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Spin dependences of interactions appearing in the DWBA stripping amplitude are theo­

retically investigated by the invariant-amplitude method for polarizations of emitted protons 

from unpolarized targets, P(() , and cross-section asymmetries from polarized targets, A (n). 

In the case treated, the nuclear spins are 1/2 and zero for the target and residual nuclei, the 

neutron being captured into an S-'state. The theory gives a definite value of pen) fA (n) for 

each spin dependence without any numerical calculation. In particular, the conventional proton­

spin-orbit assumption leads to pen) /A (n) = -3, which is incompatible with the experimental 

data for the Re3 (d, p) Re4 reactions. Possibilities of explaining the data are discussed. 

§ 1. Introduction 

The distorted-wave Born approximation (DWBA) has been successful in 

analyses of (d, p) reactions. In the theory, the transition amplitude in. the post 

form is transformed by the Gell-Mann-Goldber,ger theorem; an optical potential 

is assumed for the outgoing proton. I) The total wave function of the initial state 

is approximately replaced by the distorted-wave function provided by an optical 

potential of the deuteron. The resultant transition amplitude is given by2) 

(1·1) 

where V pn and V pA are the interaction of the proton with the neutron and that 

with the target nucleus A, respectively, and UpR is the optical potential of the 

proton from the residual nucleus B. The wave functions CPA, CPR and CPd describe 

the internal motions of the target nucleus, the residual nucleus and the deuteron. 

The distorted "vave functions X~B) and X~-.:t) are calculated by UpR and UdA , re­

spectively, UdA being the optical potential of the deuteron. Most of the conven­

tional analyses of the reaction assume a central potential for UdA and a central­

plus-spin (proton spin) -orbit potential for UpR and entirely neglect VpA - UpR• 

In many cases, the theoretical prediction~ are in worse agreeme'nt with the 

experimental data in the polarizations of the emitted protons than in the cross 

sections. 3
) This matter will be interpreted as follows: the cross section is mainly 

determined by the fundamental assumption of the reaction mechanism and scarcely 

depends on details of the interactions, while the polarization depends seriously 

on the details? for example the spin dependence of the interactions, and th~ 
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1024 M. TamJuji and K. Yazaki 

conventional treatment is not refined sufficiently for analyses of polarization 

phenomena. That is to say, some of the theoretical approximations are not always 

valid for polarization phenomena; for example, the neglect of V pA - U pB in Eq. 

(1·1) is not always justified because of differences between the spin dependences 

- of V pA and U pB• In -fact, as is discussed later, nucleon-nucleus interactions some­

times depend on the spin of the nucleus, al1d the spin of the .nucleus A is always 

different from that of 13 in the stripping reaction. Such inadequate treatments 

of the interactions will presumably introduce significant errors in theoretical 

results for polarization phenomena. The purpose of the present paper is to pos­

tulate a -method of investigation of the spin dependence of the interactions and 

to criticize the theoretical approximation as its application. 

Since the spin dependences of the interactions are specifically reflected in 

the polarization phenomena, our study will be limited to this subject. The general 

features of the phenomena in the stripping reaction have been discussed earlier/),5) 

i.e. the polarization of the emitted proton, the polarization of the residual nucleus, 

and the effects of a polarized target and of a polarized _ beam are studied. Of these 

phenomena, we discuss the ratio of the proton polarization from unpolarized targets 

to a left-right asymmetry of the cross section from polarized targets. In particular, 

we treat the special _ case in which the neutron is captured into an S-state by 

the target nucleus of spin 1/2 forming the final_ nucleus of spin O. In this case, 

the asymmetry has been measured only for the Hes Cd, p) He4 reactions. 6
) Tanifuji7

) 

has discussed the -effect of the proton-spin~orbit interactions and of a proton-target 

tensor force on the polarization-asymmetry ratio in this reaction in the so-called 

prior formalism. For the same reaction, DuckS) has calculated numerically the 

proton polarization and the cross-section asymmetry by the invariant-amplitude 

method with a limited number of partial waves, and Csonka et aP) have also 

investigated the properties of the invariant amplitudes, but the spin dependence 

of the interaction has never been studied by this method. -In this paper, the­

invariant-amplitude method is extended to a more general case where particles 

with arbitrary spins are interacting with each other. The method is applied to 

the DWBA stripping amplitude for which the spin dependences of the interactions 

are investigated, VpA - UpB being taken into account. As an example, the­

Hes (d, p) He4 reaction is discussed in detail. Since the partial-wave expansion 

is not used at the present, the result is free from the limitation of the number 

of partial waves. 

In this paper; the following force assumptions are particularly examined; 1) 

proton-spin-orbit interactions, 2) target-spin-orbit interactions, ~) a tensor-type 

interaction between the proton and the target nucleus, 4) deuteron-spin-orbit in­

teractions, 5) deuteron tensor forces, 6) a spin-spin interaction between the deuteron 

and the target nucleus, 7) a spin-spin interaction between the proton and the target 

. nucleus, and 8) a neutron-proton tensor force. The mathematical expressions of 

these interactions are list~cl in Tabl~ 1 of § 4, Of these interactions, a proton-
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Polarizations and Asymmetries in Stripping Reactions 1025 

spin-orbit potential has been found in analyses of the elastic scattering of protons 

by nuclei and is conventionally used in the DWBA analyses, while for the' others, 

2) rv7), their effects have not been clarified. A spin-orbit potential of a Beg nucleus 

has been postulated for a-Bell elastic scatterings. 10) 'Spin-orbit interactions of 

nuclei are a reasonable extension of this idea. The interaction 3) is introduced 

for V pA by analogy with the nucleon-nucleon tensor force, the effect of which is 

well known for low-energy nucleon-nucleon scattering and the properties of the 

deuteron bound state. 'The range and depth of this interaction are almost the 

same as those of the nucleon-nucleon central force. 1l
) Although the derivation, 

of nucleon-nucleus potentials from the two-nucleon interactions is ,not dear at 

present, the existence of the nucleon-nucleus tensor force is probable. Recently, 

spin-orbit potentials and tensor forces ·of deuterons have been studied for elastic 

scattering by nuclei and have been found to be important in obtaining good fits 

to data. 12) A spin-spin interaction between a neutron and a nucleus has been 

studied by several authors. 13),14) The results suggest the invest'igation of the 

similar ~nteraction 7) in the present case to be valuable. In the DWBA theory, 

V pn is eliminated from the transition amplitude by the use of the Schrodinger 

equation for the deuteron internal motion; the property of the interaction being 

fully reflected in the deuteron wave function ({Jd. Thus, the effect of the neutron~ 

proton 'tensor force can be taken into account by including the D-state admixture 

m ({Jd. This note will discuss the effect of the D-state admixture instead of the 

tensor force itself. 

