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Abstract We analyze the polarization content of gravi-

tational waves in Horndeski theory. Besides the familiar

plus and cross polarizations in Einstein’s General Relativ-

ity, there is one more polarization state which is the mix-

ture of the transverse breathing and longitudinal polariza-

tions. The additional mode is excited by the massive scalar

field. In the massless limit, the longitudinal polarization dis-

appears, while the breathing one persists. The upper bound

on the graviton mass severely constrains the amplitude of the

longitudinal polarization, which makes its detection highly

unlikely by the ground-based or space-borne interferometers

in the near future. However, pulsar timing arrays might be

able to detect the polarization excited by the massive scalar

field. Since additional polarization states appear in alterna-

tive theories of gravity, the measurement of the polarizations

of gravitational waves can be used to probe the nature of

gravity. In addition to the plus and cross states, the detection

of the breathing polarization means that gravitation is medi-

ated by massless spin 2 and spin 0 fields, and the detection of

both the breathing and longitudinal states means that gravi-

tation is propagated by the massless spin 2 and massive spin

0 fields.

1 Introduction

The detection of gravitational waves by the Laser Interferom-

eter Gravitational-Wave Observatory (LIGO) Scientific Col-

laboration and VIRGO Collaboration further supports Ein-

stein’s General Relativity (GR) and provides a new tool to

study gravitational physics [1–6]. In order to confirm gravi-

tational waves predicted by GR, it is necessary to determine

the polarizations of gravitational waves. This can be done by

the network of ground-based Advanced LIGO (aLIGO) and
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VIRGO, the future space-borne Laser Interferometer Space

Antenna (LISA) [7] and TianQin [8], and pulsar timing arrays

(e.g., the International Pulsar Timing Array and the European

Pulsar Timing Array [9,10]). In fact, in the recent GW170814

[4], the Advanced VIRGO detector joined the two aLIGO

detectors, so they were able to test the polarization content

of gravitational waves for the first time. The result showed

that the pure tensor polarizations were favored against pure

vector and pure scalar polarizations [4,11]. Additionally,

GW170817 is the first observation of a binary neutron star

inspiral, and its electromagnetic counterpart, GRB 170817A,

was later observed by the Fermi Gamma-ray Burst Moni-

tor and the International Gamma-Ray Astrophysics Labora-

tory [5,12,13]. The new era of multi-messenger astrophysics

comes.

In GR, the gravitational wave propagates at the speed of

light and it has two polarization states, the plus and cross

modes. In alternative metric theories of gravity, there may

exist up to six polarizations, so the detection of the polar-

izations of gravitational waves can be used to distinguish

different theories of gravity and probe the nature of gravity

[14,15]. For null plane gravitational waves, the six polariza-

tions are classified by the little group E(2) of the Lorentz

group with the help of the six independent Newman-Penrose

(NP) variables Ψ2, Ψ3, Ψ4 and Φ22 [16–18]. In particular,

the complex variable Ψ4 denotes the familiar plus and cross

modes in GR, the variable Φ22 denotes the transverse breath-

ing polarization, the complex variable Ψ3 corresponds to the

vector-x and vector-y modes, and the variable Ψ2 corresponds

to the longitudinal mode. Under the E(2) transformation, all

other modes can be generated from Ψ2, so if Ψ2 �= 0, then we

may see all six modes in some coordinates. The E(2) clas-

sification tells us the general polarization states, but it fails

to tell us the correspondence between the polarizations and

gravitational theories. In Brans-Dicke theory [19], in addi-

tion to the plus and cross modes Ψ4 of the massless gravitons,

there exists another breathing mode Φ22 due to the massless

Brans-Dicke scalar field [17].
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Brans-Dicke theory is a simple extension to GR. In Brans-

Dicke theory, gravitational interaction is mediated by both

the metric tensor and the Brans-Dicke scalar field, and the

Brans-Dicke field plays the role of Newton’s gravitational

constant. In more general scalar-tensor theories of gravity, the

scalar field φ has self-interaction and it is usually massive. In

1974, Horndeski found the most general scalar-tensor theory

of gravity whose action has higher derivatives of gμν and

φ, but the equations of motion are at most the second order

[20]. Even though there are higher derivative terms, there is

no Ostrogradsky instability [21], so there are three physical

degrees of freedom in Horndeski theory, and we expect that

there is an extra polarization state in addition to the plus and

cross modes. If the scalar field is massless, then the additional

polarization state should be the breathing mode Φ22.

