
during the period.

The Eq. 3.7 establishes an interesting and meaningful
connection between the stationary and instantaneous
(“temporary”) singularities of the field. Additionally, direct
relations exist between the characteristics of C-points, enclosing
s-contours, and the partial vortices of orthogonal field components.
Now turn to Figure 5 where a certain region of a vector field with two
s-contours and several C-points is depicted.

The area of left-hand polarization with one positive C-point is
surrounded by the sB-contour. This area, in turn, is enclosed by the
right-hand polarization area with the sA-contour. It was shown in
Ref. [39] that, for any linearly polarized projection, the equality takes
place:

SC tot � 1
2
Sx tot � 1

2
SAx tot + SBx tot( ) (3.8)

where SAx tot, SBx tot are the total TCs of the vortex singularities of
the polarization projections ux, uy Eq. 2.3 on the sA- and sB-
contours, respectively. In Eq. 3.8, neither the number of
vortices nor the number of s-contours is specified. In other
words, the total TC of all C-points contained in a certain region
is determined by the sum TC of all vortices lying on the s-contours
bounding this region. Moreover, this statement remains valid if the
inner regions, in turn, contain regions with a different type of
polarization.

As will be shown below, the relation Eq. 3.8 has a fundamental
character, which determines the mechanism of transformation of
the OAM carried by the orthogonal components ux, uy into the
OAM of the whole vector field.

3.3 V-points

Another type of singularity that should be mentioned is the
singularity that occurs in fields with inhomogeneous but everywhere
linear polarization, where the polarization azimuth varies from point
to point. Naturally, this type of field cannot emerge as a random
field. However, it can be realized in common practice: examples are
the radially (azimuthally) polarized beams (“cylindrical vector
beams”) described by many authors, e.g., [4, 8, 49–62]. The
polarization structures characteristic for some of these beams are
shown in Figures 6A–D. The corresponding beams can be obtained
as superpositions of orthogonally linearly polarized TE01 and TE10
mode beams with different phase shifts. For example, the Gaussian
beam with radial polarization (Figure 6A) is nothing but the
superposition of Hermite-Gaussian TE01 and TE10 modes [63] in
the forms Eq. 2.3 where

FIGURE 5
A region of the field cross section with left-hand (blue) and right-
hand (pink) areas.

FIGURE 6
Polarization structure of some cylindrical vector beams formed
as superpositions of the modes TF01 (TE10). (A, B) Beams with radial
and azimuthal polarizations (phase difference between the TE
components Eq. 3.9 equals to zero); (C, D) beams with “twisting”
polarization (phase difference between the TE components is π); (E, F)
beamswith variable elliptic polarization (phase difference between the
TE components is −π/2 and +π/2, coorrespondingly).
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ux x, y( ) � xu0 x, y( ), uy x, y( ) � yu0 x, y( ), (3.9)
or

u+ x, y( ) � x − iy( )u0 x, y( ), u− x, y( ) � x + iy( )u0 x, y( ), (3.10)

and u0(x, y) � A0 exp(− x2+y2

2b2 ) is the fundamental Gaussian mode.

Likewise, the azimuthally polarized beam of Figure 6B represents a
superposition Eq. 2.3 with

ux x, y( ) � −yu0 x, y( ), uy x, y( ) � xu0 x, y( ) (3.11)
and

u+ x, y( ) � −y − ix( )u0 x, y( ), u− x, y( ) � −y + ix( )u0 x, y( ),
(3.12)

and similar simple representations can be written for other beams of
Figure 6. In point (x, y) = (0, 0) the polarization azimuth of the fields
described by Figures 6A–D is indeterminate, and this point is thus a
PS usually called “V-point”—a singularity of the continuous field of
2D vectors with variable directions and moduli. The wave structures
corresponding to Figures 6E, F also contain a singularity at the beam
center, but this is another class of fields (not the field of vectors but of
ellipses, the polarization is not everywhere linear), and another type
of PS.

For fields of Figures 6A–D, the definitive parameter of the vector
field is the polarization direction (azimuth δ, see Eq. 2.12; Figure 1;
the polarization ellipse degenerates into the rectilinear segment).
The vibration phase Eq. 2.14 of a V-point is constant, so its charge
Eq. 3.1 vanishes. In contrast to the C-point, the Poincare—Hopf
index Eq. 3.2 of the V-points is integer. For example, it equals to
+1 for the fields with radial and azimuthal polarizations of Figures
6A, B and −1 for the fields of Figures 6C, D. Note that one can
imagine radially and azimuthally polarized beams with any integer
index (|IC| > 1)—such beams are admitted by the Maxwell equations
or the wave equation. The possibility of such wave formations will be
discussed below in the context of the PS genericity.

3.4 Stokes-formalism of the polarization
singularities. Stokes-vortices

In Section 2, the description of the state of polarization by means
of the Stokes parameters was discussed (Eq. 2.6). Also, the Stokes-
formalism extension with the help of complex Stokes parameters Eq.
2.8 has been introduced. This procedure offers specific conveniences
in the PS characterization [4, 64–66], especially when the
normalized Stokes parameters sj � Sj/S0 are employed. The
corresponding complex Stokes fields are defined as

s12 � s1 + is2, s23 � s2 + is3, s31 � s3 + is1 (3.13)
where

s1 � S−10 ux| |2 − uy

∣∣∣∣ ∣∣∣∣2( ), s2 � 2S−10 Re u*
xuy( ), s3 � 2S−10 Im u*

xuy( ).
(3.14)

Obviously, the fields Eqs 3.13, 3.14 are complex scalar fields that
can possess their own systems of singularities (“Stokes-vortices”) but
are interrelated and keep close connections to the partial complex
amplitudes ux, uy. In particular, the complex Stokes field s23(r) is

equivalent to the off-diagonal element of the coherence matrix [67],
s23 = 2Jxy. The coordinates of the Stokes-vortices (phase singularities
of the fields sjk(r) (k, j = 1, 2, 3)) are determined as solutions of the
system of equations

sj r( ) � 0, sk r( ) � 0. (3.15)

It follows from Eqs 3.13, 3.15 that in the points of Stokes-
vortices, only one of the Stokes parameters sj does not vanish;
moreover, its absolute value equals to 1. For example, in the
singular point of the field s12(r), s1 = s2 = 0, and |s3| = 1.
Therefore, vortices of the field s12(r) coincide with the C-points.

