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Polarization squeezing and continuous-variable polarization entanglement
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A concept of polarization entanglement for continuous variables is introduced. For this purpose the Stokes-
parameter operators and the associated Poincare´ sphere, which describe the quantum-optical polarization prop-
erties of light, are defined and their basic properties are reviewed. The general features of the Stokes operators
are illustrated by evaluation of their means and variances for a range of simple polarization states. Some of the
examples show polarization squeezing, in which the variances of one or more Stokes parameters are smaller
than the coherent-state value. The main object of the paper is the application of these concepts to bright
squeezed light. It is shown that a light beam formed by interference of two orthogonally polarized quadrature-
squeezed beams exhibits squeezing in some of the Stokes parameters. Passage of such a primary polarization-
squeezed beam through suitable optical components generates a pair of polarization-entangled light beams with
the nature of a two-mode squeezed state. Implementation of these schemes using the double-fiber Sagnac
interferometer provides an efficient method for the generation of bright nonclassical polarization states. The
important advantage of these nonclassical polarization states for quantum communication is the possibility of
experimentally determining all of the relevant conjugate variables of both squeezed and entangled fields using
only linear optical elements followed by direct detection.
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I. INTRODUCTION

The classicalStokes parameters@1# provide a convenien
description of the polarization properties of light, and t
complete range of the classical states of polarization
readily visualized by the use of the Poincare´ sphere@2#. The
quantumStokes parameters@3–6# provide operator represen
tations of the polarization that also apply to nonclassi
light. The operators satisfy quantum-mechanical commu
tion relations and the variances of the Stokes parameters
accordingly restricted by uncertainty relations. The quant
states of polarization are conveniently visualized by an
propriate quantum version of the Poincare´ sphere.

We consider a beam of light whose plane wave fronts
perpendicular to thez axis and whose polarization lies in th
xy plane. The polarization state with quantum-mechan
coherent-state excitations of both thex and y polarization
components has characteristic uncertainties that separat
classical and nonclassical regimes. Light is said to bepolar-
ization squeezedif the variance of one or more of the Stoke
parameters is smaller than the corresponding value for co
ent light. Methods to generate polarization-squeezed light
ing propagation through an anistropic Kerr medium ha
been proposed@5,7–10# ~see@11# for a review!. Frequency-
tunable polarization-squeezed light, produced by combin
the squeezed-vacuum output of an optical parametric o
lator with an orthogonally polarized strong coherent beam
a polarizing beam splitter, has been applied to quantum-s
transfer from a light field to an atomic ensemble, thus g
erating spin squeezing of the atoms in an excited state@12#.

The nontrivial polarization properties of light in the qua
tum theory have attracted much interest in the last dec
mainly because the emphasis is moving from purely fun
mental interest to quantum-information-processing appl
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tions. Light that appears unpolarized in classical theory
show polarization properties when considered in the qu
tum theory@6,13#. The pair states of single photons can
maximally entangled quantum states that are particula
useful for quantum-information processing@14#. The quan-
tum properties of nonmaximally entangled states of pair p
tons are described in terms of a density matrix which can
experimentally reconstructed by means of quantum-state
mography@15#. The quantum-state tomography allows al
for the reconstruction of the quantum state of two-mo
quadrature-squeezed light@16#. In contrast to the polarization
entanglement of photon pair states discussed above, her
deal with the quantum polarization properties of intense li
fields. For bright fields intensity measurements no longer
solve discrete photon events and so the intensity effectiv
becomes a continuous variable. Nevertheless, quantum
fects are still visible in the fluctuations of light. The effect
closely related to quadrature squeezing; however, now
squeezed or entangled quantities are the quantum uncer
ties of the relevant quantum polarization variables. Althou
polarization squeezing can be produced by mixing
squeezed vacuum with a coherent beam@12# the properties
of such squeezing are strictly limited. Here we conside
different class of polarization-squeezed and entangled st
created by mixing two or four beams, respectively, on be
splitters. An important feature for experimental quantu
communication is a particularly simple detection scheme
determining the quantum statistics of these nonclassical
larization states.

We begin this paper by extending the general theory
the quantum Stokes parameters and Poincare´ sphere. We then
propose straightforward experiments for generating and
tecting polarization squeezing and entanglement of bri
light fields. The basic properties of the Stokes parameters
©2002 The American Physical Society06-1
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outlined in Sec. II and these are illustrated in Sec. III
consideration of some simple idealized examples of polar
tion states. The quantum Stokes parameters of primary l
beams whose two polarization components are formed f
the more practical bright amplitude-squeezed light are ev
ated in Sec. IV. A particular experimental scheme is outlin
Linear optical schemes for measuring the means and v
ances of all three parameters of the primary light beam
direct detection alone are outlined. The methods resem
those used for determination of the classical Stokes par
eters, except that simultaneous measurements of differen
larization components are needed for observation of
quantum effects. The measurement procedure produc
two-beam squeezed-state entanglement. Section V cons
the Einstein-Podolsky-Rosen~EPR! entanglement of the
Stokes parameters that can be obtained by combinatio
two primary light beams with similar polarization characte
istics. The applications of nonclassical polarization state
quantum information communication and cryptography
discussed in Sec. VI.

II. QUANTUM STOKES PARAMETERS AND POINCARE´

SPHERE

The Hermitian Stokes operators are defined as quan
versions of their classical counterparts@1,2#. Thus, in the
notation of@11#,

Ŝ05âx
†âx1ây

†ây5n̂x1n̂y5n̂, ~2.1!

Ŝ15âx
†âx2ây

†ây5n̂x2n̂y , ~2.2!

Ŝ25âx
†ây1ây

†âx , ~2.3!

Ŝ35 i ~ ây
†âx2âx

†ây!, ~2.4!

where thex and y subscripts label the creation, destructio
and number operators of quantum harmonic oscillators a
ciated with thex andy photon polarization modes, andn̂ is
the total photon-number operator. The creation and dest
tion operators have the usual commutation relations,

@ â j ,âk
†#5d jk , j ,k5x,y. ~2.5!