Effects of excharige processes have been studied by both the cutoff Born 

approximation15),16) and the distorted-wave theory.17) This study discusses the 

exchange effect, for which the spin-dependent interactions are assumed analogous 

to those for the direct process. In later sections, we first treat almost all the 

possible spin dependences of the interactions in the first order. Then we show 

that for most cases of physical significance, the obtained results are valid to any 

order. As shown later, for' each. case the theory ,can predict a definite polari­

zation-asymmetry ratio without any numerical calculation. Since the ratio obtained 

depends strongly on the assumptions of the spin dependen~e of the interactions 

and the results are completely independent of the parameters of the potentials, 

the results are useful in providing a criticism of the theory and the potential 

assumptions, though the cases treated are rather special. 

§ 2. Cross-section asymmetries and polarizations of emitted protons 

A general formula of the cross section from a polarized target was discussed 

by Goldfarb and Bromley4) and is given by 
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1026 M. Tanifuji and K. Yazaki 

y 
x 

Target polarization 

A 
-:....:...-+--_...J.......~~------tL-z 

Incident beam 

Right 

Fig. 1. Orientation of coordinate axes. 

Cross sections are defined in the x-z 

plane. 

do) ~~5 _ do) 
dQ pol dQ unpo] 

where pi is the density matrix of the 

target spin and T denotes the reactIon 

matrix, the elements of which give the tran­

sition amplitudes. This formula is calcu­

lated for the case of target spin 1/2 in the 

special frame of coordinate axis illustrated 

in Fig. 1, where the direction of momentum 

of the incident deuteron is chosen as the 

z-axis and where the direction of the target 

polarization, which is perpendicular to this 

aXIS, IS taken as the y-axis; the results are 

(2·1) 

where do / dQ)~~i and do / dQ)~~i are the left-side and right-side cross sections for 

the polarized target and do / dQ)unpol is the cross section for an unpo.larized target. 

Also, C is a constant for a particular choice of the momenta and the masses of 

the incident deuteron and the emitted nucleon. The magnitude of the polarization 

of the target nucleus is given by the populations of its spin-substate q ±1/2' The 

transition amplitude is specified by the initial and final momenta, k i and k, and 

the z-components of the spins; VA (the target nucleus), Va (the deuteron), VB 

(the residual nucleus) and Vp (the emitted nucleon). 

The general formula also gives the cross section for an unpolarized target 

as a special case, 

The left-right asymmetry of the cross section is defined. by 

dd) (L) do) (R) 

A (fJ) = 1 . _EQ pol - ~sJ._ pol 

(ql/2 - q-l/2) .dO) (L) + _40_) (R) 

dQ pol dQ pol 

and we obtain, by Eqs. (2 ·1) r'J (2·3), 

(2· 2) 

(2·3) 

L.; 1m {<VB, Vp; k,ITlvA=t, Va; ki)*<VB, Vp; kflTlvA= -t, Va; k i )} 

A (fJ) = - 2--"-B.--"a'-"1l ___ ~ -----------------
L.; I<VB, Vp; k,ITlvA, Va; k i )1

2 

(2·4) 

The polarization, P(fJ) , of the emitted proton along the y-aXIS IS calculated 

for an unpolarized. targeeS) and is given by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

0
/5

/1
0
2
3
/1

9
0
8
7
6
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Polarizations and Asymmetrz'es in Strippz'ng Reactions 1027 

(2· 5) 

The physical significance of A (0) can be clarified by the observation that A (0) 

for the reaction A (d, p) B is just the polarization of the particle A for the time­

reversed process p (B, A) d. Now, in the usual (d, p) reaction, it is well known 

that the polarization of the emitted proton is strongly affected by the proton­

spin-dependent interaction. Therefore, it seems probable that the interaction 

which includes the target spin plays an important role in the calculation of A (0). 

This point of view is developed in later sections. 

For the convenience of further development, the spin density matrices pp 

and PA are introduced as follows: 

(2·6) 

and 

(2· 7) 

where pp describes the spin density of the proton after the reaction A (d, p) B 

and PA is the spin density of the nucleus A after the reaction, p (B, A) d. With 

these quantities, the asymmetry and the polarization given by Eqs. (2·4) and 

(2·5) are expressed as 

(2·8) 

and 

(2·9) 

§ 3. Invariant-amplitude method 

For the study of polarization phenomena, particularly of the spin dependence 

of the interaction, it is convenient to describe the transition amplitude by tensors 

In the spin space, because the spin dependence of· the interaction can also be 

classified as tensors in the spin space. In. reference 8), a method similar to ours 

has been presented but the terms, by which the transition amplitude is expanded, 

are not classified as such tensorS. To develop the present method we will treat 

a reaction, 
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1028 M. Tanijuji and K. Yazaki 

a+A->b+B, 

and the intrinsic spins of the particles a, A, band B are denoted by Sa, SA, Sh 

and SB, respectively. When we take the coupling scheme 

and 

the spin tensor can be completely specified by the numbers, SaA, ShB and S, the 

rank of the tensor being given by S. Since the transition amplitude is a scalar 

III the spin-coordinate space, this tensor must form a scalar product with atensor 

of rank S in the coordinate space which is to be constructed from the momenta, 

k i and k,. After the factorization of this scalar product, the residual part, say 

F, becomes invariant under rotation in the coordinate space and can be considered 

as a function of E and cos (J, where E is the total energy of the system and () 

is the angle between k i and k,. In the following, the function F is referred to 

as the invariant amplitude analogous to the definition in; high energy physics .. 