For description of the vortices of complex Stokes fields sjk(r), it is
reasonable to introduce an additional parameter ϑ = ±1 which
specifies the sign of the non-vanishing Stokes parameter. Then,
the vortex of the field s12(r) with ϑ = 1 (ϑ = −1) corresponds to the
C-point with the right-hand (left-hand) polarization.

Similarly, for the field s23(r), Eq. 3.15 dictate |s1| = 1, i.e., |ux| =
0 or |uy| = 0. This means that the phase singularities (vortices) of the
field s23(r) occur in points where at least one of the planar
polarization projections of the field is singular (has a screw or
edge phase dislocation [1, 2, 5]).

Now consider Eq. 3.15 separately. Each of them determines
certain systems of closed contours in the (x, y) plane. For example,
the condition s1(r) = 0 determines the contours along which the
intensities of the ux and uy components are equal, while the
condition s2(r) = 0 specifies a system of so called C-contours
along which the phase difference between ux and uy equals
to ±π/2. On the contrary, the condition s3(r) = 0 distinguishes
the lines where their phases arg (ux) and arg (uy) coincide.

Finally, vortices of the field s31(r), accompanied by the condition
|s2(r)| = 1, appear at the intersections of s-contours and lines |ux| = |uy|
along which the intensities of the planar polarization projections are
equal. These vortices have no correspondence among the traditional PS
or scalar optical singularities but single out the “reference” points of the
s-contours with the polarization azimuth π/4 or 3π/4.

Naturally, using the “complex Stokes formalism”, one can
formulate various kinds of the sign principles [68] that relate to
C-points, or to the phase-difference vortices (see Section 3.5), and
obtain various topological invariants for such fields. Note that the
properties of Stokes vortices enable identification and full
characterization of the traditional PSs, once the distributions of
the local Stokes parameters are known. Accordingly, there is a real
possibility of analyzing the features of a vector field using the
methods of traditional Stokes polarimetry (see, for example, Refs.
[34, 43]). However, such approaches not always lead to success, since
the traditional PSs, by their nature, are phase objects (for example,
theC-points can be considered as singularities of the main phase χ or
the azimuth δ). As a consequence, the only unambiguous methods
for identifying PS are those based on the phase-metric approaches.

Indeed, determination of the Stokes parameters relies on the
intensity measurements [34, 43]. But the C-points have no direct
relation to the field intensity; these can appear both in locations with
a relatively high intensity and in regions where the intensity is low.
Moreover, for generic fields with predominantly circular
polarization, approximately 50% of the C-points are located in
regions of extremely low intensity in the zone of so-called scalar
zeros [8, 26]. Accordingly, because the intensity measurements in
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low-intensity areas suffer from significant measurement errors
caused by the photodetector noise and/or external hindrances, at
least half of the C-points cannot be accurately identified by the
Stokes-polarimetry methods.

That is why we believe that the only relatively reliable approach
for measuring the PS characteristics should involve the phase-metric
methods based on the use of certain interferometric schemes, which
will be considered below (Section 3.6).

3.5 Phase-difference vortices

Let us again consider the vector field decomposition into the
planar polarization projections introduced by Eqs 2.3, 2.5, that is,
u � exux + eyuy where ux � ax exp(iεx), uy � ay exp(iεy), and
define a “characteristic function”

Wxy x, y( ) � uxu
*
y � axay exp iΔεxy( ) (3.16)

where Δεxy � εx − εy. Note that the characteristic function (Eq.
3.16) is, in fact, the complex conjugated Stokes parameter S23
(see Eq. 2.8) which, in turn, coincides with the off-diagonal
element of the 2D coherence matrix Jxy (0) [67], and expresses
the same physical meaning.

The characteristic function Eq. 3.16 can be interpreted as a
complex amplitude of a certain scalar field whose phase equals to the
phase difference between the planar polarization components ux and
uy. The wavefront dislocations (vortices) of the field Wxy (x, y) are
situated in points where ux = 0 or/and uy = 0, i.e., in points where
these components have their own vortices. Naturally, the phase
difference Δεxy � εx − εy is indeterminate in these points, so they
can be considered as the phase-difference singularities (vortices),
and, moreover, the topology of the characteristic function phase
completely specifies the topology of the phase difference between the
components of the “original” vector field. Just like the vortices of
scalar fields, the phase-difference vortices are characterized by the
TC; it equals to the TC of the vortex of field ux or is opposite to the
TC of uy, regarding which of the components is singular in this
point.

Obviously, the phase-difference singularity positions are
determined by equations

ReWxy r( ) � 0, ImWxy r( ) � 0. (3.17)
Solutions of 2nd the equation correspond to the s-contours. By the
analogy, the curves determined by the 1st Eq. 3.17, can be called
“C-contours”. Along these lines, |Δεx,y| = π/2, and points where ax =
ay coincide with C-points.

A similar reasoning can be applied to the circular components of
the decomposition Eqs 2.3, 2.4 [8]: u � e+u+ + e−u−,
u+ � a+ exp(iε+), u− � a− exp(iε−), and the analog of function
Eq. 3.16 appears in the form

W± x, y( ) � u+u−* � a+a− exp iΔε±( ). (3.18)
Here, due to Eq. 2.12, the phase difference Δε± = ε+—ε– dictates the
local polarization azimuth δ. As a result, the phase-difference
vortices of function Eq. 3.18 are the C-points of the “original”
field u (x, y) while the contours of constant phase difference are
the loci of constant polarization azimuth. With such a

decomposition, the s-contours are the lines determined by the
equation a+(x, y) � a−(x, y). The TC of such a “circular” phase-
difference vortex has the same sign as the index of the accompanying
C-point, and its modulus is twice as large. The main consequence of
such a representation of vector fields, involving the phase-difference
characteristic functions Eqs 3.16, 3.18, is the validity of the “sign
principle” analogous to the sign principle ruling the phase vortices of
scalar fields [38, 68, 69]:

1. There is an even number of C-points on a closed equal-azimuth
contour.

2. Neighboring C-points, which are located on the same equal-
azimuth line, are characterized by IC indices of different signs.
Herewith, neighboring C-points can be located in areas with
different directions of field vector circulation.

3.6 Interference methods of the PS
investigation. Principles of the vortex
analysis of vector fields

In this Section, we briefly outline some principles and results of
the interferometric approaches to the PS detection and
characterization [8, 44, 69, 70] which are still not well known
and, to the best of our knowledge, remain underestimated by the
research community.