When the interaction between the quantized matter fields

and the classical gravitational field is considered, the quadratic

terms Rμναβ Rμναβ and R2 are needed as counterterms to

remove the singularities in the energy-momentum tensor

[22]. Although the quadratic gravitational theory is renor-

malizable [23], the theory has ghost due to the presence of

higher derivatives [23,24]. However, the general nonlinear

f (R) gravity [25] is free of ghost and it is equivalent to

a scalar-tensor theory of gravity [26,27]. The effective mass

squared of the equivalent scalar field is f ′(0)/3 f ′′(0), and the

massive scalar field excites both the longitudinal and trans-

verse breathing modes [28–30]. The polarizations of gravi-

tational waves in f (R) gravity were previously discussed in

[31–37]. The authors in [33,34] calculated the NP variables

and found that Ψ2, Ψ4 and Φ22 are nonvanishing. They then

claimed that there are at least four polarization states in f (R)

gravity. Recently, it was pointed out that the direct applica-

tion of the framework of Eardley et. al. (ELLWW frame-

work) [17,18] derived for the null plane gravitational waves

to the massive field is not correct, and the polarization state

of the equivalent massive field in f (R) gravity is the mixture

of the longitudinal and the transverse breathing modes [37].

Furthermore, the longitudinal polarization is independent of

the effective mass of the equivalent scalar field, so it cannot

be used to understand how the polarization reduces to the

transverse breathing mode in the massless limit.

Since the polarizations of gravitational waves in alterna-

tive theories of gravity are not known in general, so we need

to study it [38–40]. In this paper, the focus is on the polariza-

tions of gravitational waves in the most general scalar-tensor

theory, Horndeski theory. It is assumed that matter minimally

couples to the metric, so that test particles follow geodesics.

The gravitational wave solutions are obtained from the lin-

earized equations of motion around the flat spacetime back-

ground, and the geodesic deviation equations are used to

reveal the polarizations of the massive scalar field. The anal-

ysis shows that in Horndeski theory, the massive scalar field

excites both breathing and longitudinal polarizations. The

effect of the longitudinal polarization on the geodesic devi-

ation depends on the mass and it is much smaller than that

of the transverse polarization in the aLIGO and LISA fre-

quency bands. In the massless limit, the longitudinal mode

disappears, while the breathing mode persists.

The paper is organized as follows. Section 2 briefly

reviews ELLWW framework for classifying the polarizations

of null gravitational waves. In Sect. 3, the linearized equa-

tions of motion and the plane gravitational wave solution

are obtained. In Sect. 3.1, the polarization states of gravita-

tional waves in Horndeski theory are discussed by examining

the geodesic deviation equations, and Sect. 3.2 discusses the

failure of ELLWW framework for the massive Horndeski

theory. Section 4 discusses the possible experimental tests of

the extra polarizations. In particular, Sect. 4.1 mainly calcu-

lates the interferometer response functions for aLIGO, and

Section 4.2 determines the cross-correlation functions for the

longitudinal and transverse breathing polarizations. Finally,

this work is briefly summarized in Sect. 5. In this work, we

use the natural units and the speed of light in vacuum c = 1.

2 Review of ELLWW Framework

Eardley et. al. devised a model-independent framework [17,

18] to classify the null gravitational waves in a generic metric

theory of gravity based on the Newman-Penrose formalism

[16]. The quasiorthonormal, null tetrad basis E
μ
a = (kμ, lμ,

mμ, m̄μ) is chosen to be

kμ = 1√
2
(1, 0, 0, 1), (1)

lμ = 1√
2
(1, 0, 0,−1), (2)

mμ = 1√
2
(0, 1, i, 0), (3)

m̄μ = 1√
2
(0, 1,−i, 0), (4)

where bar means the complex conjugation. They satisfy the

relation −kμlμ = mμm̄μ = 1 and all other inner prod-

ucts vanish. Since the null gravitational wave propagates in

the +z direction, the Riemann tensor is a function of the

retarded time u = t − z, which implies that Rabcd,p = 0,

where (a, b, c, d) range over (k, l, m, m̄) and (p, q, r, · · · )
range over (k, m, m̄). The linearized Bianchi identity and the

symmetry properties of Rabcd imply that

Rab[pq;l] = Rab[pq,l] = 1

3
Rabpq,l = 0. (5)

So Rabpq is a trivial, nonwavelike constant, and one can set

Rabpq = Rpqab = 0. One could also verify that Rkk =
Rkm = Rkm̄ = Rmm = