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‘Spin dependences of interactions appearing in the DWBA stripping amplitude are theo-
retically investigated by the invariant-amplitude method for polarizations of emitted protons
from unpolarized targets, P(0), and cross-section asymmetries from polarized targets, A (6).
In the case treated, the nuclear spins are 1/2 and zero for the target and residual nuclei, the
neutron being captured into an S'tate. The theory gives a definite value of P(6)/A(8) for
each spin dependence without any numerical calculation. In particular, the conventional proton-
spin-orbit assumption leads to P(0)/A(6) =—3, which is incompatible with the ‘experimental
data for the He®(d, p) Het reactions. Possibilities of explaining the data are discussed.

§ 1. Introduction

The distorted-wave Born approximation (DWBA) has been successful in

analyses of (d, p) reactions. In the theory, the transition amplitude in the post
form is transformed by the Gell-Mann-Goldberger theorem; an optical potential
is assumed for the outgoing proton.” The total wave function of the initial state
is approximately replaced by the distorted-wave function provided by an optical
potential of the deuteron. The resultant transition amplitude is given by?

T(d+A—p+B) ={2in¢n, (Vent+ Vos— Upn) 152000 4) » -1

where V,, and V,, are the interaction of the proton with the neutron and that
with the target nucleus A, respectively, and U,z is the optical potential of the
proton from the residual nucleus B. The wave functions ¢,, ¢z and ¢ describe
the internal motions of the target nucleus, the residual nucleus and the deuteron.
The distorted wave functions %$7 and %52 are caleulated by U,z and Upga, re-
spectively, Uzs being the optical potential of the deuteron. Most of the conven-
tional analyses of the reaction assume a central potential for Uy, and a central-
plus-spin (proton spin)-orbit potential for U,z and entirely neglect V,;— Ups.
In many cases, the theoretical predictions are in worse agreement with the
experimental data in the polarizations of the emitted protons than in the cross

> This matter will be interpreted as follows: the cross section is mainly

sections.’
determined by the fundamental assumption of the reaction mechanism and scarcely
depends on details of the interactions, while the polarization depends seriously

on the details, for example the spin dependence of the interactions, and the
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1024 | M. Tanifuji and K. Yazaki

conventional treatment is not refined sufficiently for analyses of polarization
phenomena. . That is to say, some of the theoretical approximations are not always
valid for polarization phenomena; for example, the neglect of V,,— U,s in Eq.
- (1-1) is not always justified because of differences between the spin dependences
of V4 and Ups. In fact, as is discussed later, nucleon-nucleus interr‘action‘s some-
times depend on the spin of the nucleus, and the spin of the nucleus A is always
different from that of B in the stripping reaction. Such inadequate treatments
of the interactions will presumably introduce significant errors in theoretical

results for polarization phenomena. The purpose of the present paper is to pos-’

tulate a- method of investigation of the spin dependence of the interactions and
to criticize the theoretical approximation as its application. ' /
Since the spin dependences of the interactions are specifically reflected in
the polarization phenomena, our study will be limited to this subject. The general
features of the phenomena in the stripping reaction have been discussed earlier,
i.e. the polarization of the emitted proton, the polarization of the residual nucleus,
and the effects of a polarized target and of a polarized beam are studied. Of these
phenomena, we discuss the ratio of the proton polarization from unpolarized targets
to a left-right asymmetry of the cross section from polarized targets. In particular,
we treat the special case in which the neutron is captured into an S-state by
~ the target nucleus of spin 1/2 forming the ﬁn'al‘nucleus of spin 0. In this case,
the asymmetry has been measured only for the He®(d, p) He* reactions.” Tanifuji”
" has discussed the effect of the proton—épin_—orbit interactions and of a proton-target
tensor force on the polarization-asymmetry ratio in this reaction in the so-called
prior formalism. For the same reaction, Duck® has calculated numerically the
proton polarization and the cross-section asymmetry by the invariant-amplitude
method with a limited number of partial waves, and Csonka et al.” have also
investigated the properties of the invariant amplitudes, but the spin dependence

of the interaction has never been studied by this method. In this paper, the

invariant-amplitude method is extended to a more general case where particles
with arbitrary spins are interacting with each other. The method is applied to
the DWBA stripping amplitude for which the spin dependences of the interactions

are investigated, V,4s— U,s being taken into account. As an example, the-

He*(d, p) He* reaction is discussed in detail. Since the partial-wave expansion
is not used at the present, the result is free from the limitation of the number
of partial waves. , ‘

 In this paper, the following force assumptions are particularly examined; 1)
proton-spin-orbit interactions, 2) target-spin-orbit interactions, 3) a tensor-type
interaction between the proton and the target nucleus, 4) deuteron-spin-orbit in-
teractions, 5) deuteron tensor forces, 6) a spin-spin interaction between the deuteron
and the target nucleus, 7) a spin-spin interaction between the proton and the target
-nucleus, and 8) a neutron-proton tensor force. The mathematical expressions of
these interactions are listed in Table I of §4. Of these interactions, a proton-

4),58)
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Polarizations and Asymmetries in Stripping Reactions 1025

spin-orbit potential has been found in analyses of the elastic scattering of protons
by nuclei and is conventionally used in the DWBA analyses, while for the others,
2) ~7), their effects have not been clarified. A spin-orbit potential of a Be’ nucleus

> Spin-orbit interactions of

has been postulated for a-Be' elastic scatterings.!
nuclei are a reasonable extension of this idea. The interaction 3) is introduced
for V,. by analogy with the nucleonmucleon tensor force, the effect of which is
well known for low-energy nucleon-nucleon scattering and the properties of the

deuteron bound state. The range and depth of this interaction are almost the

same as those of the nucleon-nucleon central force.'” Although the derivation .

of nucleon-nucleus potentials from the two-nucleon interactions is not clear at
" present, the existence of the nucleon-nucleus tensor force is probable. Recently,
spin-orbit potentials and tensor forces of deuterons have been studied for elastic
scattering by nuclei and have been found to be important in obtaining good fits
to data.” A spin-spin interaction between a neutron and a nucleus has been

1819 The results suggest the investigation of the

studied by several authors.
similar interaction 7) in the present case to be valuable. In the DWBA theory,
Vpn is eliminated from the transition amplitude by the use of the Schrédinger
equation for the deuteron internal motion; the property of the interaction being
fully reflected in the deuteron wave function ¢;. Thus, the effect of the neutron-
proton 'tensor force can be taken into account by including the D-state admixture
in ¢;. This note will discuss the effect of the D-state admixture instead of the
“tensor force itself. ‘

Effects of exchange processes have been studied by both the cutoff Born

119 and the distorted-wave theory.” This study discusses the

approximation
exchange effect, for which the spin-dependent interactions are assumed analogous
to those for the direct process. In later sections, we first treat almost all the
possible spin dependences of the interactions in the first order. Then we show
that for most cases of physical significance, the obtained results are valid to any
order. As shown later, for each. case the theory can predict a definite polari-
zation-asymmetry ratio without any numerical calculation. Since the ratio obtained
depends strongly on the assumptions of the spin dependence of the interactions
and the results are completely independent of the parameters of the potentials,
the results are useful in providing a criticism of the theory and the potential

assumptions, though the cases treated are rather special.

§ 2. Cross-section asymmeiries and polarizations of emitted protons

A general formula of the cross section from a polarized target was discussed

by Goldfarb and Bromley” and is given by

do | -
E)PnlooTr(rp ™,
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1026 M. Tanifuji and K. Yazaki

where p° is the density matrix of the
target spin and 7 denotes the reaction

Torget polarization matrix, the elements of which give the tran-

sition amplitudes. This formula is calcu-

B. 7 . X : : i
Incidert beam ] lated for the case of target spin 1/2 in the

Pi

>
»-

special frame of coordinate axis illustrated
in Fig. 1, where the direction of momentum
of the incident deuteron is chosen as the

Right . . .
° z-axis and where the direction of the target

Fig. 1. Orientation of coordinate axes.

Cross sections are defined in the z-z polarization, which is perpendicular to this

plane. " axis, is taken as the y-axis; the results are
dg > o _ f@,)
dQ/) v dQ/ wpe
iC(CIl/a q-1/2) BL Im{<vs, vp; Ep|Tlva=1%, va; kD>*a, vp; Bl TIva= — %, va; kDt
YR,V ¥ p
(2-1)

where d(f/dﬂ)f,f{ and do/dR)$8 are the left-side and right-side cross sections for
the polarized target and d0/d2)umpo is the cross section for an unpolarized target.
Also, C is a constant for a particular choice of the momenta and the masses of
the incident deuteron and the emitted nucleon. The magnitude of the polarization
of the target nucleus is given by the populations of its spin-substate G+ip. The
transition amplitude is specified by the initial and final momenta, k; and k; and
the z-components of the spins; v, (the target nucleus), y,; (the deuteron),
(the residual nucleus) and v, (the emitted nucleon).

The general formula also gives the cross section for an unpolarlzed target
as a special case, :

do C
A;Z:é)unpol—ﬁ-ZDA V%J"d v [<VB, V}’; ijTIl)A:c Va3 kz>‘2 (22>

The left-right asymmetry of the cross section is defined by
db)‘“ do‘)“”

1 dR)wm  d2)wm |
A 0 _= P P (2.3)
2 (@12~ q-1/3) ﬁ{_{f») 2] +d0-> (B) ,
d'-Q pol d.g pol

and we obtain, by Egs. (2- 1)N(2 3),
Z In] {<VBa yp’ kf‘TIDA_2> Va, k> <J)B3 yp’ kfIT[l)A— %> Vas kl>}
A(0) = —2 e '
20 |<vs, Vo3 k| Tlva, va; kI

VYR YV p

(2-4)
The polarization, P(0), of the emitted proton along the y-axis is calculated
for an unpolarized target'™ and is given by
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Polarizations and Asymmetries in Stripping Reactions 1027

2. Im{{yg, Vp:%Q Vas ki>*<VB: Vp= — %3 kf|T|VA, va; ki) -
P()) =2 Brard .
0= 20 1<vs Vs ksl T Va4, va; k|

VB YAV pr Vd

(2-5)

The physical significance of A(f) can be clarified by the observation that A0)
for the reaction A(d, p)B is just the polarization of the particle A for the time-
reversed process p (B, A)d. Now, in the usual (d, p) reaction, it is well known
that the polarization of the emitted proton is strongly affected by the proton-
spin-dependent interaction. Therefore, it seems probable that the interaction
which includes the target spin plays an important role in the calculation of A(0).
This point of view is developed in later sections.

For the convenience of further development, the spin density matrices 0y
and p4 are introduced as follows:

> s, Vo kflTIVAy Va3 kvz>*<VB> vy kfIT|VA, va; ki

v, vd, v 4

Y Y, > = -
< Plpp‘l P> Z |<VB> Vp; kflTIVAy Vd; k1,>|2

VB4V pr ¥

(2-6)
and
> vs, Vs kfIT‘VAa Va; ki){Vs, V»; kf|T|VA/, Va; ki)*

*VB,vp, Vg

Y 5 AN Yg - -
Paloalrer= ST <o v Il Tlvm, vis P

PRy A Y ooV

2-7)

where p, describes the spin density of the proton after the reaction A(d, p)B
and p, is the spin density of the nucleus A after the reaction, (B, A)d. With
these quantities, the asymmetry and the polarization given by Egs. (2-4) and
(2-5) are expressed as | |

PO = {(Llonl =)=~ Tlosly )} 2-8)
A©) —){<|m——2~>~< AAAAA tm)} (2-9)

§ 3. InVariant-amplitude method

and

For the study of polarization phenomena, particularly of the spin dependence
of the interaction, it is convenient to describe the transition amplitude by tensors
in the spin space, because the spin dependence of the interaction can also be
classified as tensors in the spin space. In reference 8), a method similar to ours
has been presented but the terms, by which the transition amplitude is expanded,
are not classified as such tensors. To develop the present method we will treat
a reaction,
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1028 , M. Tamfﬁji and K. Yazaki

at+A—->b+ B,

and the intrinsic spins of the particles a, A4, & and B are denoted by s, s4, Su
and sp, respectively. When we take the coupling scheme

'S4t 84=Sa4, Syt Sp=S
and

SaA+SbB:S s

the spin tensor can be completely specified by the numbers, Su4, Son and S, the

rank of the tensor being given by S. Since the transition amplitude is a scalar .

in the spin-coordinate space, this tensor must form a scalar product with a tensor
of rank S in the coordinate space which is to be constructed from the momenta,
k; and k,. After the factorization of this scalar product, the residual part, say
F, becomes invariant under rotation in the coordinate space and can be considered
as a function of E and cos 0, where E is the total energy of the system and 0
is the angle between k; and k,. In the following, the function F'is referred to

as the invariant amplitude analogous to the definition in high energy physics.