3.6.1 Determination of the s-contour
characteristics

Let us consider a vector field of the general form (for example, a
random spatially-inhomogeneous in intensity and polarization
optical beam) with the complex amplitude distribution u (x, y),
and, again, turn to its decomposition into plane-polarized
components, u � exux + eyuy. Now take an arbitrary point of the
s-contour and define the Cartesian frame such that in this point ux ≡
0, and the corresponding instantaneous electric field Ex(t) ≡ 0 at any
moment of time. This means that, in such a basis, a vortex
singularity of ux occurs in this point. The whole instantaneous
electric field is then determined by the uy component and, according
to Eqs 2.3, 2.9,

Ey t( ) � Py cosωt + Qy sinωt � Re ay exp i εy − ωt( )[ ]{ }. (3.19)

Hence, the condition for the emergence of a disclination
(instantaneous field zero [22]) in this point appears in the form
similar to Eq. 3.6:

εy − ωt � π

2
+mπ, m � 0,± 1,± 2, ... (3.20)

Therefore, if the field is observed through a polarizer selecting the
x-component, one sees the optical vortex of the ux field; the
permanent amplitude zero at the vortex axis actually “visualizes”
the disclination position at the time moments
tm � (εy − π/2 −mπ)/ω. (The phase εy can be determined with
the polarizer orientation changed by 90°—of course, with respect
to the reference wave phase.) Then, rotating the polarizer a little, one
may single out another x-axis slightly different from the initial one.
The “new” x-component vortex emerges in another point of the
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s-contour which indicates the disclination position at another time
moment. Thus operating, one can establish the correspondence
between the time-dependent position of the disclination, space-
dependent position of the vortex on the s-contour and the polarizer
orientation.

Experimental observations of the processes of birth, migration
and annihilation of partial vortices of the polarization projections of
optical fields can be performed with the Mach-Zander
interferometer illustrated in Figure 7. The patterns observed
when the quarter-wave plate 7 is removed, are presented in Figure 8.

On the panel (a), all fringes of the interference pattern seen in
the interferogram are continuous. With a certain rotation of the
polarizer 12 (Figure 7), a pronounced bending of the interference
fringes is observed in the area marked in images B—E by the blue
rectangle, indicating a sharp change of the optical-field phase in this
region (a precursor to the vortex birth). With further rotation of the

polarizer 12, a fringe break occurs in this place, which corresponds
to the point of vortex birth (Figure 8C). At this point, a local
extremum of the polarization azimuth takes place. In the same panel
Figure 8C, one can see that a new vortex V1 enters the observed zone;
it can be identified via a downwardly directed interference “fork”.
Further rotation of the analyzer demonstrates that vortices V2 and
V3 of opposite TCs become distinguishable and move in opposite
directions from the “point of birth” (Figure 8D). Simultaneously, in
the same panel, one can observe a new “break” of the interference
fringe (marked by the light rectangle), corresponding to the birth of
another pair of vortices, V4 and V5. In the panel E, the vortex V1 has
annihilated with the vortex V5 whose birth was expected in panel
(d), but the vortex V4 moves towards V3. The image F illustrates the
situation when the annihilation of V3 and V4 has already occurred,
and continuous interference fringes are observed over the entire area
of analysis, except the vicinity of the vortex V2, that continues the
migration towards the left upper corner of the interferogram. The
light line in Figure 8F indicates the s-contour detected.

3.6.2 Detection and characterization of C-points
The simplest method of interference identification of C-points

[8, 39] can be realized with the scheme shown in Figure 7 where the
quarter-wave plate 7 is active and oriented at an angle of ±45°

with respect to the analyzer 12. In other words, a pair of elements,
plate λ/4 and analyzer 12, form a circular polarizer, at the output of
which a linearly polarized projection will be formed, which coincides
in structure with the right (left) circularly polarized component of
the analyzed optical field. Due to the fact that the polarization is
circular at the C-point, a vortex will appear in one or another planar
projection of the field, which can be identified interferometrically.
Accordingly, the sign of the vortex TC can be determined via the
interference fork orientation [5] with account for the mutual
orientation of the object and reference beams. The sign of such a
vortex coincides with the sign of the C-point charge Eq. 3.1.

FIGURE 7
Arrangement for the experimental investigation of vortices of the
planar polarization projections of an optical field (1, 11) beam-splitters;
(2) micro-objective; (3) Teflon (PTFE) plate; (4) objective; (5, 6) mirrors;
(7) quarter-wave plate; (8, 9, 10) beam expander; (12) analyzer.

FIGURE 8
Results of the experimental investigation of the s-contour and the points of birth and annihilation of the vortices in planar polarization projections.
Interferograms (A–F) correspond to different orientations of the polarizer 12 (Figure 7); light arrows on the left side of the images indicate the spatial
reference. The detected s-contour is shown in the panel (F) by the light-blue line.
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Accordingly, the C-point index Eq. 3.2 can be determined from the
relationship Eq. 3.3.

Figure 9 shows the results obtained from the experimental study
of a spatially inhomogeneous field with predominantly circular
polarization. In this case, significant differences in the
polarization characteristics are concentrated in regions of low
intensity, in the zone of “scalar zeros” (regions where zeros of
the planar polarization components are observed). The sizes of
s-contours are small and coincide, in the order of magnitude, with
the sizes of these regions [8, 69]. Figure 9A presents the
interferogram of a planar polarization projection with the
vortices detected at the centers of the corresponding interference
forks. Figure 9B shows the topological results extracted from the
interferogram, with detected positions of the C-points, s-contours
and locations of the vortices for some linearly polarized field
projections.

Note that the analysis of spatial distribution of C-points and
their reconstructed characteristics confirms the validity of relation
Eq. 3.8, which establishes a connection between the TCs of C-points
and the TCs of vortices located on the s-contour surrounding the
region in which these C-points are situated. The vortices located on
the s-contour on the left side of Figure 9B deserve special attention.
One can see that there is no C-point inside the contour; however,
two vortices are observed with opposite TC signs on the s-contour.
Accordingly, their total TC is equal to zero, which corresponds to the
zero-value total TC of the enclosed C-points, or to their absence in
the enclosed region.

3.6.3 Identification of V-points
The identification of V-points and similar singular structures

can be performed in the same scheme of Figure 7, if the selected
planar polarization projection forms an interference pattern
characteristic for the edge wavefront dislocation [5] (see
Figure 9C).