This section is devoted to the derivation of the expression for the transition 

amplitude, the differential cross section, and the density matrix in terms of the 

invariant amplitudes. 

The tensors of rank S constructed from k i and k, are as follows: 

with r~8-S ... S , , , 

where 

for S=even 

and 

8=S+ 1 for S=odd, 

, when the total parity of the particles is not changed by the reaction, and 

8=S+ 1 for S= even 

and 

when the parity IS 

and k" respectively. 

y~m(Q), by 

for S=odd, 

changed. Here, Qi and Q, are the angular variables of k i 

The quantity C~m (Q) is related to· the spherical harm.onics, 

Therefore, the invariant. amplitude F is specified by the numbers, SaA, ShB, S 

and r. 
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Polarizations and Asymmetries in Stripping Reactions 1029 

The transition amplitude <VB, Vb, kflTlvA, Va; k i> IS gIVen 111 terms of the 

invariant amplitude, F(SaA, SbB' S, r; E, cos{), by 

x (SoVbSBVBI SOBVbB) (SaAVaASbB - VOBI SVaA - VbB) ( - )SbB-"bB 

X [Cj·(Qi ) X Cs-r(Qf) J~aA-"bBF(SaA' SbB, S, r; E, cos 0), (3 ·1) . 

where the V's denote the respective z-components of the spins and the M's are 

the reduced masses in the initial state and in the final state. Matrix elements 

of the spin tensor can be calculated by the Wigner-Eckart theorem. In Eq. (3 ·1) 

the· product of three Clebsch-Gordan coefficients is the geometrical factor of the 

element of the spin tensor, the physical part being included in F . 

. Orie can define the invariant amplitude in different ways which depend on 

the choice of the coupling scheme, ,i.e. the invariant amplitude G (Sab, SAB, S, r; 

E, cos ()) for the coupling scheme 

and 

Sab+SAB=S, 

and the amplitude H(SaB, SAO, S, r; E, cos 0) for the coupling scheme 

and 

SaI{+ SAb = S . 

The amplitudes Gand H are related to F by the transformation with the 9-j 

symbol, 

G (Sao, SAB, S, r; E, cos ()) 

X F(SaA, SbB, S, r; E, cos () (3·2) 

and 

X F(SaA, SbB, S, r; E, cos (}). (3 ·3) 
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1030 M. Tanijuji and K. Yazaki 

The physical quantities, for example, the differential cross section and the 

density matrix can be expressed by anyone of F, G and H. In the following, 

these quantities are given in terms of H for the convenience of application in 

§ 4. Similar expressions can be obtained by use of F or G. The transition 

amplitude is given in terms of H: 

x [C r (S2i ) X Cs- r(S2f ) ]~a+VA-V71-vBH(SaB' SAb, S, r; E; cos (). (3 ·1') 

By substituting Eq. (3 ·1') into Eq. (2·2) and noting that 

(3· 4) 

one gets the unpolarized cross section, 

with 

N(E, cos () = ~ (2S + 1) H* (SaB, SAb, S, r; E, cos () 
SaB' S Ab, S, r, r' 

X H(SaB, SA71, S, r'; E, cos 6) ~ W (r S - r 'r' S - r'; Sp) (rOr'OlpO) ( - )s+P 
P 

X (S-r 0 S-r' OlpO)Pp(cos (). (3·5) 

The elements of the density matrices <vblpblv71') and <vAl PAIvA') can also be 

calculated by the. use of Eq. _ (3 ·1'). To clarify the transformation _ properties, 

the'matrix element is expanded in terms of irreducible tensors; for instance, 

(3· 6) 

where P71 (k) (v) is the so-called statistical tensor 4
) of rank k, and IS further ex­

panded as 

k 

P71(k) (v) = ~ [Cq (S2i ) X C iC _ q (S2,)]}p/J(k)(q; E, cos () 
q=k-k 

(3·7) 

with Ii = k for k = even and Ii = k + 1 for k = odd. Here, Pb (k) (q; E, cos () IS gIVen 

In terms of H by 

(k)( • E '. t'l) _ .' 1 j-Zk+ 1 ~1 (_)s+8'-13 Pb q cos V - ----------- .LJ 
"" N(E, cos () 2s71 + 1 SaB,SAb,S'Ab,S,S',r,r',p,p' 
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Polarizations and Asymmetries in Stripping Reactions 1031 

X W(SAbSaBkS'; SS~b) r' S' -r' S' ~(rOr'OIPO) (S-rOS' -r'Olp'O) 

1 

r S-r S) 

. . p p' k) 

X A (pp'qk; cos()H*(SaB, SAb, S, r; E, cos () H(SaB, S~b' S', r'; E, cos (), 

(3·8) 

where A (pp' qk; cos () IS the coefficient function for the space tensor defined 

by 

k 

[C p (S2i ) xC l1 ,(S2f )]k= L: A (pp'qk; cos ()[Cq (S2i ) xCk _ q (S2f )]1c (3·9) 
q=lc-k 

with Ii = k for p + p' + k = even and Ii = k + 1 for p + p' + k = odd. The reduction 

formula for evaluating the function A (pp' qk: cos () is given in Appendix B 

where some properties of this function are also discussed. From Eq. (3·8), 

using the symmetry properties of the 6-j and 9-j symbols, one can easily show 

that Pb (k) (q; E, cos () is real for even k and imaginary for odd k. The invariant 

amplitude can be expanded in partial waves. Such a treatment will be useful 

for numerical computations of physical quantities and is discussed in Appendix C. 

~ 4. Application to special stripping reactions 

The invariant-amplitude method developed in the previous section is applied 

to the special stripping reaction, where the orbital angular momentum of the 

captured neutron is zero and the nuclear spins are 1/2 and zero for the target 

nucleus and the residual nucleus, respectively, i.e. the proton polarization and 

the cross-section asymmetry are calculated with the spin values specified and 

the ratio of the polarizat{on to the asymmetry is investigated for the assumptions 

of the spin dependence for the interactions given in Table 1. The theoretical 

result is discussed in comparison with the experimental data for the He3 (d, p) He 4 

reactions. 

In the present case, a, A, band B are assumed to be the deuteron, the 

target nucleus, the proton, and the residual nucleus, respectively, the spin as­

signmen t being 

sa = 1, SA = 1/2, Sb = 1/2 and SB = 0 . 