This section is devoted to the derivation of the expression for the transition

amplitude, the differential cross section, and the density matrix in terms of the

invariant amplitudes. |
~The tensors of rank .S constructed from k; and k; are as follows:

[CT(HQQ X Cs_r (29 1° with =8-S, ---, S,
where
§S=S . for S=even
and |
S=S+1 for ’S:odd,
- when the total parity of the particles is not changed by the reaction, and
‘S:S—Fl for S=even |

and

S=S for S:odd,‘

when the parity is changea. “Hére, 2; and £, are the angular variables of k;
and k,, respectively. The quantity C;,(£) is related to the spherical harmonics,
Y™ (£), by |

‘4‘ A;»4““n m
Cin @ =/ 5 T Y@,

Therefore, the invariant amplitude I* is specified by the numbers, Sas, Soz, S
and 7.
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Polarizations and Asymmetries in Stripping Reactions - 1029

The transition amplitude {vg, v;, ks|T|v4, Vao; kip is given in terms of the
invariant amplitude, F(S,4, Sz, S, 7; E, cos 0), by

2n < <
5 T 0> i) —jr=mm=a== 2 a¥a ba, a.
W 205 byl Ty vas ko M Mk ks s 5, SVesaValSeavas)

X (SbbeBVB]SbBVbB) (SaAVuASbB_VbBISVaA_VI,B) (——)S“""”’B
X [Cr(g'l> XCS‘ﬁT("Qf>]§a,A7vbBF<SG,A7 SbBy S7 r; Ea CdS 0)’ (3 1) .

where the v’s denote the respective z-components of the spins and the M’s are
the reduced masses in the initial state and in the final state. Matrix elements
of the spin tensor can be calculated by the Wigner-Eckart theorem. In Eq. (3-1)
the product of three Clebsch-Gordan coefficients is the geometrical factor of the
element of the spin tensor, the physical part being included in F.

- One can define the invariant amplitude in different ways which depend on
the choice of the coupling scheme, i.e. the invariant amplitude G (S, Sas, S, 73
E, cos ) for the coupling scheme

Sat$5=S8a, Satsp=Sun
and _ ~
Sw+Saz=S,
and the amplitude H(Sup, Sap, S, r; E, cos 0) for the coupling écllelne

SatS5=S8us, Sit+s4=Sum
and

Sas+S0=31S.

The amplitudes G and H are related to I’ by the transformation with the 9-j
symbol,

G (Sus, Sas, S, r; E, cos 0)

Sa Sa Saa
=20 V(280 + D) @St D) 28uat D) @S+ 1)1 s sz Soa
- Sas Sap S

- X F(Sas, Sss, S, r; E, cos 0) (3-2)

and
H(San, San, S, 7; E, cos 0)
Sa Sa4 Saa
= 28 V@St 1) 280+ 1) (2Saat 1) @St 1) 55 55 Somp (=) @52
Suz Su S
X F'(Sas, Som, S, r; E, cos 0). (3-3)
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1030 M. Tanifuji and K. Yazaki

The physical quantities, for example, the differential cross section and the
density matrix can be expressed by any one of F, G and H. In the following,
these quantities are given in terms of H for the convenience of application in
§ 4. - Similar expressions can be obtained by use of F or G. The transition
amplitude is given in terms of H:

. 2 — ‘ Sg—»
<VBQ Vo kfITIyA, Vas kz>:T/M—Z‘\%T];k' s B%Jb s (SaVaSs—V5|Sap Vo —Vp) (—)B "8
F i RyRs SaB 39, 7

X (SAVASbeISAbVA — V) (— )Sb_yb (SaB Vo—Vn Sap Va— VbIS Yot Ya—Vs—V5)
X I:CT‘ (‘QZ) XCS'—T(‘QJ”)]§a+uA—-vb~vBH(Sa’B> SAJH S’ r; E> cos 0)' (3' 1/)
By substituting Eq. (3-1%) in‘to Eq. (2-2) and noting that

1 MMk, 1

C= : ,
277:2 kq, (230,"1" 1) (ZSA + 1)

(3-4)

one gets the unpolarized cross section,

dg
ds

1

N(E, cos 0),
k7;2 (25a+ 1) (23A+ 1)

) (a+A—b+B) =
unpo :

with

NE, cos )= >3  @S+1)H*(Sen, Sas, S, 73 E, cos 0)

Sqn Sap, S, 7,77

X H(San, Sap, S, 75 E, cos DY W (r S—r7r S—+"; Sp) (r07°0[p0) (— )5+
X (S—70 =7 0] p0) P, (cos 0). , (3-5)

- The elements of the density matrices <v,|0s|¥s’> and <{v4|p4|v4’> can also be
calculated by the use of Eq. (3:1”). To clarify the transformation properties,
the' matrix element is expanded in terms of irreducible tensors, for instance,

V] 00|90 > = ; (sov8” & vy — o | s50V5) 05 e —vs), (3-6)

where 0, (v) is the so-called statistical tensor” of rank %, and is further ex-
panded as

0¥ () = 31 [Cy(2) X Ce_4(2) 150, (g5 E, cos 0) (3-7)

g=k—k

with E=F for k=even and k=k+1 for k=odd. Here, p,® (¢; E, cos 0) is given
in terms of H by