The Stokes operatorŜ0 commutes with all the others,

@Ŝ0 ,Ŝi #50, i 51,2,3, ~2.6!

but the operatorsŜ1 , Ŝ2 , and Ŝ3 satisfy the commutation
relations of the su~2! Lie algebra, for example,

@Ŝ2 ,Ŝ3#52iŜ1 . ~2.7!

Apart from the factor of 2 and the absence of Planck’s c
stant, this is identical to the commutation relation for co
ponents of the angular-momentum operator. Simultane
exact measurements of the quantities represented by t
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Stokes operators are thus impossible in general and t
means and variances are restricted by the uncertainty
tions

V2V3>u^Ŝ1&u2, V3V1>u^Ŝ2&u2, and V1V2>u^Ŝ3&u2.
~2.8!

HereVj is a convenient shorthand notation for the varian

^Ŝj
2&2^Ŝj&

2 of the quantum Stokes parameterŜj .
It is readily shown@3# that

Ŝ1
21Ŝ2

21Ŝ3
25Ŝ0

212Ŝ0 ~2.9!

and this is taken to define the quantum Poincare´ sphere. The
mean value of the sphere radius is given by the square roo
the expectation value of either side of Eq.~2.9! and it gen-
erally has a nonzero variance.

The relations~2.1!–~2.4! are equivalent to the well-known
Schwinger representation of angular-momentum operator
terms of a pair of quantum harmonic oscillators@17–20#.
The quantum numbersl and m of the angular-momentum
state are related to the quantum numbersnx and ny of the
harmonic oscillators by

l 5 1
2 ~nx1ny! and m5 1

2 ~nx2ny!. ~2.10!

A pure state of the polarized light field is denoteduc;x,y&
and a density-operator description is needed for statist
mixture states. Some simple examples of pure states
treated in the following section to show the main charact
istic features of the quantum Stokes parameters and Poin´
sphere.

III. SIMPLE POLARIZATION STATES

A. Number states

Consider first the state of linearly polarized light that h
n photons withx polarization and no photons withy polar-
ization,

uc;x,y&5un&xu0&y . ~3.1!

The state is an eigenstate of the first two Stokes parame
with

Ŝ0uc;x,y&5Ŝ1uc;x,y&5nuc;x,y&. ~3.2!

Thus

^Ŝ0&5^Ŝ1&5n and V05V150. ~3.3!

The other two parameters have zero expectation values,

^Ŝ2&5^Ŝ3&50, ~3.4!

and the expectation values of their squares are

^Ŝ2
2&5^Ŝ3

2&5n5V25V3 . ~3.5!

The state is, however, an eigenstate of the sum of th
squared Stokes parameters, with
6-2
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~Ŝ2
21Ŝ3

2!uc;x,y&52nuc;x,y&. ~3.6!

The uncertainty relations in Eq.~2.8! are all satisfied as
equalities for the number state.

Figure 1 shows two sections of the Poincare´ sphere for the
x-polarized number state. The radius of the sphere ha
well-defined value in view of the relations~3.2! and ~3.6!.
The tip of the Stokes vector (S1 ,S2 ,S3) lies on a circle per-
pendicular to theS1 axis at coordinateS15n. The figure is
identical, apart from some factors of 2, to that for an angu
momentum vector with a well-definedS1 component.

The number state is an eigenstate of the squared St
parameters in Eq.~3.5! for the special case ofn51, when

Ŝ2
2uc;x,y&5Ŝ3

2uc;x,y&5uc;x,y& for n51. ~3.7!

The corresponding angular-momentum state in this c
given by Eq.~2.10!, hasl,m quantum numbers 1/2, 1/2 an
the Pauli spin matrices accordingly provide a representa
for the Stokes operatorsŜ1 , Ŝ2 , andŜ3 .

B. Coherent states

Just as the photon-number polarization state is an an
of the angular-momentum state with well-defined magnitu
andS1 component, the coherent polarization state is an a
log of the coherent angular-momentum, spin, or atomic s
@18,21,22#. This coherent polarization state has been defi
as a two-mode state where both modes are excited to i
pendent single-mode coherent states@5,11#. We denote the
combined product state by

uc;x,y&5uax&xuay&y5D̂x~ax!D̂y~ay!u0&xu0&y , ~3.8!

whereD̂ j (a j ), j 5x,y, is the usual coherent-state displac
ment operator. The state is a simultaneous eigenstate o
mode destruction operatorsâx and ây with eigenvaluesax
anday , respectively. The expectation values of the quant
Stokes parameters are then obtained by replacing the
ation and destruction operators in Eqs.~2.1!–~2.4! by a j* and
a j as appropriate@23#, for example,

^Ŝ0&5uaxu21uayu25^n̂x&1^n̂y&5^n̂&. ~3.9!

FIG. 1. Sections of the Poincare´ sphere in the 3,1 and 2,3 plane
for the x-polarized number state. The heavy points and the cir
respectively, show the locus of the tip of the Stokes vector in th
planes.
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The coherent-state complex amplitudesax and ay corre-
spond to the amplitudes used in the definitions of the cla
cal Stokes parameters. The various possible states of p
ization are specified by exactly the same values ofax anday
as in the classical theory@2#.