In this case, such a pattern for an azimuthally (radially)
polarized beam (Figures 6A, B) and beams of the types
presented in Figures 6C, D, is formed in any planar
polarization projection for arbitrary orientation of the output
polarizer. All beams can be distinguished if the orientation of the

polarizer axis is known, by rotating it with a small step within
180°. Beams of the types E, F of Figure 6 can be identified in the
same way if, after analyzing planar polarization projections (that
will form an edge dislocation only for two orientations of the
output polarizer), an additional λ/4 plate is inserted after the
objective 4 (see Figure 7), and a circular polarizer is thus formed.
As in the previous case, to completely identify the wave
structures, it is necessary to know the orientations of the axes
of the output polarizer and the quarter-wave plate.

4 Genericity and stability of the
polarization singularities

In the early doctrine of scalar wave-field singularities, it was
recognized that, despite the great diversity of topologically feasible
singular structures, only a small subset of them, having the simplest
forms, can be observed in common practice [4–6, 8, 9]. The reason is
that the higher-order complex singularities are characterized by a
higher-order symmetry, which can be destroyed under a minor
perturbation which is inevitable in any real situation. Under such
perturbations, the usual (non-singular) physical structures
experience certain deformations but preserve their main physical
features and can be described by symmetric models, at least
approximately. For example, the circular intensity spot of a
Gaussian beam can be slightly deformed, and the intensity
maximum shifted from the nominal axis by 1% of its radius but
this does not affect its qualitative identity of a “circular Gaussian
beam” for the most practical needs. As a topological structure, an
optical singularity differs from this example in two aspects: (1) being
topologically stable, the singularity “per se” survives even through
rather strong perturbations (it can be displaced, deformed but never
disappears completely), and (2) being the objects of high symmetry,
the higher-order singularities are topologically forbidden as soon as
the ideal symmetry is destroyed, i.e., in any practical situation. This
fact is usually expressed in terms of “generic” (existing
spontaneously in occasionally taken optical fields) and “non-
generic” (specially prepared by experimenter’s efforts and
destroyable by a smallest perturbation) singularities [8].

FIGURE 9
Experimental characterization ofC-points: (A) interferogram of a certain planar-polarization projection of a vector field with predominantly circular
polarization; (B) reconstructed positions of C-points, s-contours, and vortices of the observed projection. Symbols , denote the right-handed
C-points with right circular polarization. , mark the left-handed C-points. , denote the vortices of the polarization projection analyzed; “+, −”
inside the square (circle) corresponds to the positive or negative TC of the C-point (vortex). (C) Interference pattern of the edge phase dislocation.
Fringes on opposite sides of the dislocation line (red) are shifted by half a period.
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Obviously, for the PSs, the issues of their genericity and stability
are also relevant [22, 71]). Indeed, can PSs arise and exist with
charges (indices) (see Eqs. 3.1, 3.2) whose module values are greater
than the minimum ones? Some authors consider, in great detail, the
polarization-inhomogeneous fields containing the PSs with the
Poincaré-Hopf index |IC| > 1/2 (for C-points), or |IC| > 1 (for
V-points), as the wave formations that can be realized in practice
(examples can be seen in Refs. [4, 13]). Indeed, such wave
formations can only be realized as a certain type of model, which
can exist in the laboratory, and even employed for some practical
applications but are structurally unstable both in the topological and
physical sense.

Let us make a reservation right away that in real random
inhomogeneously polarized fields, only PSs with the minimum
values of the topological indices |IC|, |SC| may exist. It is also
known that stable intensity zeros do not exist in vector fields [22,
72], at least, beyond the paraxial approximation (moreover, in the
3D picture, the system of PSs is completely different from the
paraxial analogs [22, 35] but this topic is beyond our present
consideration). However, it is interesting to inspect some aspects
of “artificially” created non-generic wave structures, which can arise
due to the “tricks” of an experimenter.

In general, the concepts of genericity and structural stability,
introduced in [8, 22, 72, 73]), indicate that generic objects are
structurally stable (in space and time) natural realizations of
certain physical models that exist in a self-governed physical field
without special external actions. Naturally, under certain influences
on the physical process (for example, with a specific phase
modulation of the field or its part, etc.), a non-generic structure
can arise at some point (region) of the field, at least, because its
occurrence and existence does not contradict the Maxwell equations
and other fundamental laws of the electromagnetic field theory.

However, the “lifetime” of such a structure occupies only a point
on the time axis. Therefore, despite that the field properties in the
considered point (region) of the field dramatically change at the time
of the structure’s implementation, its physical impact, as well as its
“time of existence” (births, development, decay) are infinitely small.
Moreover, the probability of simultaneous implementation of at
least two non-generic structures is zero, and it can be argued that in a
fixed plane of observation for any field and any physical impact, only
one non-generic structure can exist at a given moment of time.

The concept of genericity is closely related with the concept of
structural stability: the latter differs by a special emphasize of the
physical processes underlying the structure’s existence. For example,
a single vortex of a scalar field, or a group of vortices of the same sign
are absolutely stable field objects, since their disappearance requires
the implementation of a special process—annihilation. The
combination of two closely spaced vortices, the specific field
morphology in the vicinity of the vortex annihilation point
[74–78] are absolutely generic situations, but structurally
unstable, since a relatively small field perturbation can cause
disintegration of such field formations. Note also that the
observation of the “birth–annihilation” processes of specific field
structures is strictly “tied” to the position of the “analysis
plane”—the “selected” cross section of the beam that can
translate along the longitudinal z-axis (see Section 2). In this
context, the “point-like” nature of the “near-birth” or “near-
decay” structures underlies their extreme sensitivity to the plane

of analysis, since its arbitrarily small longitudinal displacement can
be associated with an effective perturbation of the field.

In view of the above reasoning, practical realization of a non-
generic PS (e.g., C-point with a high absolute TC) can be deemed as a
system of closely positioned PSs of the same sign. In such situations, if
the distance between the singularities is less than the wavelength, then:

• the field in the vicinity of this system looks as if it is the field
formed near a high-index PS;

• no optical experiment is able to distinguish this system of
singularities from the high-index PS.

At the same time, further wave propagation (shift of the
observation plane) and even weak physical perturbations cause
the transformation of this “visually non-generic” singularity into
a quite common combination of simple generic PSs.