‘ 1 2k+1 . oS
(%) : E, cos 0 - /2k+1 _)
0:% (g o8 0) =N E, cos )N 25, 1 sumoan P 3
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Polarizations and Asymmetries in Stripping Reactions 1031

r S—r S
KW (SasSashkS’; SSw) 77 & —1 S’l(rOr’O] £0) (S—705 — /0] p/0)
| bk |
X A(pp’qk; cos®) H* (Suz, Sus, S, 73 E, cos 0) H(Sas, Sis S, 73 E, cos 0),

(3-8)

where A(pp’qk; cos 0) is the coefficient function for the space tensor defined
by

k
[Cp(2:) XCpr (8 1° =21 A(pp’ak; cos 0) [C,(2) X Ci o (2] (3-9)
q=%—k
with E=#% for p+p +k=even and k=k+1 for p+p’+Ek=0dd. The reduction
formula for evaluating the function A(pp’qk: cos0) is given in Appendix B
where some properties of this function are also discussed. From Eq. (3-8),
using the symmetry properties of the 6-j and 9-j symbols, one can easily show
that 0, (¢; E, cos 0) is real for even k and imaginary for odd k. The invariant
amplitude can be expanded.in partial waves. Such a treatment will be useful
for numerical computations of physical quantities and is discussed in Appendix C.

§ 4. Application to special stripping reactions

The invariant-amplitude method developed in the previous section is applied
to the special stripping reaction, where the orbital angular momentum of the
captured neutron is zero and the nuclear spins are 1/2 and zero for the target
nucleus and the residual nucleus, respectively, i.e. the proton polarization and
the cross-section asymmetry are calculated with the spin values specified and
the ratio of the polarization to the asymmetry is investigated for the assumptions
of the spin dependence for the interactions given in Table I. The theoretical
result is discussed in comparison with the experimental data for the He®(d, p) He*
reactions.

In the present case, a, A, & and B are assumed to be the deuteron, the
target nucleus, the proton, and the residual nucleus, respectively, the spin as-
signment being

sa=1, s4=1/2, s,=1/2 and s=0.

To discuss the relation between the polarization of the particle & and the asym-
metry from the polarized target A, it is convenient to take the coupling scheme
which leads us to the invariant amplitude H. For the above values of the spins,
the following four sets of the spin-coupling parameters are available:

i) Sp=1 and S=0,
ii) Sp=1 and S=1,
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1032 M. Tanifuji \aizd' K. Yazaki
111) SAbZO ZlIld S:].
and | iv) Su=1 and S=2,

with S,z=1. Correspondingly, we get the following space tensors under the
condition of no parity change,

1 for S=0 and »=0,

[C.(2) xCi(2)] for S=1 and r=1,

Q) for S=2 and r=0,

[CL(2) XCi(2) ] for S=2 and r—=1

and Cy(2)  for S=2 and r=2.

The transition amplitude is given in terms of H,
Vp, Vs ke| T4, vas; ki) =4n ()72 (M Mk sk;)
x[(%vA%—vpil Va—Vyp) (1va 1 v4—v,|00) H, _
+ 3k =21 9a=,) (19 14—y 1 va— 25+ v0) [Ci(2) X Ci (@) 1Ly vyl
+ 394k —,]00) (1900]1vg) [Cy(2) X C(2) 1% H, "
+ (30az = VplL va—vp) (Wal va—vp|2 V4051 V0) {Covysprna (L) Hy
+ LG (2) X Co(@) PoasyingHat Cany o0 (2 Hi} 1, @
where ' ‘ ‘
Hy=H(Sz=1, Sip=1, S=0, »=0),
Hy=H(Sez=1, Syp=1, S=1, r=1),
Hy=H(Su=1, S4p=0, S=1, r=1),
H=H(Su=1, S4p=1, S=2, r=0),
| Hy=H(S;z=1, Syp=1, S=2, r=1)
and Hy=H(Sy=1, Sip=1, S=2, r=2). | (4-2)

The proton polarization and the cross-section asymmetry given by Egs. (2-8)
and (2-9) are calculated as

P(0) :E_N/,é sin 00,% (1; cos 0) | 4-3)
i .
and
__ 2 /1 (1 o
AQ) =—"- & sin 004V (1; cos 0), (4-4)

where
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Polarizations and Asymmetries in Stripping Redctions 1033

0,% (1; cos 0)

ft Z.*k '\/Z — Im {Hl* <Hz __1TH3> +
N(E, cos 0) " V2

if—(HZ* VEHS) (H 4+ H)

+‘/6i (EL* + y2H,*) H, cos 0 —34/3 (EL*H,— H*H,) + 3“2 3Y2 175 H, cos 6}
| (4-5)
and | ‘
047 (1; cos 0) =0,V (1; coslﬁ) (H,— — H,). (4-6)

The denominator N(ZE, cos ) is given by Eq. (3-5) and is expressed in terms

of H as

N(E, cos e>~w{;H1{ +Sm O H, P+ [ H) + 5, +§%9—S—6:le

| H)? +2‘/6 Re (H*H,+ HHL + (3 cos'0— 1)Re(H4*H6)} 4-7)

It should be noticed that the difference between 0, (1; cos ) and pA(l cos 6)

in Egqs. (4-5) and (4-6) is only in the
sign of H, which allows us to find easily
the polarization-asymmetry ratio. These
equations are similar to Eqgs. (8) and
(9”) in reference 8).- However, the present
expressions are more convenient than
the latter for investigation of the spin
dependence of the interactions. The re-
lationship between the present formulae and
those in the reference is given in Ap-
pendix A.

As is seen in Eq. (1-1), the direct
amplitude in the DWBA theory is de-
termined by four interactions: V,n, Vo,
Ups and Uy Similarly, Viee, Vs Ups
and Ua4 take part in the exchange stripping
reaction illustrated in Fig. 2, the transition
amplitude, 7%, being

T® (d+ A—>p+ B)
= <X§JI_B)WB, (Vpa + Vpd - UpB) Xr(lji)@d@f.t> -

At this time, the suffix p» denotes the
proton of the target nucleus which is

Direct

@ .
Target nucleus Residual nucleus

Exchange

. ‘
Target nucleus Residual nucleus

Fig. 2. Schematic representation of reac-
tion modes. Symbols A4, d, » and p
represent the target nucleus, the inci-
dent deuteron, the captured neutron
and the proton emitted into the final
state, respectively. The symbol C
represents the core part of the target
nucleus, the target minus one proton.
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1034 M. Tanifuji and K. Yazaki

emitted into the final state. The wave function of the residual nucleus, ¢g,
consists of the wave functions of the bound deuteron and the core part of the
target nucleus, C. In the following, we study all of the interactions with their
spin dependence listed in Table I. In the table, the possible spin. dependences
of the interactions are given as tensors in the spin space, ‘their ranks being de-
noted by S. There, s; is the spin operator of the particle 7, s, is the tensor
of rank 2 constructed by the deuteron spin, and E; denotes an operator which
gives rise to the transition between the deuteron intrinsic states, the singlet and
the triplet states. The vector l‘represents an axial vector constructed by the
space coordinates, for example, the orbital-angular-momentum operator of the
related particle. For the interaction between composite particles, I can also in-
clude the internal variables. Some discussions of the spin dependent interactions
have been given in the introduction. The table also contains other interactions
‘that are kinematically acceptable. Physically, they are expected to be derived
from two-nucleon forces. In a derivation of the proton deuteron interaction from
the two-nucleon forces, the (s, E;) and (I E,;) terms will arise from the (o-0)
and spin-orbit terms of the nucleonnucleon interaction, respectively. Similarly,
in the derivation, the l,q-[s, X E;]' term will appear as a second order effect of

Table I. Spin dependence of interactions. All of the interactions listed in the table are classified
by their rank as tensors (S). Vacant columns of the spin dependence in the exchange amplitude
are read to be the same as the corresponding columns in the direct amplitude.

S ‘ Direct amplitude ’ Exchange amplitude
Interaction Spin dependence | Interaction Spin dependence
0 Uga Sq°84 Uay
Vpa Sp*Sa Vpa Sp*Sa
Sp . Ed
1 UpB l »B"Sp UpB
Usa loa sq Uga
Lyarsa

lya-[sgXsql!
Lyg [sq® X s, 1t

Vpa lpA' Sp Vprl lzzd' Sp

I ;s
‘ o lyarsy ‘ ra’ Sa 1
. y . Do IspXsqlt

s, Xs

pa* [SpX54] ’ Loy [8,Xs5q@]t

lpfl'E(l
Lyg [s, X Ez]

2 Uga tensor , Uga
Vpa tensor V pa tensor

¢p D-state admixture ¢p
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the spin-orbit term of the nuclear force. This second order effect also gives
rise to the l,q-[s, X 84]" term in the Viyg laa-[saXs4]' term in Uz and the 1,4-
[spXs4]' term in V,,. The interactions, lzs- [s4® X s4]' in Uy and lpg- [54% X 5,]"
in V,q, can arise as a combined effect of the spin-orbit and the tensor terms.
In the table, the tensor terms are not specified because the explicit forms are
not necessary for the later discussion. The effect of the interaction Vo 18 treated
as that of the D-state admixture in the deuteron internal motion. '

In general, some of the interactions listed above will take part together in
actual reactions, their effects in polarization phenomena being mixed up with each
other. Thus, the quantitative determination of their contribution to P and A
requires laborious numerical calculations. In this section, we discuss the ratio
P/A in two simplified ways: First, for each spin dependence, P/A is calculated
up to the linear term both in P and A. The result may be useful for study of
a special combination of the spin dependence in the sense of the first order ap-
proximation. Secondly, in the light of the above results, P/A is investigated
without the linear approximation for several physically important interactions.
The results obtained are exact to any order within the limitation of the DWBA
theory. |

In the linear approximation, Eqs. (4-5) and (4-6) are reduced to

. 2 1
@ 1, 6 == ~—/-—-—'\—/—‘———I {11*<H _"—_H>} 45,
027 (1; cos 0) "N, cosg) U\ g (4-59)
and |
. 2 1
®(1; 0) ~ —‘/ﬁ__l {H *(H +—~H>} 4.6’
047 (13 cos 0 ‘ZN(E, cos0) LT TR (4-67)

Since I, and H, are characterized by S=1, in the table only the interactions
referred by S=1 can contribute to P and A in this approximation. The detail
of the method of calculating P/A will be given for the special spin dependence
l,z-s, for Uyp. Other spin dependences are similarly treated and the results
are listed in Table II. From the diagram in Fig. 3, the contribution of the l,5-s,
term to the transition amplitude can be shown to be proportional to the matrix
element,

Oplsplvas o (=)' Hameaen,

Fig. 3. The first-order diagram with respect to the spin-
orbit term of U,p. Symbols 4, B, d and p represent o F‘ , -

, >pre d
the target nucleus, the final nucleus, the incident
deuteron and the emitted proton, respectively. The
box denoted by D, represents spin-independent dis-
tortions of the proton and the dotted line represents
the proton-spin-orbit interaction. The stripping process B B- 4
takes place at the box denoted by R, where-any
spin-independent distortions are allowed,
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Table II. Calculated P/A in the linear approximation.

Interaction Spin depedence - Hy/H, 3 P/A
UpB l_.pB'Sp =12 —‘3‘
Uaa lga sq 0 -1

liasa 1WV7Z —1/3
Lya-[sgX st =2 A=0
Lyg [s4® XSA.]1 V2 P=0
VpA lpA sp —1/1/'2— —3
Loasa Wz -1/3
Lya [5,X 8,00 Hy= 1
Va lpd'sp —-1WV7Z . -3
Lo sa 0 -1
Log [5,%8,1" v'2 P=0
L s, X 5@ -2 A=0
Lo B, Hy=0 1
lptl' [stEd]l 0 -1

~ the geometrical part of which is given by the use of the Wigner-Eckart theorem
as ' '

(~)1/2""P(11),1%v,1|%-vd+ va) (3va+vak—vpl1va+va—vy), (4-8)
where the first Clebsh-Gordan coefficient represents the reaction part (R) in the
diagram. The product of the Clebsh-Gordan coefficients (4-8) is rewritten as

(1Vd%'l),1|*j§ Pd—|‘VA> (% Vd,+ V4 %—Vpll V¢+VA_'—Vp>

1
, =SZ V2(2S+1D) W (AL1L; 1S) vt —v,|Sva—v,) (e Sva— vﬂ,ll Yi+Va— Vp)
. =0 .
:J%{(%y,&——)@]l va=2y) (1941 v2=2pHl vat-va—y)
1

—(Zv4=—v,]00) (14001 } 4.9

\/2(242 »/00) (1v400|1v4) ( .>
By comparing the content of the ket { } with Eq. (4-2), one gets

Hs/H2: “1/V?‘,
which gives P/A by the aid of Egs. (4-5) and (4-6'),
| P/A=—-3.