To discuss the relation between the polarization of the particle b and the asym­

metry from the polarized target A, it is convenient to take the coupling scheme 

which leads us· to the invariant amplitude H. For the above values of the spins, 

the following four sets of the spin-coupling parameters are available: 

i) SAb=l and S=O, 

ii) SAb = 1 and S~ 1, 
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1032 M. T anifuji and K. Yazaki 

iii) SA7J=O and S=I 

and iv) SA7J=I and S=2, 

with SaB= l. Correspondingly, we get the following 

condition of no parity change, 

1 for s=o and 

[C l (.9i ) XCI (.9f )] 1 for S=I and 

C2 (.9/) for S=2 and 

[C l (.9i ) X C l (.9/) r for S=2 and 

and C2 (.9i ) for S=2 and 

The transition amplitude IS gIven In terms of H,. 

'<VB,VP ; ktlTlvA' Va; k i )=4n( - Y/2-VP(MtMikfki)-1/2 

X [(ivAi-vpII VA-V p) (IVa 1 VA-vpI00)H1 

space tensors under the 

r=O. 

r=I, 

r=O, 

1'=1 

r=2. 

+ (ivAi-vpII VA-V p) (IVa 1 VA-vpII VA-Vp+Vd) [Cl (.9i ) XCl(.9f)]~A-vp+vaI--I2· 

+ (iVAt-vpIOO) (lvdOOiIVa) [Cl (.9i ) XCl(.9f)]~aH3 

-+ (ivAi-vviI VA-V p) (IVaI vA-vpi2 VA-Vp+Vd) {C2 vA-v pp a(.9/)H4 

+ [C l (.9i ) XCl(.9f)]~A-vp+vdH5+C2vA-vpf-vd(.9i)I--I6}]' (4·1) 

where 

and 

Hl=H(SdB=I, SAp=I, S=O, r=O), 

H 2- H(SdB= 1, SAP = 1, S= 1, r= 1), 

H3=H(SdB= 1, SAP=O, S= 1, r= 1), 

H 4=H(SdB=I, SAP=I, S=2, r=O), 

H5=H(SdB=I, SAP=I, S=2, r=I) 

H 6--H(SaB=I, SAP = 1, S=2, r=2). (4· 2) 

The proton polarization and the cross-section asymmetry gIVen by Eqs. (2·8) 

and (2·9) are calculated as 

(4· 3) , 

and 

(4·4) 

where 
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Polarizations and Asymmetries in Stripping Reactions 1033 

PP (1) (1; cos ()) 

= i .J2 1m {H * (H - ~ H) + .J2 (H* + .J2H *) (H + R) 
N(E, cos ()) 1 2.J2 3 4 2 3 4 6 

.J3 (H * /2-H *) H () 3.J2 (H *H H *H ) 3.J2 H * H' ()} +--- 2 + V 3 5 cos - -- 4 5 -- 6 . 5 + ~~ 4 6 cos 
6 4 . 2 

(4·5) 

and 

(4· 6) 

The denominator N(E, cos ()) is given by Eq. (3·5) and is expressed in terms 

of H as 

N(E, cos ()) =~-{/H1/2+ si~21(/H2/2+ /H3/ 2) +/H4/2+ 3+~OS2 ()/H5/2 

+ /H6/ 2 +
2 ;6 Re (H4*H5+ H5*H6) + (3 cos 2{)-I)Re(H4*H6)}. (4· 7) 

It should be noticed that the difference between pp (1) (1; cos ()) and PA (1; cos fJ) 

in Eqs. (4·5) and (4·6) is only in the 

sign of H 3 , which allows us to find easily 

the polarization-asymmetry ratio. These 

equations are similar to Eqs. (8') and 

(9') in reference 8).· However, the present 

expressions are more convenient than 

the latter for investigation of the spin 

dependence of the interactions. The re­

lationship between: the present formulae and 

those in the reference is given in Ap­

pendix A. 

As is seen in Eq. (1·1), the direct 

amplitude. in the DWBA theory is de­

termined by four interactions: Vpn. V pA, 

UpB and UdA . Similarly, V po, V pd, UpB 

and UdA take part in the exchange stripping 

reaction illustrated in Fig. 2, the transition 

amplitude, T(E), being 

T(E)(d+A~p+B) 

=<X~B)(j?B'(VPO+ V pd - UPB)X~-t}(j?d(j?A>. 

At this time, the suffix p denotes the 

proton of the target nucleus which IS 

Direct 

Target nucleus Residual nucleus 

Exchange 

Target nucleus Residual nucleus 

Fig. 2. Schematic representation of reac­

tion modes. Symbols A, d, nand p 

represent the target nucleus, the inci­

dent deuteron, the captured neutron 

and the proton emitted into the final 

state, respectively. The symbol C 

represents the core part of the target 

nucleus, the target minus one proton. 
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1034 M. Tanijuji and K. Yazaki 

emitted into the final state. The wave function of the residual nucleus, CPB, 

consists of the wave functions of the bound deuteron and the core part of the 

target nucleus, C. In the following, we study all of the interactions with their 

spin dependence listed in Table I. In the table, the possible spin, dependences 

of the interactions are given as tensors in the spin space, their ranks being de­

noted by S. There, Si is the spin operator of the particle i, Sd(2) is the tensor 

of rank 2 constructed, by the deuteron spin, and Ed denotes an operator which 

gives rise to the transition between the deuteron intrinsic states, the singlet and 

the triplet states. The vector l represents an axial vector constructed by the 

space coordinates, for example, the orbital-angular-momentum operator of the 

related particle. For the interaction between composite particles, l can also in­

clude the internal variables. Some discussions of the spin dependent interactions 

have been given in the introduction. The table also contains other interactions 

that are kinematically acceptable. Physically, they are expected to be derived 

from two-nucleon forces. In a derivation of the proton 'deuteron interactio~ from 

the two-nucleon forces, the (sp·Ed) and (lpd·Ed) terms will arise from the (0-'0-) 

and spin-orbit terms of" the nucleon-nucleon interaction, respectively. Similarly, 

in the derivation, the lpd' [sp X Ed] 1 term will appear as a second order effect of 

Table 1. Spin dependence of interactions. All of the interactions listed in the table are classified 

by their rank as' tensors (8). Vacant columns of the spin dependence in ,the exchange amplitude 

are read to be the same as the corresponding columns in the direct amplitude. 