4.1 Genericity and stability of V-points

The especial attention should be paid to the V-singularities of
cylindrical vector beams (see Figure 6). Indeed, according to Eqs 3.9,
3.11, such a beam can be represented as a superposition of two
linearly polarized components possessing orthogonal polarizations
and non-parallel edge dislocations (ED) of the phase distributions
(the lines of zero amplitude which in cases of Eqs 3.9, 3.11 coincide
with the (x, y) Cartesian axes) such that at their intersection the
V-point is formed. However, the edge dislocation, as a scalar-field
singularity, has zero TC. As a consequence, it is not protected
topologically from a decay: an ED of the phase has no structural
stability. The question naturally arises of how wave formations with
ED (for example, beams of the TE01 (TE10) type) retain their basic
properties during propagation.

As is known, an ED can be observed in a certain observation
plane in two cases [5]:

(1) The zero-line (ZL) of the field is localized in the observation
plane (see Figure 10A);

(2) There exists a zero-surface (ZS), where the wave has zero
amplitude, in 3D space, and it is crossed by the observation
plane (Figure 10C).

Naturally, the first case is practically not realized, since the field
in which the ZL lies strictly in the observation plane, generally is not
observed. The more real situation that arises in optical fields is
illustrated by Figure 10B: the ZL intersects with the observation
plane in a number of points, thus forming a set of vortices
alternating in sign (Figure 10B). At best, the observation plane
can be tangent to the ZL. At this point, an infinitesimal translation of
the observation plane may cause the events of vortices’ birth or
annihilation. Such a point can be conventionally called a “zero-
length ED” (ZLED) [79], see Figure 10B.

At first glance, the second case—the case of ZS—is even more
exotic than the ZL, since the ZS can be considered as a degenerate
wave object, and such a structure should naturally decay under an
infinitesimal physical perturbation. At the same time, such a
transformation leads to the emergence of a bunch of ZLs located
close enough and forming bunches of closely spaced vortices with an
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alternating TCs (see Figure 10C). Such structures, due to the
topological stability of the vortices, can propagate infinitely
without changing their topological characteristics.

The conclusions of the above paragraphs are confirmed by the
results of numerical simulations (Figure 11). Here, the situation is
considered where the initial beam with the ED (a Hermite-Gaussian
beam of the form Eq. 3.9) is transmitted through a thin phase plate
introducing a small random modulation of phase (Figures 11A, D);
the mean value of the phase modulation is << π/2. According to the
Rayleigh criterion [80], this procedure practically does not affect the
beam profile immediately behind the plate (Figures 11B, C).
Moreover, at a distance z from the plate corresponding to the far
field (Fraunhofer zone), the overall intensity and phase profiles are
still close to those of the incident Hermite-Gaussian beam (Figures

11E, F). However, the dramatic changes do occur on the geometric
projection of the ED and its nearest vicinity: instead of the expected
ZL, a system of vortices with alternating TC signs is formed. In other
words, the ED really decays into a set of screw phase dislocations, as
is well seen in Figures 11F, G.

Accordingly, if such individual vortices on the “zero-intensity
surface” ZS (Figure 10C) are located close enough, the resulting field
structure appears to look very similar to the field formed by an edge
dislocation experienced weak phase perturbations. Consequently, a
superposition of the similar linearly polarized beams, like those
considered in Section 3.3, leads to a formation of stable vector fields
with the azimuthal and radial polarizations (Figures 6A, B), and
more complex fields of Figures 6C, D. This testifies for the structural
stability and genericity of V-points.

FIGURE 10
Manifestations of zero-lines (ZLs) and zero-surfaces (ZSs) regarding their positions with respect to the observation plane (horizontal plane): (A) ZL, or
its segment, lies completely in the observation plane (non-generic case); (B) ZL crosses the observation plane several times; (C) ZS is decomposed into a
set of adjacent ZL crossing the observation plane.

FIGURE 11
Transformation of the ED after passing through a thin random phase plate. (A) The model illustration; (B) intensity distribution immediately behind
the phase plate; (C) phase distribution immediately behind the phase plate; (D) the phase modulation implemented by the phase plate; (E) intensity
distribution in the far field behind the phase plate; (F) phase distribution in the far field behind the phase plate; (G)magnified region of the field marked by
the light ring in (F). Red (blue) square denotes the vortex of positive (negative) TC.
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5 Dynamical manifestations of the
electromagnetic field near polarization
singularities. Relations between the
singularities and energy flows

5.1 Energy flow and momentum in paraxial
fields with polarization singularities

At first glance, the presence of a PS in a vector wave does not lead
to any specific physical features. Indeed, the field in a C-point, or at
the points of an s-contour, is practically indistinguishable from the
field in its nearest neighborhood in the traditional sense. For
example, the instantaneous electric field in any point of the
immediate vicinity of the C-point oscillates with describing an
elliptic trajectory (see Figure 1) that differs very little from a
circle. In this sense, the fields at the C-point itself and in its
vicinity are almost identical. At the same time, any C-point
coincides with the vortex in the partial field of the oppositely-
polarized circular projection of the field; likewise, points of the
s-contour are coupled with vortices of certain planar polarization
projections. As is well known, in scalar fields, the vortex singularities
are associated with the specific energy flow patterns, manifested as
the transverse energy circulation and the local OAM of the optical
field [1, 2, 5, 35, 36]. Accordingly, a specific behavior of energy flows
can be expected in the PS regions, as well as the presence of the
mechanical angular momentum with respect to the singularity
“center”. This, in turn, leads to deep relations between the PS
characteristics and the singularities of the transverse energy flow
(Poynting vector) of the field [8, 37, 47, 81–87].