In contrast to the classical theory, however, the radius
the Poincare´ sphere is ill defined because of uncertainties
the values of all the Stokes parameters. Their variances
all equal for the coherent states@5,11#,

Vj5^n̂x&1^n̂y&5^n̂&, j 50,1,2,3; ~3.10!

they bear the same relation to the mean value ofŜ0 in Eq.
~3.9! as do the photon-number variance and mean for
coherent state@24#. It is readily verified that the three unce
tainty relations in Eq.~2.8! are satisfied. Note that the abov
definition of a coherent polarization state, which comes na
rally as a straightforward extrapolation from two individu
single-mode coherent states, does not describe a minim
uncertainty state of the combined two-mode system in
three dimensions of the Poincare´ sphere@see Eq.~2.8!#. The
Poincare´ sphere relation~2.9! is verified in the form

^Ŝ1
21Ŝ2

21Ŝ3
2&5^n̂212n̂&5^n̂&213^n̂& ~3.11!

and the variance in the squared radius of the sphere is
zero. The quantum Poincare´ sphere for the coherent polariza
tion state is therefore fuzzy, in contrast to that for the num
state. Figure 2 shows two sections of the Poincare´ sphere,
which are drawn for the mean radius obtained from
square root of Eq.~3.11!. Here ay is set equal to zero for
ease of comparison with Fig. 1. It is seen that, because of
equal variances~3.10! of the three Stokes parameters, t
uncertainty is now represented by the shaded sphere o
dius A3^n& centred on the mean value (^n&,0,0) of the
Stokes vector.

The Poincare´ sphere has the well-defined surface of
classical counterpart only in the limit of very large me
photon numbers,̂n&@1, corresponding to bright coheren
light, where the uncertainties in the Stokes parameters
negligible in comparison to the mean amplitude of the Sto
vector. The radius of the uncertainty sphere in Fig. 2 th

,
e

FIG. 2. Sections of the Poincare´ sphere in the 3,1 and 2,3 plane
for the x-polarized coherent state. The shaded disks show the
jections of the uncertainty sphere of the Stokes vector in th
planes.
6-3
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shrinks relative to that of the quantum Poincare´ sphere and
the tip of the Stokes vector approaches the surface of
Poincare´ sphere.

Light is said to bepolarization squeezed@5#, according to
the definition in Sec. I, when the variance in one or more
the Stokes parameters is smaller than the coherent-
value,

Vj,^n̂&, j 51,2,3. ~3.12!

The Stokes parameter withj 50 is excluded, as the conditio
~3.12! in this case is the same as that for photon-num
squeezing. The photon-number state is polarization sque
in the S1 Stokes parameter according to Eq.~3.3!, although
this too is equivalent to photon-number squeezing.

C. Entangled single-photon state

Consider a number state defined as in Eq.~3.1! but now
for a single photon excited with polarization in a directionx8
that bisects thex and y axes, and no photons excited wi
polarization in the orthogonaly8 direction. The state can b
written

uc;x,y&5u1&x8u0&y85âx8
† u0&5221/2~ âx

†1ây
†!u0&

5221/2~ u1&xu0&y1u0&xu1&y), ~3.13!

whereu0& is the two-dimensional vacuum state. The result
state in thex and y coordinate system is a two-mod
polarization-entangled state. It satisfies the eigenvalue r
tions

Ŝ0uc;x,y&5Ŝ2uc;x,y&5uc;x,y& ~3.14!

with unit eigenvalues. Thus

^Ŝ0&5^n̂&5^Ŝ2&51 and V05V250. ~3.15!

The state considered is not an eigenstate of the remai
Stokes parameters, whose mean values are

^Ŝ1&5^Ŝ3&50. ~3.16!

However, the state does satisfy eigenvalue relations for
squares of these parameters, with

Ŝ1
2uc;x,y&5Ŝ3

2uc;x,y&5uc;x,y& ~3.17!

and corresponding variances

V15V351. ~3.18!

It is readily verified that the three uncertainty relations in E
~2.8! are satisfied as equalities.

The state has unit total photon number and it is polari
tion squeezed in theŜ2 Stokes parameter in accordance w
the criterion~3.12!. The operators on both sides of Eq.~2.9!,
which define the Poincare´ sphere, have eigenvalues equal
3 for the entangled single-photon state. The sphere is
defined for this state, with a radius equal to). The sections
of the Poincare´ sphere shown in Fig. 1 apply to the entangl
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single-photon state ifn is set equal to 1 and the roles of th
S1 and S2 axes are interchanged. The 45° rotation of t
polarization leads to a 90° rotation on the Poincare´ sphere.
The corresponding angular-momentum state is that of spi1

2 ,
as is discussed after Eq.~3.7!.

D. Two-mode quadrature-squeezed vacuum state

The squeezed vacuum state of the two polarization mo
is denoted

uz;x,y&5Ŝxy~z!u0&xu0&y where z5seiq. ~3.19!

Here

Ŝxy~z!5exp~z* âxây2zâx
†ây

†! ~3.20!

is the usual two-mode squeeze operator@24#, not to be con-
fused with the Stokes parameters, with the properties

Ŝxy
† ~z!âxŜxy~z!5âx coshs2ây

†eiq sinhs,

Ŝxy
† ~z!âyŜxy~z!5ây coshs2âx

†eiq sinhs. ~3.21!

The mean photon numbers in the two modes are

^n̂x&5^n̂y&5sinh2 s. ~3.22!

The state is another example of an entangled state of the
polarization modes.

The two-mode quadrature-squeezed vacuum state sat
the eigenvalue relation

Ŝ1uz;x,y&50, ~3.23!

which expresses the equality of the photon numbers in
two modes, and therefore

^Ŝ1&50 and V150. ~3.24!

The mean values of the remaining Stokes parameters ar

^Ŝ0&5^n̂&52 sinh2 s and ^Ŝ2&5^Ŝ3&50 ~3.25!

and their variances are

V05V25V35sinh2 2s. ~3.26!

The mean values and variances of the Stokes parameter
all independent of the phaseq of the complex squeeze pa
rameterz. The two-mode quadrature-squeezed vacuum s
is always polarization squeezed inŜ1 but not in Ŝ2 and Ŝ3 .
The expectation values of both sides of the Poincare´ sphere
relation ~2.9! are equal to 2 sinh2 2s.

E. Minimum-uncertainty amplitude-squeezed coherent states

The state that has both polarization modes excited in id
tical but independent minimum-uncertainty amplitud
squeezed coherent states@25# is denoted
6-4
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ua,z;x,y&5D̂x~a!Ŝx~z!D̂y~a!Ŝy~z!u0&xu0&y

where

z5seiq. ~3.27!