Now, some special spin dependences are investigated without the lmear ap-
proximation, p, and ps being given by their full expressions (4- 5) and (4-6).
- The method of the investigation is quite similar to that in the linear case. As
an example, we will consider a higher order term of the proton-spin—orbit nter-

Zz0z 1snBny |z uo 1senb Aq 292806 /520 1/5/0v/el0ne/did/woo-dno-ojwepeoey/:sdpy Woly pepeojumoq



Polarizations and Asymmetries in Stripping Reactions 1037

n
S ——— | EE— =
, [
p._p | |Pp N d P P d d
L bl R bspP g b
B ] H
B B A B B Al A
Fig. 4. The n-th order diagram with Fig. 5. Combined diagram of the proton-spin-orbit inter-
respect to the spin-orbit term .of action and the spin-spin interaction of V,4. The box
U,g- The symbols are read simi- DSP describes distortions of the proton wave, both
larly to those in Fig. 3. the spin-independent interaction and the proton-spin-
. orbit interaction being allowed to any order. The box
action. The #n-th order contri- D represents the spin-independent distortion of the

deuteron wave. The part which consists of the wavy
line and the slanting line describes the neutron capture
by the- spin-spin interaction of V,, Other symbols
the matrix element are read similarly to those in Fig. 3.

bution of the interaction (see
Fig. 4) will be proportional to

V|8 (Va5 V).

Since the proton has spin 1/2, it is always possible to reduce the product s," to

a-+bsy .

Therefore, the higher order effects of the (l,z-s,) term contribute to the S=0
and S=1 amplitudes, the geometrical factor of the latter being the same as the
first order contribution. Since the full expressions (4-5) and (4-6) for p, and
pa are reduced to the right-hand side of (4-5") and (4-6") in the absence of the
S=2 amplitudes, one gets P/A= —3 for the proton-spin-orbit interaction in the
n-th order. Further, it is shown that the same result is obtained when an ad-
ditional spin-sbin interaction of - V,4 is taken into account for the process. From
the Feynman diagram shown in Fig. 5, one can see that the contribution of the
combined effect of the (I,z-s,) term in the U,z and (s,-ss) term in V,, is
proportional to

Oalsn (5p-52) i, v = 3 Ol 9/ D07 (8,750 s v -

. Since (s,-s4) is a scalar in spin space, only v, =y, v, can contribute to the
matrix “element and the geometrical factor of the above expression is shown to
be the same as that of the matrix element of s,. The similar arguments are
applied to the higher order effects of the target-spin-orbit interactions.

Next, we will discuss the assumption of a linear combination’ of the proton-
spin-orbit interaction and the target-spin-orbit interaction, l,4- (as,+ bs4), for Vo,
neglecting other spin-dependent’interactions completely. As mentioned in §1,
the DWBA transition amplitude is derived from the original postform amplitude
by the Gell-Mann Goldberger transformation,” where U,y is mathematically an
arbitrary function of the variables of the proton, In this viewpoint, one can
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choose U,z to be a central potential, the spin dependence being considered in

Vpa. In the above linear combination, the choice, 5=0 for example, is expected

to give a result similar to that from the proton-spin-orbit interaction for U,z with
the neglect of V,,— U,s. From such considerations, one can expect that the linear
combination provides the main feature of the combined effect of both kinds of
spin-orbit interactions. The calculation of P/A for this assumption is quite similar
to those for the proton-spin-orbit interaction and the target-spin orbit interaction.
The result will be given later together with those for higher order effects of
other spin dependences.

As is noted previously, the relation P/A= —1 holds exactly in the absence
of H,, the amplitude for S,,=0. When the spin dependence is concerned only
with the deuteron spin, the proton and the target spins must be coupled to one
(Sya=1) and then P/A= —1. Slmllarly, P/A= —1 is obtained for the tensor

term in V,4. These considerations can be summarized as follows:

1) For any combination of the proton-spin-orbit interactions with or without

the spin-spin interaction in V,, (or V,s for the exchange term), one gets
P/A=-3.

2) For any combination of the target spin-orbit interactions with or without
the spin-spin interaction in V,, (or V,, for the exchange term), one gets
P/A=—1/3. |

3) The spin-dependent interaction relating to only the deuteron spin, the tensor
term in V,4 (or V4 for the exchange term), the D-state admixture and their
combined effect give P/A= —1, with or without the spin-spin interaction in
Vpa, and, similarly,

4) for a combination of the proton-spin-orbit interaction and the target-spin-orbit
interaction for V4, i.e. ly4- (as,+bs4), one also finds

P —3a+b

A a—3b

where the form factor of the proton-spin-orbit interaction is assumed to be the
same as that of the target-spin-orbit interaction.