Prior to discuss the angular-momentum and energy-flow
features associated with PSs, we establish explicit relations
between the main dynamical characteristics of paraxial light
beams [35, 36] and the Stokes parameters being the basis of the
polarization-optics formalism (see Section 2). In paraxial fields
described by Eqs. 2.1, 2.2, the energy density can be expressed as

w � gε u* · u( ) � gεS0, (5.1)

where g � (8π)−1, and the Gaussian system of units is used. The
energy flow density is determined by the Poynting vector U
proportional to the field momentum density p:

U � c2

εμ
p � ezU‖ + UO⊥ + US (5.2)

(in view of some general considerations, we accept the Minkowski
form of the electromagnetic momentum [36]; however, the accurate
momentum definition and the Abraham—Minkowski dilemma
[88–90] it is not important in the present context, especially
when the PS phenomena in the vacuum or air are considered,
and the condition ε = μ = 1 is valid). In Eq. 5.2, the first term
proportional to

U‖ � gc
��
ε

μ

√
S0 (5.3)

(S0 is the zeroth Stokes parameter Eq. 2.6) describes the longitudinal
energy flow associated with the usual beam intensity. (Note that
sometimes the Stokes parameters are re-normalized such that to
incorporate the coefficient of Eq. 5.3, after which it looks as an

identity U‖ � S0, but we preserve the definitions of Section 2). The
main interest focuses on other terms originating from the spin-
orbital decomposition of the momentum (energy flow) [35–37,
91–94]. The first of them expresses the transverse part of the
“orbital” energy flow,

UO⊥ � cg

kμ
Im u* · ∇⊥( )u( ) � c2g

2ωμ
S1 + S2( )∇⊥εx + S1 − S2( )∇⊥εy[ ]

� c2g

2ωμ
[ S0 + S3( )∇⊥ε+ + S0 − S3( )∇⊥ε−]

(5.4)
(∇⊥ = exz/zx + eyz/zymeans the transverse gradient, εx, εy and ε+, ε–
are the phases of the planar and circular polarization projections Eq.
2.5); the second is the “spin” flow [37, 91, 92] existing due to
inhomogeneity of the “helicity-dependent” Stokes parameter S3:

US � − ic2

2ωμ
g ∇⊥ × u* × u[ ]( ) � c2g

2ωμ
ex

z

zy
− ey

z

zx
( )S3. (5.5)

According to Eqs 5.2, 5.4, 5.5, the total transverse energy flow is
determined by equation

U⊥ � exUx + eyUy

� c2g

2ωμ
S1 + S2( )∇⊥εx + S1 − S2( )∇⊥εy + ex

z

zy
− ey

z

zx
( )S3[ ].

(5.6)
Notably, Eq. 5.6 only includes partial derivatives of the phases,
i.e., the initial phase is not important, and the vector field (Ux, Uy)
can be restored from experimental data based on the interferometry
of the polarization components and polarimetric
measurements [95].

According to Eq. 5.2, transverse flows are associated with the
transverse momentum components, and transverse energy
circulation “generates” the optical angular momentum with
respect to the longitudinal axis z. This angular momentum
includes the orbital part (OAM) with the density

L � εμ

c2
r × UO⊥( ), (5.7)

and the spin angular momentum (SAM) part entailed by the
presence of circular polarization:

J � gε

ω
ezS3 + g

2ωk

��
ε

μ

√ [ S0 + S3( )∇⊥ε+ − S0 − S3( )∇⊥ε−]. (5.8)

The first summand of this equation represents the usual longitudinal
spin momentum density of a field with circular polarization whereas
the second one characterizes its relatively small variations caused by
the spatial inhomogeneity of the beam.

Based on the representations Eqs 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8
and using the field decomposition into orthogonal circularly
polarized components, a conclusion can be derived that in the
vicinity of a C-point, optical angular momentum arises from two
sources. First obvious source is the SAM caused by the field helicity
(1st summand of Eq. 5.8), and the second is the orbital flow Eq. 5.4 of
a vortex that exists in one of the components, u+ or u–. The optical
angular momentum is not an additive quantity, and the fact that it is
carried by some field components does not warrants that the whole
field also possesses a non-zero angular momentum, but makes this
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conclusion rather likely. An opposite example is the field near an
s-contour: at any point of this contour, the vortex of a certain
linearly-polarized component is situated (see, for example, Ref. [8])
but in the resulting vector wave, the angular momentum can hardly
reach any significant value near the s-contour.

On the other hand [8, 39], indeed, there exists a direct
relationship between the indices and charges of C-points, on the
one hand, and the vortices of separate polarization projections of the
field, on the other. As was noted in Section 3.2, the total TC Eq. 3.1
and index Eq. 3.2 of C-points situated in the area enclosed by
s-contours (including internal ones, characterized by different
senses of the field vector circulation, cf. Figures 2B; 5) is
determined by the total TC of all vortices of an arbitrary planar
polarization projection of the field, located on the s-contours
enclosing this area. In this case, relation Eq. 3.8 is satisfied,
which can be rewritten as:

∑N
j

hjIC tot � SC tot � 1
2
Stot (5.9)

where hj is the handedness factor in the j-th area equal to +1 (−1) in
areas with right (left) handedness, N is the number of areas with
different senses of the field vector circulation.

Equation 5.9 expresses the specific form of the angular
momentum conservation in the fields with inhomogeneous
polarization. Due to a more complex relationship between the
component vortices and the characteristics of polarization
singularities, the general conclusion about the conservation of
angular momentum cannot be applied to individual structures
(regions) of the vector field. However, it remains valid for the
entire vector field as a whole, i.e., a rather complicated
transformation is observed of the angular momentum of partial
field components into the angular momentum of the whole vector
field.

5.2 Poynting singularities

The OAM definition Eq. 5.7 implies that it depends on the
coordinate origin and can be considered for arbitrary field region,
with respect to an arbitrary point. However, physically meaningful
OAM values are associated with some special points of the optical
field, and, particularly, special points of the Poynting-vector
distribution, so called Poynting singularities (P-singularities) [8,
35, 37, 39, 47, 81–83, 95, 96]. The P-singularities are interesting
not only as physically meaningful and intuitively conceivable
examples of the vector-field singularities but also as light
structures suitable for trapping and manipulation of micro- and
nanoparticles [97–100].

Poynting singularities emerge in the field U⊥ = (Ux, Uy) just like
in other 2D vector fields [8, 35, 82], in points where both
components of U⊥ vanish: there, the vector azimuth is
indeterminate. The classification of singular points is common
for any 2D vector fields [101] and includes nodes (sinks and
sources), saddle points, vortices (circulation points) and attractive
or repelling focuses (spiral points). These are illustrated in Figure 12,
and more details can be found, for example, in Refs; [2, 8, 35, 37]. In
scalar beams, the Poynting singularities normally coincide with the

corresponding phase singularities. For vector beams, the
P-singularities of the partial fields, belonging to separate
polarization projections, in many cases can be associated with the
usual PSs (C-points and s-contours) [8, 37, 38]. However, for
P-singularities of the total transverse flow Eq. 5.6, this association
is mostly indirect: their positions and classes generally cannot be
related to certain PS [37], although some definite correlations are
well established [83, 91, 92].