The phase angle of the coherent complex amplitudea is
equal toq/2 for amplitude squeezing. We assume, witho
loss of generality, that both these angles are zero.
squeeze parameterz then takes the real values and the
squeeze operator is given by

Ŝj~z!exp$ 1
2 s@~ â j !

22~ â j
†!2#%, j 5x,y. ~3.28!

The various required expectation values are evaluated by
standard methods@24#. Thus the mean photon numbers in t
two modes are

^n̂x&5^n̂y&5a21sinh2 s. ~3.29!

The noise properties of the squeezed states are express
terms of the expectation values of the1 and 2 quadrature
operators, defined by

X̂j
15â j

†1â j and X̂j
25 i ~ â j

†2â j !, ~3.30!

whose means and variances for the minimum-uncerta
amplitude-squeezed coherent states are

^X̂j
1&52a, ^X̂j

2&50, ~3.31!

and

^~dX̂j
1!2&5e22s, ^~dX̂j

2!2&5e2s, ~3.32!

where j 5x,y throughout. The1 quadrature is squeezed an
the 2 quadrature is antisqueezed.

The expectation values of the Stokes parameters are

^Ŝ0&52a212 sinh2 s ~3.33!

and

^Ŝ1&5^Ŝ3&50, ^Ŝ2&52a2. ~3.34!

The corresponding variances are

V05V15V252a2e22s1sinh2 2s ~3.35!

and

V352a2e2s. ~3.36!

It is seen that the light may be separately squeezed or
squeezed in all of the Stokes parameters by approp
choices of the values ofa ands.

Much of the remainder of the present paper is concer
with bright amplitude-squeezed light, defined bya@sinhs.
It is seen from Eqs.~3.29!, ~3.35!, and~3.36! that the light in
this case is polarization squeezed in theŜ1 and Ŝ2 Stokes
parameters and antisqueezed in theŜ3 parameter, as is rep
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resented in Fig. 3. It is also squeezed in theŜ0 parameter,
corresponding to photon-number squeezing.

IV. BRIGHT AMPLITUDE-SQUEEZED LIGHT

We now discuss the production and measurement of
larization squeezing using a pair of bright amplitud
squeezed beams. Recently, an effective method for pro
ing such a pair of squeezed beams has been demonst
experimentally@26,27#. In the following we will couch our
discussion in terms of this technique for squeezing gen
tion. However, any pair of amplitude-squeezed beams
exhibit similar properties. Like its predecessors, the propo
experiment, represented in Fig. 4, uses a fiber Sagnac i
ferometer followed by a polarizing beam splitter~PBS! @28#
to produce two orthogonally polarized amplitude-squee
pulses, labeledx and y. At the outputs, the two pulses ar
separated in time owing to the birefringence of the fiber,
they can be brought into coincidence by an appropriate de
of the y mode. The two pulses are then recombined a
second beam splitter. In a previous experiment@27#, the po-

FIG. 3. Representations of quantum polarization states of br
coherent and bright amplitude-squeezed light on the Poinc´
sphere. The latter shows polarization squeezing in the param

Ŝ0 , Ŝ1 , andŜ2 , with antisqueezing inŜ3 .

FIG. 4. Experimental setup for the generation of brig
polarization-squeezed light. VA, variable attenuator;l/2, half-wave
plate; 90/10, beam splitter with 90% reflectivity; PBS, polarizi
beam splitter; Cr:YAG, chromium-doped yttrium aluminum garn
laser. The two orthogonal polarizations from the Sagnac interfer
eter are labeledx andy.
6-5
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larization of thex mode was rotated into they direction by a
l/2 plate, inserted after the first beam splitter; recombinat
by an ordinary beam splitter then produced two entang
output beams, both polarized in they direction. Because o
thermal fluctuations, the optical phase of the interference
to be stabilized by a feedback loop, controlled by equal
signals of the detectors. By contrast, the version of this
periment considered here has nol/2 plate and the pulses ar
brought together into one optical channel by a second P
This produces a single output beam with independentx andy
contributions to the polarization, each represented by an
fectively classical amplitude and a quantum uncertainty. T
quantum uncertainties provide the source of the polariza
squeezing, while the classical amplitudes must be locke
phase to obtain a beam with a defined polarization. Idea
the light is guided into one output beam of the PBS but,
practice, imperfections in the PBS cause some fraction
each polarization to be lost to the other output. This lo
effect can be used to implement the controller of a pha
locking loop. The polarization-squeezed beam so gener
is referred to as theprimary beam.

Following the analysis in@29#, the mode operators for th
primary beam are expressed as sums of identical real cl
cal amplitudesa and quantum noise operatorsdâ j ,

âx5a1dâx and ây5a1dây . ~4.1!

The expectation values of the noise operators are assum
be much smaller than the coherent amplitudea. Then, to first
order in thedâ j , the Stokes operators from Eqs.~2.1!–~2.4!
are

Ŝ052a21a~dX̂x
11dX̂y

1!, ^Ŝ0&52a2, ~4.2!

Ŝ15a~dX̂x
12dX̂y

1!, ^Ŝ1&50, ~4.3!

Ŝ252a21a~dX̂x
11dX̂y

1!, ^Ŝ2&52a2, ~4.4!

Ŝ352a~dX̂x
22dX̂y

2!, ^Ŝ3&50, ~4.5!

where the quadrature operators are defined in Eq.~3.30!.
Their mean values agree with those of the minimu
uncertainty squeezed states in Eqs.~3.33! and ~3.34! when
a@sinhs; they are also the same as those for identi
coherent-state excitations in the two polarization modes.

The variances of the Stokes parameters are

V05V15V25a2$^~dX̂x
1!2&1^~dX̂y

1!2&%, ~4.6!

V35a2$^~dX̂x
2!2&1^~dX̂y

2!2&%. ~4.7!