8 Direct amplitude Exchange amplitude 

Interaction Spin dependence Interaction Spin dependence 

o 

~-~~~-~,--~-----------~--~ --------;-------- -~-------

1 
1- ~-~~~~-I~ 

ldA" sd 

ldA'SA 

ldA' [SdX sA]1 

ldA' [Sd(2) X S A]1 

lpA'Sp 

'pA'SA 

'pA' [SpXSA]1 

'pd'Sp 

'pd'Sd 

lpd' [Sp XSd]l 

'pd' [S p XSd (2)]1 

lprZ·Ed 

'pd' [Sp XEd]l 

-~~~~-----c~~~~~~___;_~----~~~-~~~_;_~---~~-~~ -'-----------,--~-

2 tensor 

tensor 

D-state admixture 

tensor 
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Polarizations and Asymmetries in Stripping Reactions 1035 

the spin-orbit term of the nuclear force. This second order effect also gives 

rise to the 'pd' [Sp X SdJi term in the V pd, 'dA' [Sd X SAJi term in UdA and the 'pA' 

[sp X SA] 1 term in V pA. The interactions, 'dA' [Sd(2) X SA] 1 in u'dA and 'pd' [Sd(2) X Sp] 1 

in V pd, can arise as a combined effect of the spin-orbit and the tensor terms. 

In the table, the tensor terms are not specified because the explicit forms are 

not necessary for the later discussion. The effect of the interaction Vpn is treated 

as that of the D-state admixture in the deuteron internal motion. 

In general, some of the interactions listed above will take part together in 

actual reactions, their effects in polarization phenomena being mixed up with each 

other. Thus, the quantitative determination of their contribution to P and A 

requires laborious nume:rical calculations. In this section, we discuss the ratio 

PIA in two simplified ways: First, for each spin dependence, PIA is calculated 

up to the linear term both in P and A. The result may be useful for study of 

a special combination of the spin dependence in the sense of the first order ap­

proximation. Secondly, in the light of the above results, PI A is investigated 

without the linear approximation for several physically important interactions. 

The results obtained are exact to any order within the limitation of the DWBA 

theory. 

In the linear approximation, Eqs. (4·5) and (4·6) are reduced to 

pp(1)(1;cos8)~i-- .J2 1m {HI * (H2- l_Hg)} 
N(E, cos 8) .J2 j 

(4·5') 

and 

(4·6') 

Since H2 and Ha are characterized by S = 1, in the table only the interactions 

referred by S = 1 can contribute to P and A in this approximation. The detail 

of the method of calculating PIA will be given for the special spin dependence 

'pB'sp for, UpB. Other spin dependences are similarly treated and the results 

are listed in Table II. From the diagram in Fig. 3, the contribution of the-lpB' Sp 

term to the transition amplitude can be shown to be proportional to the matrix 

element, 

Fig. 3. The first-order diagram with respect to the spin­

orbit term of UpB. Symbols A, B, d and p represent 

the target nucleus, the final n~cleus, the incident 

deuteron' and the emitted proton, respectively. The 

box denoted by Dp represents spin-independent dis­

tortions of the proton and the dotted line represents 

the proton-spin-orbit interaction. The stripping process 

takes place at the box denoted by R, where- any 

spin-independent di~tortions ~l.'e :;tHowed, 

p 
--<-

B 

,--

Dp 

k-,-

r--

p d 

R 

-~-
B A 

~ 
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1036 M. TanifuJi and K. Yazaki . 

Table II. Calculated PiA in the linear approximation. 

Interaction Spin depedence 

Ud,A ld,A'sd, 0 -1 

ldA,sA 1/v7 -1/3 

ldA' [sd xsA]l -v7 .A=O 

ldA' [Sd,(2) X sA] 1 v7 p=o 
--- -- .- - - "----".--~~~ ----- --- ----~-

V pA lpA'sp -1/v7 -3 

lpA'sA 1/v7 -1/3 

lpA' [SpXSA]l H 2=O 1 

Vpa lpa'sp -1/v7. -3 

lpa'sa 0 -1 

lpd,' [sp Xsa]l v7 .p=O 

lpa' [spXSd,(2)]1 -v7 A=O 

lpa·Ea H2=O 1 

lpa' Esp XEa]l 0 -1 

the geometrical part of which is given by the use of the Wigner-Eckart theorem 

as 

(4·8) 

where the first Clebsh-Gordan coefficient represents the reaction part (R) in the 

diagram. The product . of the Clebsh-Gordan coefficients (4·8) IS rewritten as 

(IvatvAlt Va+VA) (t Va+VA t-vplI Va+VA-Vp) 

1 

=:E .)2 (2S+ 1) W(Itlt; IS) (tVAt - vplS VA - vp) (Iva S VA - vpll Vd+ VA - Vp) 
8=0 . 

=j 2 {(tvAt-VpII VA-Vp) (Iva 1 vA-vplJ Va+VA-Vp) 3 .. 

- 1_ (l.-vAl.--vpIOO) (IVaOOIIVd)} , 
-/2 2 2 

By comparing the content of the ket{ } with Eq. (4·2), one gets 

HsIH2= -II -/2, 

which gives PIA by the aid of Eqs. (4·5') and (4·6'), 

PIA = -3, 

(4,9) 

Now, some special spin dependences are investigated without the linear ap­

proximation, pp and PA being given by their full expressions (4·5) and (4· ·6) . 