The cross-section asymmetry has been measured only for the He’(d, p) He*
reactions. Since the general agreement of the DWBA result with experimental
data seems to be better for the heavy nuclei than for the light, the reaction on
He?® target may not provide the best test of the validity of the theory. On the other
hand, the configuration of the final nucleus, He*, has little ambiguity in the ground
state since the D-state amplitude is almost negligibly small. In fact, forward
angular distributions of the cross section show typical S-state captures.’” This
matter rather simplifies the analysis of the reaction. Under these circumstances,
it is worthwhile to compare the theoretical results with the experimental data of
this reaction. The measured polarization’® and asymmetry® are shown in Fig. 6.
The main features are (1) in the forward angular region, the asymmetry and the

Zz0z 1snbny Lz uo 1senb Aq 29806 1/£201/S/0t/e1one/did/woo dno-olwepese//:sdyy wouy papeojumoq



Polarizations and Asymmetries in Stripping Reactions 1039

polarization show a quite si‘milar shape 1O
and magnitude but have opposite signs, L
ie. P(O)~—A(), (2) the maximum '
magnitude of the asymmetry is certainly 0
larger than 50 % at 6, 8 and 10 MeV, L
(8) at larger angles, the magnitude of the I

j
asymmetry appears to be smaller than that '*% -] Qb
of the polarization especially at 6 MeV, 5 o=
and (4) the shape of the angular distribu- ?- I
tion of the asymmetry appears to be 5 |
shifted to larger angles at 6 and 8 MeV 2 or
when compared with the polarization. o |

These features, in particular (1) ° ot
and (2) do not favour the conventional %—:8 ‘
proton-spin-orbit assumption because of E I
the too large absolute values of the z»‘ -

theoretical P/A at forward angles. A- 0
greement between the theoretical and
experimental results cannot be obtained -

by including the spin-spin interactions. . -5~

These circumstances are not changed p

even if the exchange effect is taken into Fig. 6. The measured values of 4 (6) and P(6)
account. Obviously, these conclusions at 6, 8 and 10MeV for the He®(d, p) Het
are independent of the range of V,, and (9.s.) reaction. The experimental points are
i . .o the measured A(6) of reference 6) and the
the finite-range calculation®” does not i

o . . solid curve represents the measured P(f) of
improve the theoretical results. The tar- reference 20) but the sign has been changed
get-spin-orbit interactions do not explain for comparison with A(#). The dashed
the data because of the too small values - curve represents —3P(6).

of theoretical P/A. The linear combination of these two kinds of spin-orbit
interactions for V,4 can give P/A= —1 when a= —5 is assumed. The validity

of this assumption can be investigated by comparison of measured polarizations
of protons with those of He® nuclei in proton-He® elastic scatterings. The He®
polarization is equal to cross-section asymmetries in elastic scatterings for polarized
He?® targets'™ because of the time-reversal theorem. The latter has been measured
at K£,=4~11MeV and in most energies has been found to have the same sign

)

as that of the proton polarization.” This suggests that the assumption a= —b

is invalid, though in the (d, p) reaction the scattering energy is not definite.

Recently, De Facio et al.”® studied scatterings and reactions in the He* plus

one-nucleon system using an elementary-particle model and taking account of the
effect of the coupling between the elastic and reaction channels, for example,
the Ie' plus proton channel and the He® plus deuteron channel. For the
He®(d, p) He* reaction, they found that the coupled-channel effect can reproduce the
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observed shift of the asymmetry and that tensor-force couplings are necessary in
explaining the experimental data. Although the physical interpretation of the
tensor coupling is not so clear because the model is much different from the
usual nuclear model, the tensor interaction of V,4 will be included in the tensor
coupling in the reference. To explain the variation of the experimental P/A
both with the incident energy and with the angle, it is necessary to simultaneously
consider several kinds of spin-dependent interactions. Since detailed numerical
calculations are not attempted in this work, definite conclusions cannot be drawn
on the relative importance of such spin dependences. However, from the above
studies, it is speculated that some of the proton-He® tensor force, the deuteron-
spin-dependent interaction, and the D-state admixture should be taken into account
in the numerical calculations to explain the data. In the backward angular region,
an appreciable increase of the observed cross section'” together with the smallness
of the magnitude of the asymmetry suggests the importance of the heavy-particle
stripping reaction'™ with the proton-spin-orbit interaction.”” Through the above
analysis, Es,term and the terms due to the second-order effect of the two-nucleon
forces are assumed to be small because of no evidence of such interactions in
the actual nuclear phenomena. ‘ |

§ 5. Remarks

The method presented here can be applied to the study of the spin dependence
of interactions in other stripping theories,” since, as seen in the preceding sec-
tions, the method needs only the interactions and their time order in the given
theoretical frame, from which one can describe the transition by the Feynman
diagram and then get the geometrical factor of the transition amplitude which
determines the properties of the invariant amplitudes. Also, it can be shown
that the present analysis can be applied to another special case where the spin
of the residual nucleus is one, instead of zero. In this case, the method gives
definite values of P/A for several kinds of the spin-dependent assumptions. The
measurement of the proton polarization and the cross-section asymmetry for this
case will further test the validity of the DWBA theory. Further, the method
can be used for analyses of other reactions, for example, inelastic scatterings of
nucleons. In fact, some of the present results can be applied to inelastic scat-
terings of protons accompanied by 0"—1% nuclear excitations, for which the
theory gives the ratio of the proton polarization for unpolarized beam to the
cross-section asymmetry for polarized beam.

Finally, it should be emphasized that because the disagreement between the
prediction by the conventional proton-spin-orbit assumption and the experimental
results for P/A is remarkable, measurements of both the polarization and the
asymmetry for other target nuclei are valuable. Such measurements will determine
whether or not the disagreement is the general tendéncy of the stripping reaction,
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Appendix A
The relation between Duck’s invariant amplitudes® and the present ones

In reference 8), the six invariant amplitudes I’ are defined by

M=F,(¢-E) + FT(‘L',,’EQ_ (E-k;) + F, (o -ky) (E-k;)
| kik, kik,

+ F4.(9L;’22@Q+ T, (o-ky) (E-ky) +F, i(E-ki X ky) . (A-D)
kiz k f2 kik i

where o is the spin matrix, the element of which is defined between the target
spin state and the proton spin state and E represents the spin of the deuteron.
Taking the matrix elements of these operators, one can easily show that the invariant
amplitudes I" defined above are related to our invariant amplitudes H as follows:

V6l by Fy = 122 H+ -“65 H, cos 0+ (H,+ H),
6k by Fy= YO (1, H,),
v 4 ]

ok kel Y+ HD,

V6lg ks = — -gi{s ,

6k by Fy = —%m

and

«/6kf/eiF6:‘/;H3. | (A-2)

Appendix B
The coefficient function A(pp’qk: éos 0)

In the text, ‘the coefficient function A(pp'gk: cos 0) is defined by

[Co(Q) XCWp (2) |*= i A(pp'qk:cos 0)[C,(1) X C;_(2)]", (B-1)

q=F—k
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where E=F for p+p’+Ek=even and k=k+1 for p+j>'+k:odd‘. In order to
obtain a recurrence formula for A(pp’gk: cos0), we rewrite [C,(1) XC, (2)]*
by using the identity, (»—1010[p0)C,=[C,.1XCi]*. Then

1
(p—1010] p0) (p” —1010|p"0)

X [Cpra(2) xCi(2) 17T

[Co(1) XCp ()] = [[Cps(1) xCi(D)]?