These expressions apply for arbitrary values of
quadrature-operator variances. In the special case
minimum-uncertainty amplitude-squeezed coherent st
with a@sinhs, they agree with the variances obtained fro
Eqs. ~3.32!, ~3.35!, and ~3.36!. More generally, for
amplitude-squeezed states that do not satisfy the minim
uncertainty condition, polarization squeezing of the prima
beam may still occur for the Stokes parameters in Eq.~4.6!.
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The four Stokes parameters in classical optics are m
sured by well-known techniques that involve transmission
the light beam of interest through appropriate combinatio
of quarter-wave plates with polarization rotators@2,4,28#.
The parameters are then obtained by measurements o
intensities of orthogonally polarized components of the o
put light. These measurements are usually made suc
sively, first on one polarization and then on the other. T
mean values of the quantum Stokes parameters are simi
measurable by direct detection after appropriate proces
of the incident light. However, more care is needed in
measurement of the quantum noise properties of the Sto
parameters. It is clear from Eqs.~2.1! and ~2.2! that the sta-
tistical properties of the observed Stokes parametersŜ0 and
Ŝ1 , including their means and variances, can be obtai
from the sum and difference of the directly detected pho
numbers in thex andy components of the primary beam. Th
experimental setup for their detection is shown in Fig.
These Stokes parameters essentially describe propertie
the individual polarization components and their photo
number squeezing. A measurement scheme based on
difference-intensity photocurrent detection in a direct ext
sion of the classical case was already presented in@13#.
There, the polarization basis is rotated at the input of
PBS in Fig. 5 using an appropriate phase plate and the
ferences of the photocurrents at the outputs of the PBS
recorded. Then the quantum operators are assigned to
photon number difference in two orthogonal polarizations
three different bases, two linear bases rotated by 45° an
circular basis. These operators correspond to the quan
Stokes parametersŜ1 , Ŝ2 , and Ŝ3 and the variances o
Stokes operators are derived with the assumption of t
zero mean values, as appropriate for a classically unpolar
light @13#. By calculating the quantum statistics of these d
ference photon-number operators the specific quantum po
ization properties of classically unpolarized light have be
theoretically predicted@13#, which are referred to as the ligh
with hidden polarization and the polarization scalar lig
The theoretical analysis of@13# for classically unpolarized
light provides a useful tool for determination of the varianc
of the Stokes operators. From the point of view of expe
mental quantum communication using nonclassical polar
tion states it is important, however, to further elaborate
experimental details of the detection scheme for the part
lar case of linearly polarized input light with high cohere
excitation in both orthogonally polarized modes. Therefo
the transformation of the input Stokes parameters is deri
below for the particular case of bright amplitude-squeez
beams from the Sagnac interferometer@27#. The analysis is
accomplished using the formalism of Jones matrices@28#, the

FIG. 5. Scheme for measurement of the Stokes parameterŜ0

and Ŝ1 .
6-6
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FIG. 6. Polarizing beam splitter showing th
notation for input and output modes.
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linearized approach~4.1!, and the experimentally more prac
tical combinations ofl/2,l/4 wave plates with a PBS.

Consider the quantum properties of theŜ2 parameter. The
classical measurement of this parameter is made by sub
tion of the directly detected intensities of the beam after
passage through polarizers successively oriented at 45°
245° to thex axis. With use of the Jones matrices@28#, a
rotation of the polarizations through 45° with respect to thx
axis converts the mode operators to new primed axes in
cordance with

F âx8
ây8

G5F 221/2 221/2

2221/2 221/2G F âx

ây
G . ~4.8!

However, in contrast to the classical procedure, where s
rate measurements are made on the two polarization com
nents, the polarization-rotated beam is here sent into thâ
arm of the PBS represented in Fig. 6. The transmission
reflection axes of the PBS are oriented parallel to the prim
axes and its input-output relations are

F ĉx8
ĉy8

d̂x8

d̂y8

G5F 1

1

1

1

GF âx8
ây8

b̂x8

b̂y8

G . ~4.9!

With no input to theb̂ arm of the beam splitter, so that bo
b̂ polarization modes are in their vacuum states, the inp
output relations are conveniently inverted to give

F âx

ây

b̂x8

b̂y8

G5F 2221/2 221/2

221/2 221/2

1

1

GF ĉx8
ĉy8

d̂x8

d̂y8

G . ~4.10!

It is readily shown that

Ŝ25âx
†ây1ây

†âx5d̂x8
† d̂x82 ĉy8

† ĉy8 , ~4.11!

in accordance with the definition in Eq.~2.3!. The Ŝ2 Stokes
parameter of the primary beam is thus obtained by taking
difference between direct-detection measurements of the
spectivex8 andy8 polarization components in the two outp
05230
c-
s
nd

c-

a-
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d
d
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e
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arms of the PBS. It is emphasized that, in general, simu
neous measurements are made on the individual pulses
make up the primary beam. These measurements pro
experimental values for the mean and the variance calcul
in Eqs. ~4.4! and ~4.6!, respectively. However, for the as
sumed bright beams in both theâ inputs, theĉy8 output is
dark and can be neglected. The outputd̂x8 is bright with
intensity variance equal toV2 . Figure 7 shows the corre
sponding experimental setup. Note that, in contrast to@13#,
only the d̂x8 output of the PBS is detected.