The vortex-type P-singularity is exceptional by its physical
manifestations, so it is specially highlighted among
other—“passive”—singularities (Figure 12). Near P-vortices,
the energy circulation takes place, which is coupled with the
angular momentum Eq. 5.7. That is why the vortex points can be
called “application points of the momentum”, keeping in mind
their specific role for the field OAM. In the vortex-singularity
area, the OAM takes on a maximum value, whereas in the
vicinity of a passive singularity, the OAM reaches the minimum.

Naturally, the P-singularities are characterized by the
Poincaré-Hopf index Eq. 3.2 involving the flow-line azimuth.
For all types of singularities presented in Figure 12, |IC| = 1;
moreover, its sign is positive for all P-singularities, except the
saddle (Figure 12B) for which IC = −1. To distinguish the vortex
singularities with opposite directions of circulation, an additional
characteristic is introduced: the chirality V, which equals to +1 if
the component circulates counter-clockwise and −1 in the opposite
case (Figure 12A).

Remarkably, any pattern of the energy flow can be associated
with the specific spatial behavior of the instantaneous field
distribution Ex (x, y, t), Ey (x, y, t) Eq. 2.9 [81, 102–104]. It
was found that any time-average “stationary” energy flow can be
treated as a manifestation of the “running” features of the
instantaneous field oscillations, and the local energy flow
density provides a natural criterion of this instantaneous
motion. In particular, if the instantaneous intensity circulates
around a certain point of the field, then this point is a vortex
singularity of the type of Figure 12A, and the OAM arises in its
vicinity.

In view of the spin-orbital momentum decomposition Eqs 5.4,
5.5 and Eqs 5.7, 5.8, it is reasonable to consider separately the
singularities of the orbital Eqs 5.4 and spin Eq. 5.5 flow contributions
which occur in points where

UO⊥ � 0, US � 0. (5.10)

Accordingly, different types of singularities may exist in the fields
UO⊥ and US, and the points of vortex singularity, like in Figure 12A,
can be considered as “application points” of the separate orbital and
spin momenta.

5.3 Relations between the transverse energy
flows and polarization singularities

The detailed description of the P-singularities is beyond the
scope of the present review; moreover, this task is still a problem for
further research efforts. Here we only mention some correlations
and interactions between them and the PSs of the same field, with
the special attention to the vortex-type singularities, which serve
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“application points” for the corresponding momentum
contributions.

Naturally, in the general case, the singularities (“application
points”) of different momentum contributions Eqs 5.4, 5.5, 5.6 do
not coincide. All application points merge only in the beams with
central symmetry. In this case, the association of the field-
momentum application point with the PS, for example, with the
C-point, becomes physically transparent and informative [8, 84].
Figure 13 illustrates the situation where the right-hand C-point is
formed at the coordinate origin (x, y) � (0, 0). In its vicinity, the
field is formed by a superposition of two circularly polarized
components Eq. 2.3, and the right-hand component is smooth
and regular,

u+ x, y( ) � a+ exp iε+( ) ≈ const, (5.11)

while the left-hand one takes on the form of a positive-TC vortex:

u− x, y( ) � u0 x + iy( ) � u0r exp iφ( ) (5.12)
(u0 is the normalization constant, (r, ϕ) is the polar frame). At a
certain distance from the C-point, where the component amplitudes
are equal, the s-contour takes place (Figures 13B, C). Between the
C-point and s-contour, all states of polarization are realized that are
mapped on the upper Poincare hemisphere [34], which enables to
characterize such a beam as the “full Poincare beam” [66, 105–110].
According to Eqs 5.4, 5.5, 5.6,

UO⊥ � US ∝ u0 −exy + eyx( ) � u0reφ (5.13)

where eφ is the unit vector of the azimuthal direction, i.e., the
central-symmetric energy flow circulates around the C-point

FIGURE 12
Behavior of the transverse Poynting vector component near the P-singularity: (A) vortex-type singularity, (B) saddle, (C) attractive focus, (D) source;
(B–D) represent passive singularities.

FIGURE 13
Spatial distribution of the transverse Poynting vector U⊥ Eq. 5.6 for the symmetric field of Eqs 5.11, 5.12: (A) distribution of the modulus |U⊥|, brighter
colors denote higher values; (B) distribution of the vector azimuth, fromwhite (ϕ=0) to black (ϕ= 2π); (C) explicit vector-field pattern (local directions and
strengths are indicated by the orientations and lengths of the arrows).
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(Figure 13C). Note that in this result, the contribution of the
smooth component Eq. 5.11 vanishes, and the whole observable
transverse energy flow Eq. 5.13 is due to the singular component
Eq. 5.12. Additionally, the spin and orbital contributions in Eq.
5.13 coincide because the polarization handedness (h = −1) and the
vortex TC (l = +1) in the variable component Eq. 5.12 are opposite
[111]; otherwise, when the signs of h and l are the same, the
resulting momentum in the nearest C-point vicinity would vanish
[84, 111].

In other situations, if at least one of the main parameters
(amplitude, phase) of any polarization projection shows spatial
asymmetry, the application point of the total transverse
momentum shifts from the C-point. For example, if in Eq.
5.11 the amplitude a+(x, y) and phase ε+(x, y) of the smooth
component are variable, additional terms appear in the total
transverse flow:

ΔU⊥ ∝ exa+ a+
zε+
zx

+ za+
zy

( ) + eya+ a+
zε+
zy

− za+
zx

( ) (5.14)

which should be added to Eq. 5.13. They destroy the symmetry of
Figure 13, and the new situation is shown in Figure 14.

It is seen that both the phase ε+(x, y) and the amplitude a+(x, y)
asymmetry lead to the field deformation and the P-singularity shifts
with respect to the PS. The only difference is that x-dependent
(y-dependent) variations of the phase (1st row of Figure 14) induce
the x-dependent (y-dependent) deformations of theU⊥ distribution,
whereas, in case of the amplitude perturbations, horizontal
deformations of the amplitude invoke the vertical changes in the
U⊥ distribution, and vice versa. Note that the application point of the
total transverse momentum (P-singularity) can cross the s-contour
and move even to a region with an opposite field handedness (see
Figures 14A–C).