_ 1 :
= 10101 0) (7 =1010] /0y 2 ¥ G D GF/+D ZsF D @rd)

p—1 1 p
X4p' =11 p" H[Cpa(1) XCpra ()X [C: (1) X Ci(2) ]7]*, B-2)
s r k

In the sum over r and s, the =0 (s=%) term can be evaluated as

1
(p—1010] p0) (p’ — 1010 p’0)

VCp+1) 2p +1) 2k+1)

p—1 1 p
- X f)/_l 1 [)’ <—~71§~ o8 0> [Czpl(l) ch’—l(Z)]k- (B'3)
EOO R |

The other terms are again rewritten to give

p—1 1 p

S'W(Ep+1D)2p+1) @s+1) (2r+1)4{p —1 1 p
r0

, ‘ s r k

X [[Cp1(1) XCp_1(2)T*x [C:(A) X C1(2)]7]*
= SUV@p+1) (2 +1) (2p+1) (2p) +1) (254 1) (2r+1)

s, r40
P1, P1”

p—1 1 p} p—1 1 pl?

XA p' =11 p Hp'—112p

s r k s 1 k [

X (p—1010] p10) (p” —1010]£,"0) [C,, (1) X C,,r (2) 15, (B-4)
where p1=p or p—2 and p,/=p" or p’—2. Equations (B-3) and (B-4) can now
be used to express [C,(1) XCyp (2) 1% in terms of [C, 1(1) XCp_1(2)]% [C,(1) X
Cp—3(2)]% [Cpos (1) XC, (2)]* and [C,_ (1) X Cp _,(2)]*.  Using the orthogonality

relations for 9jsymbols, to carry out the sum over s and r, we obtain
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p—1 1 p
J(2p+1) Cp'+1) Ck+D4p" =1 1 ¢
E 0k

% (p—1010] p0) (1 — 1010]20) [Cy (1) X Cpr (2) T

- Wlé‘ cos 0[C, (1) X Cpra(2)]*

p—11 p

— X VEaTD @ D @D 11 p/
(2’121 )q“—(pp) B 0k

X (p—1010] £.0) (p” —1010[ £."0) [C,, (1) X Cyr (2) 1% (B-5)
Since Eq. (B-5) guarantees the validity of ‘Eq. (B-1), we can derive the recur-
rence formula for A(pp’qk; cos @) by the use of Eq. (B-1) on both sides of
Eq. (B-5) as i

A(pp’qk: cos 0) = — | 2 2r— 12£21) Df@i ,,,,,,, ~

XA(p—1p'—1qk:cos0)

(/e+z> p+2>(/e+1> P D) k—p+p) (k—p+p —1)

(p+2" +k+1) (p+p" +k) (p+p —k) (p+p" —k—1)
XA(p 2" —2 qk: cos0)

N/(k+1> —p+2) (ktp —p+ 1) (k—p +p) k—p'+p—1)

(p+p" +Ek+1) (p+2" +k) (p+p —k) (p+p —k—1)
XA(p—2p" qk: cos0)

x/(pﬂ) +h—1) (p'+p+k=2) (p+p —k—2) (p+p —k—3)

P+ +k+1) (242" +0) (210" —k) (p+2" —k—1)
XA(p—2 p"—2 qk:cos?). (B-6)
Equation (B-6) together with the trivial relation, , :
Al B—q" qk: cos ) =04 , B-7)

determines all the coefficient functions, A (pp’qgk: cos 0).
In some cases, the following equation which is easily derived from Eq. (B-1)
is useful for the evaluation of A (pp’gk: cos0):

Com (0, 0) (pmp Olkm) =31 A(pp’qk: cos 0)Cyn (0, 0) (gm k—g Olkm). (B-8)

For example, A(2211: cos @), which is mnecessary to derive Eq. (4-5) in the
text, can be calculated by
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Cus (0, 0) (2120]11) = A (2211: cos 0) Cy, (6, 0) (1110]11) (B-9)
with the result |
A(2211: cos 0) = —5%5 cos 0. (B-10)

Appendix C

The partial wave expansion

Here we discuss the relation between the invariant amplitude F' defined by
Eq. (3:1) in the text and the usual partial wave amplitudes. The invariant
amplitude F' can be expanded in terms of Legendre polynomials as follows:

F(SeuSppSr: E, cos 0) = }_; 2L+ 1) P,(cos O) F'(SeuSenSr: E, 1). (C- 1)

On the other hand, the usual partial wave amplitudes are defined by
<Vé, Vo5 kflTl‘VA; Va; kip

_. 2= CL+1Y@L+1) (@
- VMfM;kfki % ‘/ (211, + 1) (2lf+ 1) lellvf (‘Qf) Cliﬂi (‘Qz)
Sa,iggB
o ‘
X (SaVaSaVa|Saa Vot Va) (SoVs58Y8Ses Yo+ v5) (Litts Sas Yo+ va|lJM)
X (Lt Sspvs + Vel JM) T (115S0aSsz, E). (C-2)
By substituting Eq. (C-1) into Eq. (3:1) and using the relation,
P, (cos 0) [C,(2) X Csr(29)]° |
= (=) lZL‘(*)LZW(r S—rLiy: S [Ch, (2:) xCh, (2975, (C-3)

we obtain.

7 (lilfSaASbB 5 E)
(ﬁ )li+lf+SbB~J

: T S (Y QU+ 1) W (SunlySoms JS) W (o S—r L5 SI)
V241 F , _

X ({0r0]1,0) (10 S—7 0|L,0) F (S,48557; E, ). (C-4)

Analogous expressions in terms of the invariant amplitudes G and H can
be derived in a similar way.
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