A measurement of theŜ3 parameter is made by a varian
of the above procedure in which a quarter-wave plate is
serted into the primary beam before polarization rotati
With use of the appropriate Jones matrix@28#, the inverted
input-output relations are now

F âx

ây

b̂x8

b̂y8

G5F 2221/2 221/2

221/2i 221/2i

1

1

GF ĉx8
ĉy8

d̂x8

d̂y8

G ~4.12!

and it is easily shown that

Ŝ35 i ~ ây
†âx2âx

†ây!5d̂x8
† d̂x82 ĉy8

† ĉy8 , ~4.13!

in accordance with the definition in Eq.~2.4!. The final
Stokes parameter is thus again measured by taking the
ference of two direct-detection measurements on the P
outputs. However, in contrast to the measurement ofŜ2 for
bright â inputs, both output beamsĉy8 and d̂x8 are now

FIG. 7. Scheme for measurement of the Stokes parameterŜ2 for
bright beams.
6-7
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bright and actually contribute to the variance of the Sto
parameterŜ3 . The quantum fluctuations in these outp
beams are correlated for each pulse and it is essentia
measure the beams simultaneously in order to obtain exp
mental values of the varianceV3 for comparison with Eq.
~4.7!. The detection scheme is depicted in Fig. 8. Note t
the vacuum operatorsb̂x8 andb̂y8 affect only the unobserved
ĉx8 and d̂y8 output modes for the measurements of bothŜ2

and Ŝ3 .
In the special case where the two components of the

mary beam are excited in minimum-uncertainty amplitud
squeezed coherent states, the joint squeeze operator
Eqs.~3.28! and ~4.12! is

Ŝx~z!Ŝy~z!5expH 1

2
s@~ âx!

21~ ây!22~ âx
†!22~ ây

†!2#J
5exp$2s~ ĉy8d̂x82 x̂y8

† d̂x8
†

!%. ~4.14!

This has the same form as the operator in Eq.~3.20! and the
ĉy8 andd̂x8 outputs from the PBS in Fig. 8 are thus excited
an entangled two-mode squeezed coherent state.

The above analysis shows that the variances of the St
parameters are closely related to the quadrature varian
Thus measurements of the Stokes parameters essentiall
termine the quadrature variances by appropriate manip
tions of the two polarization components of the prima
beam. All three of the Stokes measurements involve o
direct detection and there is no need for the local oscilla
normally used in phase-sensitive observations of the qua
ture squeezing. In the experiments proposed here, the
polarization components of the primary beam essentially
place the squeezed signal and coherent local oscillator o
conventional squeezing measurement.

V. POLARIZATION EPR STATES

Continuous-variable entanglement can be understoo
the quantum correlations of conjugate continuous variab
between two spatially separated subsystems. These qua
correlations have to satisfy certain requirements ensuring
nonseparability of the quantum state of the system a
whole. The concept of continuous-variable entanglem
emerged in consideration of the Einstein-Podolsky-Ros
like nonlocal correlations of phase and amplitude betw
the output beams of an optical parametric oscillator@30#.
There, a sufficient condition for a continuous-variable s

FIG. 8. Scheme for measurement of the Stokes param

Ŝ3 .
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tem to be entangled was formulated in terms of the precis
of inferring information about both conjugate variables
one beam through the measurement of the other. This c
rion is thus based on the apparent violation of the Heisenb
uncertainty relation and in this sense follows the argume
of Einstein, Podolsky, and Rosen@31#; hence the establishe
nameEPR entanglement. Recently, this issue was address
in terms of the nonseparability of a quantum state of a s
tem described by continuous variables, i.e., for arbitr
high-dimensional Hilbert space@32,33#. That nonseparability
criterion represents a rigorous extension for higher dim
sions of the Peres-Horodecki criterion for discrete-varia
systems, which uses a positive partial transpose of the
tem density matrix as an indication of separability. T
Peres-Horodecki criterion for continous variables deliver
sufficient condition for a state to be entangled for a gene
class of states@32,33# and a necessary and sufficient cond
tion for the certain subclass of Gaussian states@32#. In what
follows we apply these concepts, originally developed
amplitude and phase quadratures or position and momen
to quantum states of polarization.Continuous-variable po-
larization entanglementrefers to a quantum nonseparab
state of two light beams and implies correlations of the qu
tum uncertainties between one or more pairs of Stokes
erators of two spatially separated optical beams. It has
nature of two-mode squeezing as well as entanglement o
amplitude and phase. In what follows, we use both
proaches, following the arguments of Reid@30# and of Duan
et al. @32#, to evaluate continuous-variable polarization e
tanglement of bright beams.

A straightforward way to generate EPR entanglement@31#
for the quantum Stokes parameters is an extension of
interference scheme efficiently used in a number of exp
ments @27,34#. Suppose we combine two independe
polarization-squeezed primary beams, of the type discus
in the previous section, on an ordinary beam splitter, ana
gous to the scheme presented in@29#. Suppose also that we
impose a phase shift ofp/2 on one of them before letting
them interfere on a beam splitter. The relations between in
and output mode operators of the beam splitter then have
forms shown in Fig. 9. The phases of the combinations
thus arranged so that squeezed and antisqueezed quadr
of the various beams are superimposed. This is a direct g
eralization of the method used to generate standard EPR
tanglement@35#. The mode operators of the output beam
ĉx ,ĉy and d̂x ,d̂y are given by

er
FIG. 9. Interference of two bright polarization-squeezed bea

on a beam splitter.
6-8
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ĉx5
1

&
@~11 i !a1dâx1 idb̂x#,

ĉy5
1

&
@~11 i !a1dây1 idb̂y#,

d̂x5
1

&
@~12 i !a1dâx2 idb̂x#,

d̂y5
1

&
@~12 i !a1dây2 idb̂y#, ~5.1!

where the bright beams in theâ and b̂ inputs have identica
real classical amplitudesa plus quantum noise operator
similar to Eq.~4.1!. Such beams have been considered bef
as a continuous-variable teleportation resource@34,36#, for
generating entanglement of bright optical pulses@27#, and for
creating Bell-type correlations for continuous variables@37#.
In these cases, quadrature amplitude measurements em
ing local oscillators were employed@34,36,37#, or an indirect
interferometric scheme was used for inferring the phase
relations. Here we will show that the Stokes parameters
the two beams, directly measurable as previously descri
satisfy the standard EPR condition for entanglement.