. The method of the investigation is quite similar to that in the linear case. As 

an example? we will Qonf?ide;r a his-her order te;rm of the proton-spin-orbit inter-
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Polarizations and Asymmetries liZ Stripiying Reactions 1037 

n 
/~--~~-~ 

r- r--

d 

Op Op R 

:" 
~ 

-+--

B BUB A 

'-- L- '--

Fig. 4. The n-th order diagram with 

respect to the spin-orbit term of 

U pi. The symbols are read simi­

larly to those in Fig. 3. 

action. The n-th order contri­

bution of the interaction (see 

Fig. 4) will be proportional to 

the matrix element 

<VpjspnjVA' Va). 

p d 

OSP 

B A 

Fig. 5. Combined diagram of the proton-spin-orbit inter­

action and the spin-spin interaction of V pA' The box 

DSP describes distortions of the proton wave, both 

the spin-independent interaction and the proton-spin­

orbit interaction being allowed to any order. The box 

Da represents the spin-independent distortion of the 

d~uteron wave. The part which consists of the Wavy 

line and the slanting line describes the neutron capture 

by the· spin-spin interaction of V pA' Other symbols 

are read similarly to those in Fig. 3. 

Since the proton has SpIn 1/2, it is always possible to reduce the product spn to 

a+bsp . 

Therefore, the higher order effects of the (lpB' sp) term contribute to the S = 0 

and S = 1 amplitudes, the geometrical factor of the latter being the same as the 

first order contribution. Since the full expressions (4·5) and (4·6) for pp and 

PA are reduced to the right-hand side of (4:·5') and (4·6') in the absence of the 

S = 2 amplitudes, one gets P / A = - 3 for the proton-spin-orbit interaction in the 

n-th order. Further, it is shown that the same result is obtained when an ad­

ditional spin-spin interaction of V pA is taken into account for th~ process. From 

the Feynman diagram shown in Fig. 5, one can see that the contribution of the 

combined effect of the (lpB' sp) term in the UpB and (Sp' SA) term in V pA is 

proportional to 

Since (Sp' SA) is a scalar in spin space, only vp' = Va + VA can contribute to the 

nlatrix element and the geometrical factor of the above expression is shown to 

be the same as that: of the matrix element of Sp. The similar arguments are 

applied to the higher order effects of the target-spin-orbit interactions. 

Next, we will discuss the assumption of a linear combination' of the proton­

spin-orbit interaction and the target-spin-orbit interaction, lpA' (asp + bsA) , for V pA, 

neglecting other spin-dependent' interactions completely. As mentioned in § 1, 

the DWBA transition amplitude is derived from the original post-form amplitude 

by the Gell-Mann Goldberger transformation/) where UpB is mathematically an 

<lrbitrary function of thy variables of the proton, In, this viewpoint, one can 
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1038 M. TaniJuji and K. Yazaki 

choose UpB to be a central potential, the spin dependence being considered in 

V pA. In the above linear combination, the choice, b = 0 for example, is expected 

to give a result similar to that from the proton-spin-orbit interaction for UpB with 

the neglect of VpA - UpB. From such considerations, one can expect that the linear 

combination provides the main feature of the combined effect of both kinds of 

spin-orbit interactions. The calculation of PIA for this assumption is quite similar 

to those for the proton-spin-orbit interaction and the target-spin orbit interaction. 

The result will be given later together' with those for higher order effects of 

other spin dependences. 

As is noted previously, the relation PIA = -1 holds exactly in the absence 

of H g, the amplitude for SpA = o. When the spin dependence is concerned only 

with the deuteron spin, the proton and the target spins must be coupled to one 

(SpA = 1) and then PIA = -1. Similarly, PIA = -1 is obtained for the tensor 

term in VpA. These considerations can be summarized as follows: 

1) For any combination of the proton-spin-orbit interactions with or without 

the spin-spin interaction in VpA (or V pd for the exchange term), one gets 

PIA = -3. 

2) For any combination of the target spin-orbit interactions with or without 

the spin-spin interaction inVpA (or V pd for the exchange term), one gets 

PIA = -1/3. 

3) The spin-dependent interaction relating to only the deuteron spin, the tensor 

term in V pA (or V pd for the exchange term), the D-state admixture and their 

combined effect give PI A = -1, with or without the spin-spin interaction in 

VpA, and, similarly, 

4) for a combination of the proton-spin-orbit interaction and the target-spin-orbit 

interaction for V pA, i.e. 'pA· (asp + bsA) , one also finds 

P -3a+b 

A a-3b ' 

where the form factor of the proton-spin-orbit interaction IS assumed to be the 

same as that of the target-spin-orbit interaction. 

The cross-section asymmetry has been measured only for the Hes (d, p) He4 

reactions. Since the general agreement of the DWBA result with experimental 

data seems to be better for the heavy nuclei than for the light, the reaction on 

He3 target may not provide the best test of the validity of thetheory. On the other 

hand, the configuration of the final nucleus, He\ has little ambiguity in the ground 

state since the D-state amplitude is almost negligibly small. In fact, forward 

angular distributions of the cross section show typical S-state captures.19
) This 

matter rather simplifies the analysis of the reaction. Under these circumstances, 

it is worthwhile to compare the theoretical results with the experimental data of 

this reaction. The' measured polarization20
) and asymmetry6) are shown in Fig. 6. 

The mClin f~atur~s are (1) in the forward angular regIOn, the asymmetry and the 
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Polarizations and Asymmetries in Stripping Reactions 1039 

polarization show a quite similar shape 

and magnitude but have opposite signs, 

i.e. P((})~-A((}), (2) the maximum 

magnitude of the asymmetry is certainly 

larger than 50 % at 6, 8 and 10 MeV, 

(3) at larger angles, the magnitude of the 

asymmetry appears to be smaller than that 

of the polarization especially at 6 Me V, 

and (4) the shape of the angular distribu­

tion of the asymmetry appears to be 

shifted to larger angles at 6 and 8 Me V 

when compared with the polarization. 

These features, in particular (1) 

and (2) do not favour the conventional 

proton-spin-orbit assumption because of 

the too large absolute values of the 

theoretical PIA at forward angles. A­

greement between the theoretical and 

experimental results cannot be obtained 

by including the spin-spin interactions. 

These circumstances are not changed 

even if the exchange effect is taken into 

account. Obviously, these conclusions 

are independent of the range of Vpn and 

the finite-range calculation
21

) does not 

improve the theoretical results. The tar-

c 
o 

1.0 

o 

:S-I.O 

6 MeV 

~ 

...... _--_ .......... 