At the same time, relations between the characteristics of
C-points and P-singularities are preserved even in random non-
uniformly polarized fields. Negative (positive) C-points and vortex
(passive) P-singularities form associated pairs which can be
considered as results of symmetry-breaking perturbations of
initially symmetric structures of the type shown in Figure 13

FIGURE 14
Shift of the P-singularity (vortex of the transverse Poynting vector Eq. 5.6) in the full Poincare beam [84, 105] due to asymmetry of amplitude a+(x, y)
and phase ε+(x, y) of the smooth polarization component Eq. 5.11. Only the asymmetry in horizontal direction is considered (za+/zy = zε+/zy = 0). Panels
(A, D, G): distribution of the modulus |U⊥|; (B, E, H): distribution of theU⊥ azimuth (color-encoding conventions are the same as in Figure 13); (C, F, I): full
vector plots with local strengths and orientations depicted by arrows. 1st row (A–C) illustrate the influence of amplitude asymmetry (a+ variable, ε+ =
const); 2nd row (D–F)—effect of the phase asymmetry (ε+ is variable, a+ = const); 3rd row (G–I)—combined effect of the phase and amplitude asymmetries.
Symbols , denote the C-point and P-singularity, respectively. The gray line in figures (B, C, E, F, H, I) indicates the s-contour.
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with initially “merged” C- and P-singularities. The distance between
the P-singularity and the corresponding C-point is determined by
the degree of asymmetry of the orthogonal components u+(x, y) and
u–(x, y) Eq. 2.3 of the total vector field. The situation is illustrated by
the results of numerical simulation for a random vector field [112]
presented in Figure 15 where a part of the beam cross section is
shown with C-points and P-singularities.

6 Conclusion

In the above Sections, the general description and discussion of
the PSs have been presented based on the universal model of paraxial
light fields. In this context, the specific properties of vector light
fields appear as a generalization and further development of the
scalar models where the vector nature of electromagnetic waves
supplies additional internal degree of freedom. The vector field is
considered as a superposition of orthogonally polarized projections,
both planar and circular, and the partial fields of separate projections
can be treated as scalar wave fields. Accordingly, the specific
singularities of the vector fields can be analyzed with the well-
developed scalar models, and each PS appears as a special point of a
certain scalar field. This approach enables to consider the PSs, their
structure, topological and morphology properties following to the
common schemes developed for the simpler case of scalar wave
fields.

This way of reasoning makes the relations between the PSs and
the “underlying” scalar singularities more obvious and involve the
heuristic arguments based on the pictorial and intuitive models of
scalar singular optics: optical vortex, screw or edge phase
dislocation, their numerical characteristics such as topological

charge, Hopf–Poincare index, etc. On the other hand, it naturally
invokes the dynamical features of optical fields, including the
internal energy flows, momentum and angular momentum
distributions. Simultaneously, this approach reveals the unique
descriptive abilities of the optical dynamical characteristics for
meaningful characterization of the PSs, their evolution,
propagation and physical properties.

Another aspect, scrutinized in this review, embraces the issues of
genericity and observability of PSs with regard to their types and
physical nature, possibilities of their experimental detection and
characterization by using interferometric approaches. We hope that
the review has exposed additional consistent arguments to the
validity and diagnostic abilities of these methods, which can be
used in the future research activity addressing the PSs.

However, the knowledge associated with singular phenomena in
physics, and the PS-oriented studies in particular, are still at the early
stages of their potential development, and new results, ideas and
concepts emerge with growing intensity. Therefore, this review is
forcedly restricted to a limited number of issues which are especially
close and deeply connected with the authors’ previous activity.

To conclude the review, we would like to outline some of the
main milestones indicating the current state of the art and the
general trends in the PS research and applications, which are left
beyond its scope. First of all, we must emphasize that, due to the
vector nature of electromagnetic fields, the PSs are essentially 3D
objects, and their 2D models, considered here, offer sometimes very
useful and suitable but inevitably simplified characterization of real
physical processes. Investigation of the 3D features associated with
the PSs is one of the most promising directions of physical optics
discovering new impressive phenomena. Among them, studies of
the dynamic behavior of PSs propagating in 3D space should be
mentioned first (a succinct but informative review of them was
recently published [13]). The essentially 3D structures of optical
fields attract growing attention; as an example, such exotic
polarization constructions as Mobius strips [113, 114] can be
mentioned. Remarkable efforts are being applied to studies of the
PSs dynamics in non-linear media [115, 116] and, more generally, to
identification of mechanisms determining the evolution of non-
generic singularities into stable generic systems. Particularly, the PS
analogs of the “fractional optical vortex” [17] reveal interesting and
fundamental mathematical attributes of their “life” [117].

Another consistent aspect of the PS investigation, only slightly
touched in this review, concerns the transformations and mutual
conversion processes of the PSs [13], which can be useful, e.g., for
many practical needs. The patterns of the PS dynamics and
evolution are especially interesting in partially coherent beams
(see, for example, Refs. [118–122]); in particular, the PS control
offers efficient channels to manipulate the beam intensity and phase
profiles [121, 122]. However, the PSs in partially coherent stochastic
fields are also outside our present scope.

Generally, the practical applications of the PSs are just at the
beginning of the potentially brilliant development, which differs
them from the scalar optical singularities whose utilitarian qualities
are widely recognized [1, 2, 4, 7, 18]. Nevertheless, various practical
aspects of the PSs are intensively studied, aimed, for example, at the
image filtering and pattern recognition, measuring the optical
activity of chiral media, as well as at the “classic” goal of the
singular optics—“robust” information encoding with enhanced

FIGURE 15
Correspondence between the S-points and R-singularities.
Symbols , denote the positive and negative S-points, , are the
vortex and passive R-singularities. Numerals 1 and 2 indicate the pairs
of associated C- and R-singularities. Local directions of the
Poynting vector are indicated by arrows, black lines are the
s-contours, background shows the grayscale-encoded intensity
distribution with dark minima.
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stability, capacity, and hindrance protection for optical
communication through turbulent media, under conditions of
external interference, etc. [4, 13]. Specific features of the PSs
make them valuable instruments of optical metrology [123–125].
Like the familiar scalar singularities (e.g., optical vortices), the PSs
create conditions for specific energy flow distributions favorable for
the particles’ trapping, guiding and manipulation in
nanoengineering techniques [13, 106, 126, 127].

Unfortunately, the limited frame of the present review gives no
possibility to describe the vivid and informative research activity
relating the practical applications of the PSs in more detail. Like
many other useful and relevant data, these can be found in other
recent publications, for example, Refs. [4, 7, 9, 11, 13].
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