EPR entanglement is defined to occur when meas
ments carried out on one subsystem can be used to infe
values of noncommuting observables of another, spati
separated subsystem to sufficient precision that an ‘‘ap
ent’’ violation of the uncertainty principle occurs@30#. The
precision with which we can infer the value of an observa
ẐD of subsystemD from the measurement ofẐC on sub-
systemC is given by the conditional variance

Vcond~ZDuZC!5^~dẐD!2&2
u^dẐDdẐC&u2

^~dẐC!2&
. ~5.2!

Then EPR entanglement of the Stokes parameters wil
realized, for example, if

Vcond~S3DuS3C!Vcond~S1DuS1C!,u^Ŝ2C&u2. ~5.3!
an

a
tu
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Here the outputĉ in Fig. 9 is assigned to the subsystemC
and the outputd̂ to subsystemD. Now, after performing the
linearization, we have that

dŜ1C5 ĉx
†ĉx2 ĉy

†ĉy5 1
2 a~dX̂ax

1 1dX̂ax
2 2dX̂ay

1 2dX̂ay
2 1dX̂bx

1

2dX̂bx
2 2dX̂by

1 1dX̂by
2 ! ~5.4!

where the indicesax, ay, bx, andby are related to the corre
sponding polarization modesâ j andb̂ j , j 5x,y, anddŜ1D is
given by the same expression but with the signs of all c
tributionsdX̂2 reversed. Similarly,

dŜ3C5 i ~ ĉy
†ĉx2 ĉx

†ĉy!5 1
2 a~dX̂ax

1 2dX̂ax
2 2dX̂ay

1 1dX̂ay
2

2dX̂bx
1 2dX̂bx

2 1dX̂by
1 1dX̂by

2 ! ~5.5!

anddŜ3D is given by the same expression but with the sig
of all contributionsdX̂1 reversed. It follows from these ex
pressions that

^~dŜ1C!2&5^~dŜ3C!2&5^~dŜ1D!2&5^~dŜ3D!2&

5
1

4
a2$Vax

1 1Vax
2 1Vay

1 1Vay
2 1Vbx

1 1Vbx
2 1Vby

1

1Vby
2 % ~5.6!

and

^dŜ1DdŜ1C&52^dŜ3DdŜ3C&

5
1

4
a2$Vax

1 2Vax
2 1Vay

1 2Vay
2

1Vbx
1 2Vbx

2 1Vby
1 2Vby

2 %, ~5.7!

where, for example,Vax
6 5^(dXax

6 )2&. Finally,

u^Ŝ2C&u254a4. ~5.8!

The conditional variances are thus
Vcond~S1DuS1C!5Vcond~S3DuS3C!

5 1
4 a2~Vax

1 1Vax
2 1Vay

1 1Vay
2 1Vbx

1 1Vbx
2 1Vby

1 1Vby
2 !

2
a2~Vax

1 2Vax
2 1Vay

1 2Vay
2 1Vbx

1 2Vbx
2 1Vby

1 2Vby
2 !2

4~Vax
1 1Vax

2 1Vay
1 1Vay

2 1Vbx
1 1Vbx

2 1Vby
1 1Vby

2 !
. ~5.9!
These expressions can be used to assess the EPR ent
ment condition in Eq.~5.3!.

If we assume that the modes making up to origin
polarization-squeezed beams all have equal quadra
squeezing, that is,
gle-

l
re

Vax
1 5Vay

1 5Vbx
1 5Vby

1 5V1 and

Vax
2 5Vay

2 5Vbx
2 5Vby

2 5V2, ~5.10!

then we obtain from Eq.~5.9!
6-9
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Vcond~S1DuS1C!5Vcond~S3DuS3C!54a2
V1V2

V11V2 .

~5.11!

Compare now Eqs.~5.3!, ~5.8!, and ~5.11!. For minimum-
uncertainty quadrature-squeezed modes, whereV1V251 as
in Eq. ~3.32!, any level of squeezing will lead to the Stoke
EPR condition ~5.3! being satisfied. Nonminimum
uncertainty states must fulfill more stringent squeezing c
ditions @38#, although there remain ranges of values ofV2

~or V1! for which Eq. ~5.3! is satisfied whenV1,1 ~or
V2,1!. For example, whenV1,1/2, which corresponds to
3 dB of squeezing, Stokes EPR entanglement occurs fo
values ofV2 in the range 1/V1<V2,`. We propose that
these polarization-entangled EPR states can be use
employed to implement continuous-variable quantu
information protocols in the absence of a local oscillator.

Another way to analyze our polarization-entanglem
states is to use the continuous-variable Peres-Horodeck
terion for separability. This criterion verifies whether tw
subsystemsD and C are entangled@32#. For two pairs of
conjugate variablesẐD ,ŴD andẐC ,ŴC of these subsystem
the criterion can be written in the form

V6~ZD ,ZC!1V7~WD ,WC!,2, ~5.12!

where the relevant variances are defined as

V6~ZD ,ZC!5
V~ ẐD6ẐC!

V~ ẐD
coh1ẐC

coh!
,

V6~WD ,WC!5
V~ŴD7ŴC!

V~ŴD
coh1ŴC

coh!
~5.13!

and the values labeled ‘‘coh’’ correspond to the respec
coherent states. This definition has to be restricted to v
ables, the coherent variances of which lead to an equal
in the corresponding inequality@Eq. ~2.8!#. This restriction
hinges directly onto the feature of the coherent polarizat
state defined in Sec. III that it cannot be simultaneousl
minimum uncertainty state with respect to all three variab
The criterion of Eq.~5.12! is in general sufficient. For the
special case that the system is symmetric with respect to
conjugate variables and the subsystems the criterion is
necessary. In the spirit of this nonseparability criterion@32#,
we define the following entanglement boundary for t
Stokes operators, for example,Ŝ1 and Ŝ3 :

V6~S1D ,S1C!5
V~Ŝ1D6Ŝ1C!

V~Ŝ1D
coh1Ŝ1C

coh!
,1,

V7~S3D ,S3C!5
V~Ŝ3D7Ŝ3C!

V~Ŝ3D
coh1Ŝ3C

coh!
,1. ~5.14!