. ~ 1.0 '-'-.--'-' """l---r-, -"---'-1 -"'-'--'--1 '"' -,-,-,.---,---,--,--,......., 

o 
(5 8 MeV 

~ r--------p(B) 

~ 0 1---- -----''''"-"~"'--~ i-~--~----- ~- ---- -1- p(B) 

Q.. ' .... ___ -.--....... r 

"0 
c 
o 

>. -1.0 L-L-'---'---lj---l+"--~. 
~ 1.0 ......-r-~-r-..--.-.--,-,----,--r---.----.---,-....,.----,----,-,---, 

E 
E 
>. 
(f) 

<[ 

10.MeV 

-::'::~...L' =I,::::---,-,_,~I :;::-''--L' ~l =-,-'_L..~ 
90 120 150 180 

8 

Fig. 6. The measured values of A (0) and P(O) 

at 6, 8 and lOMeV for the He3 (d,p)He4 

(g.s.) reaction. The experimental points are 

the measured A (0) of reference 6) and the 

solid curve represents the measured P(O) of 

reference 20) but the sign has been changed 

get-spin-orbit interactions do not explain for comparison with A(O). The dashed 

the data because of the too small values curve represents -tP(O). 

of theoretical PIA. The linear combination of these two kinds of spin-orbit 

interactions for V pA can give PIA = -1 when a = - b is assumed. The validity 

of this assumption can be investigated by comparison of measured polarizations 

of protons with those of Re
3 

nuclei in proton-Re3 elastic scatterings. The Re3 

polarization is equal to .cross-section asymmetries in elastic scatterings for polarized 

Re3 targets18
) because of the time-reversal theorem. The latter has been measured 

at Ep = 4"--,, 11 Me V and in most energies has been found to have the same sign 

as that of the proton polarization. 22
) This suggests that the assumption a =- b 

is invalid, though in the (d, p) reaction the scattering energy is not definite. 

Recently, De Facio et al. 23
) studied scatterings and reactions in the He4 plus'. 

one-nucleon system using an elementary-particle model and taking account of the 

effect of the coupling between the elastic and reaction channels, for example, 

the He4 plus proton channel and the Re3 plus deuteron channel. For the 

Re3 (d, p) He4 reaction, they found th~t the coupled-channel effect can reproduce the 
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1040 M. T anijuji and K. Yazaki 

. observed shift of the asymmetry and that tensor-force couplings are necessary in 

explaining the experimental data. Although the physical interpretation of the 

tensor coupling is not so clear because the model is much different from the 

usual nuclear model, the tensor interaction of V pA will be included in the tensor 

coupling in the reference. To explain the variation of the experimental P / A 

both with the incident. energy and with the angle, it is necessary to simultaneously 

consider several kinds of spin-dependent interactions. Since detailed numerical 

calculations are not attempted in this work, definite c~nclusions cannot be drawn 

on the relative importance of such spin dependences. However, from the above 

studies, it is speculated that some of the proton-He3 tensor force, the deuteron­

spin-dependent interaction, and the .D-state admixture should be taken into account 

in the numerical calculations to explain the data.. In the backward angular region, 

an appreciable increase of the observed cross section19
) together with the smallness 

of the magnitude of the asymmetry suggests the importance of the heavy-particle 

stripping reaction15
) with the proton-spin-orbit interaction.19

) Through the above 

analysis, Ed-term and the terms due to the second-order effect of the two-nucleon 

forces are assumed to be small because of no evidence of such interactions in 

the actual nuclear phenomena. 

§ 5. Remarks 

The method presented here can be applied to tb'e study of the spin dependence 

of interactions in other stripping theories,24) since, as seen in the preceding sec­

tions, the method needs only the interactions and their time order in the given 

theoretical frame, from which one can describe the transition by the Feynman 

diagram and then get the geometrical factor of the transition amplitude which 

determines the properties of the invariant amplitudes. Also, it can be shown 

that the present analysis can be applied to another special case where the spin 

of the residual nucleus is one, instead of zero. In this case, the method gives 

definite values of P / A for several kinds of the spin-dependent assumptions. The 

measurement of the proton polarization and the cross-section asymmetry for this 

case will further test the validity of the DWBA theory. Further, the method 

can be used for analyses of other reactions, for example, inelastic scatterings of 

nucleons. In fact, some of the present results can be applied to inelastic scat­

terings of protons accompanied by 0+ -j 1 + nuclear excitations, for which the 

theory gives the ratio of the proton polarization for unpolarized beam to the 

cross-section asymmetry for polarized beam. 

Finally, it should be emphasized that because the disagreement between the 

prediction by the conventional proton-spin-orbit assumption and the experimental 

results for P / A is remarkable, measurements of both the polarization and the 

asymmetry for other target nuclei are valuable. Such measurements will determine 

whyther or not the disagr~~lnent is the general tendency of the stripping reaction, 
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Appendix A 

The relation between Duck's invariant amplitudes8
) and the present ones 

In reference 8), the· six invariant amplitudes ,F are defined by 

M = Fl ((J"' E) + F2-((J" -J~~l), (~', ~,2 + Fg,((J"' k J1ili:_1r,i) 
kikf kik j 

+F4(~ __ ki)_ ~E'kJ_+F5_(CT·kj)~F}._kj) +F6 i_(li·~i.>5kj2, 
kl k j kik j 

(A· I) 

where (J" is the spin matrix, the element of which is defined between the target 

spin state and the proton spin state and E represents the spin of the deuteron. 