Here a more stringent condition is introduced as compare
the one used in@32#. It requires the variances ofboth conju-
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gate variablesŜ1 and Ŝ3 ~or Ŝ2 and Ŝ3 , etc.! to drop below
the limit imposed by the continuous-variable version of t
Peres-Horodecki criterion@32,33#. We refer to entanglemen
satisfying Eq.~5.14! as squeezed-state entanglement@38#.
Such a nonseparability condition~5.12! in its modified form
~5.14! is important for the application of entanglement
quantum-communication protocols. Both conjugate variab
have to exhibit a quantum correlation to guarantee sec
quantum key distribution. A quantum correlation of bo
conjugate variables is also preferable for the reconstruc
of an unknown state in quantum teleportation. The squeez
state entanglement has the nature of a two-mode sque
state, hence its name. The values of the variances for co
ent bright beams can be calculated using expressions~3.9!,
~3.10!, and ~4.2!–~4.7!, giving V(ŜjD

coh1ŜjC
coh)54a2, j

51,2,3. If we again assume that the modes making up
original polarization-squeezed beams all have the eq
squeezing~5.10!, then for the bright beam example describ
above we get squeezing variances~5.13! and ~5.14! of

V1~S1D ,S1C!5
V~Ŝ1D1Ŝ1C!

V~Ŝ1D
coh1Ŝ1C

coh!
5V1,

V2~S3D ,S3c!5
V~Ŝ3D2Ŝ3C!

V~Ŝ3D
coh1Ŝ3C

coh!
5V1. ~5.15!

The criterion of squeezed-state entanglement is thus alw
satisfied for input amplitude-squeezed beams withVax

1

5Vay
1 5Vbx

1 5Vby
1 5V1,1.

Note that the Peres-Horodecki criterion~5.12!

V1~S1D ,S1C!1V2~S3D ,S3C!5Va
11Vb

1,2 ~5.16!

is satisfied also when only one of the input fieldsVay
1 5Vay

1

5Va
1 and Vbx

1 5Vby
1 5Vb

1 exhibits amplitude quadratur
squeezing~Va

1,1 or Vb
1,1!, the other one being coheren

Hence a nonseparable two-mode field is generated in
interference of one single polarization-squeezed beam wi
coherent~or vacuum! one on a beam splitter.

The experimental setup for the generation of bright bea
quantum correlated in polarization is represented in Fig.
Quantum correlations between the uncertainties of the Sto
operators already emerge in the interference of
polarization-squeezed beam with a vacuum or coherent fi

FIG. 10. Experiment for the generation of continuous-varia
EPR polarization-entangled states.
6-10
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POLARIZATION SQUEEZING AND CONTINUOUS- . . . PHYSICAL REVIEW A 65 052306
in the other input of a beam splitter, as was shown in Sec
and as follows from Eqs.~5.12! and~5.16!. However, taking
into account the realistic squeezing levels of the input fie
achievable in an experiment, the interference of t
polarization-squeezed beams is needed to produce a de
of continuous-variable polarization entanglement h
enough for communication applications.

VI. CONCLUSIONS

Both the classical and quantum Stokes parameters re
sent useful tools for the description of the polarization o
light beam and also, more generally, of the phase prope
of two-mode fields. They include explicitly the phase diffe
ence between the modes and they can be reliably meas
in experiments. These features have triggered the us
Stokes operators for the construction of a formalism for
quantum description of relative phase@20#. The striking dif-
ferences between the classical and quantum description
polarization that can occur for discrete photon states h
been explored in measurements on the pair states gene
in spontaneous parametric down-conversion@6#.

The current development of methods for quantu
information processing based on quantum continuous v
ables has also stimulated interest in nonclassical polariza
states. The formalism of the quantum Stokes operators
recently used to describe the mapping of the polariza
state of a light beam onto the spin variables of atoms
excited states@39,40#; the correspondence between the alg
bras of the Stokes operators and the spin operators enabl
efficient transfer of quantum information from a free
propagating optical carrier to a matter system. These de
opments pave the way toward the quantum teleportation
atomic states and toward the storage and read-out of q
tum information. In the present paper, we have applied
concepts of quantum Stokes operators and nonclassica
larization states to schemes for quantum-optical commun
tion with bright squeezed light beams.

The basic properties of the quantum Stokes opera
were reviewed in Sec. II and they were illustrated in Sec.
by applications to a range of simple quantum-mechan
polarization states. Polarization squeezing, defined as the
currence of variances in one or more of the Stokes par
eters smaller than the coherent-state value, is found
-

-
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photon-number states, entangled single-photon states,
two-mode quadrature-squeezed vacuum state, and
minimum-uncertainty amplitude-squeezed coherent sta
For many practical applications, it is preferable to use
bright amplitude-squeezed light that is available experim
tally and this was considered in Sec. IV. It was shown
particular how all of the Stokes parameters can be meas
by the use of linear optical elements and direct detect
schemes that are sensitive to the quantum correlations in
two polarization components of the light. These measu
ment schemes are developments of the well-known meth
for determination of the classical Stokes parameters to
serve the quantum noise properties.

The continuous-variable polarization EPR entanglem
considered in Sec. V implies correlations between the qu
tum uncertainties of a pair of Stokes operators as conjug
variables. The entanglement can be generated by linear i
ference of two polarization-squeezed beams on a beam s
ter and the relevant conjugate variables are measured a
fore by direct detection schemes. We propose to apply br
polarization-entangled beams to continuous-variable qu
tum cryptography@41,42#, where the method allows one t
dispense with the experimentally costly local oscillator tec
niques. Implementation of the protocols@41,42# using
continuous-variable polarization entanglement combines
advantages of intense easy-to-handle sources of E
entangled light and efficient direct detection, thus open
the way to secure quantum communication with bright lig
In general, we believe that nonclassical polarization sta
can be used with advantage in quantum-information pro
cols that involve measurements of both conjugate continu
variables and in quantum-state transfer from light fields
matter systems.
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