Taking the matrix elements of these operators, one can easily show that the invariant 

amplitudes F defined above are related to our invariant amplitudes H as follows: 

and 

V6k,k;F2 =:!b (H2 -H5), 

4 

.V6kjk~ Fg =- vb (H2 + H 5) , 

4 

v6k-,k.F4 = --~-H6 
1. 2 ' 

Appendix B 

The coefficient function A (pp' qk: cos f) 

In the text, the coefficient function A (1)1/ qk: cos f) is defined by 

k 

[Cp(l) X C7" (2)Jl.:_ ~ A(pp'qk: cos f) [Cq(l) xC
iC

_ q (2)]k, 
q=k-h, 

(A·2) 

(B· I) 
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1042 M. TanifuJi and K. Yazaki 

where k=k for p--!-p'--!-k=even and k=k--!-l for p--!-p'--!-k=odd. In order to 

obtain a recurrence formula for A (pp' qk: cos f)), we rewrit~ [C p (1) X C p , (2)]h 

by using the identity, ,(p-l0l0/pO)Cp =[Cp _ 1xC1Jp. Then 

[c (1) xC ,(2)Jh= 1 [[C (1) xC (1)Jp 
.21 .21 (p-l0l0/pO) (p'-1010/p'O) .21-

1 
1 

x [Cp'_1(2) xC1(2)]p']h 

1 " J(2p+ 1) (2p' --!- 1) (2s--!- 1) (2r--!- 1) 
(p-l0l0/pO) (p'-1010/p'O) ~ 

lP-l 1 PI' 
x p'-l 1 p' [[C p _ 1 (1) xCp'-1(2)rx [C1 (1) xC1(2)r]h. 

S l' k 

In the sum over rand s, the .1'=0 (s=k) term can be evaluated as 

__ 1 J (2p =+- 1) (2p' --!- 1) (2k --!- 1) 
(j->-1010/pO) (p' -1010/p'O) 

The other terms are again rewritten to give 

x [[C p _ 1 (1) xCp '_1(2)rx [C 1 (1) xC1(2)y]h 

= L:: J (2p +- Ifc2p' --!- 1) (2P1 + 1) (2P1' --!- 1) (2s --!- 1) (2r --!- 1) 
s, r::f:O 
Pl • .211' 

1 
p - IIp ) 1 j-> - 1 1 j->1 I 

X p' - 1 1 p' f p' - 1 1 P/f 
S l' k S l' k 

(B·2) 

(B·3) 

where P1 = j) or p - 2 and p/ = p' or p' - 2. Equations (B· 3) and (B· 4) can now 

be used to express [Cp(l) xCp,(2)]h in terms of [Cp_1(1) xCp '_1(2)]\ [C p (l) x 

Cp'_2(2)]h, [Cp- 2(1) xCp ,(2)]h and [Cp_ll)xCp '_2(2)]h. Using the orthogonality 

xvlationf3 for 9)-symbols, t9 carry out the sum over $ and 1', we obtain 
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v' (2PI1)(2p' +l)(2k+ 1) f :,--\ ~. : I 
1 I? 0 k 

. X (p -1010/ pO) (p' -1010/i/0) [C p (1) X C p ' (2)]k 

= - ,J1~r cos (1 [C p-I (1) xC p'-I (2)] k 

.,~, v' (2p, + 1) (2p,' + 1) (2k + 1) r :,--\ 11 ::,1 
(PVPI')=!=(P,p') 1 k 0 k 

X CiJ-1010/P I0) (p'-1010/p/0) [C
PI

(l) xCPI,(2)]k. (B·5) 

Since Eq. (B· 5) guarantees the validity of Eq. (B ·1), we can derive the recur­

rence formula ,for A (pp' qk; cos (1) by the use of Eq. (B· 1) on both sides of 

Eq. (B·5) as 

. . I. _. 2(2p-1) (2p'-1)cos (1 
A (p jJ q k. cos (1) - -7(p +=p;-+~k -Tifcp +i7+)iYCp-+~jl ~-k)=(P + p'~=- j; ~i) 

X A (p - 1 p' - 1 q k: cos 0) 

+ j i~} !~/~: ; :)l;k(;~ ~!;-f)i{j~_p~~-tfi-~i~iJ~ f~ T52 

X A (p p' - 2 q k: cos (1) 

+ j(k + P'~-P-+ 2) (k+j? - p +-iY-(k-=j?+-p) -(k-- j/+ p -iY 
--(p-+ p' -tk + 1) -(p +i/+k)(p +-p'-~-k) (p +j} - k -=--tf-

X A (p - 2 p' q k: cos (1) 

- j (p ~~++p~-~-~2+(i;tpP:p1~~(~-~-~~~~~~~~~~+!~ == t)~ 3) 

X A (p - 2 p' - 2 q I?: cos (1) . (B ·.6) 

Equation (B· 6) together with the trivial relation, 

A (q' k - q' qk: cos 0) = Oqq' , 

determines all the coefficient functions, A (pp' qk: cos 0). 

(B· 7) 

In some cases, the following equation which is easily derived from Eq. (B ·1) 

is useful for the evaluation of A (pp' qk: cos (}): 

C pm ((1, 0) (pmp'O/km) =:E A(pP'qk: cos (1)Cqm ((1, 0) (qm k-q O/km).' (B·S) 
q 

For example, A (2211: cos (1), which is necessary to derive Eq. (4·5) in the 

text, can be calculated by 
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1044 M. Tanifuji and K. Yazaki 

C n ((), 0) (2120111) = A (2211: cos ()) C 11 ((), 0) (1110111) (B·9) 

with the result 

. _ 3VS-
A (2211. cos ()) - - ---- cos 0 . 

5 

Appendix C 

The partial wave expansion 

Here we discuss the relation between the invariant amplitude F defined by 

Eq. (3 ·1) in the text and the usual partial wave amplitudes. The invariant 

amplitude F can be expanded in terms of Legendre polynomials as follows:' 

On the other hand, the usual partial wave amplitudes are defined by 

<VB, V,,; kflTlvA, Va; k i> 

=- t~c-~7!c~ c :E vC2Z-:-t i)'(2l;+-i)CLfPf(S2f)Clif~i(J?i) 
V MfMikfki lU'i 

lfPf 
SaAS"B 

.r 

X (lffJ.fSbBVb + vBIJM) T
J 

(liljSaASbB, E). 

By substituting Eq. (C ·1) into Eq. (3 ·1) and using the relation, 

PL(cos (j) [Cr (S2i ) xCs_r (S2f )Js 

= (-y-S~(-y2W(rS-rlll2: Sl) [Cl1 (S2i ) XCl2 (S2f )]S, 
L1l2 

we obtain. 

(C· 1) 

(C·2) 

(C·3) 

x (lOrOlliO) (lO S-r OllfO)F(SaAS"BSr; E, l). (C·4) 

Analogous expreSSIOns 111 terms of the invariant amplitudes G and H can 

be derived in a similar way. 
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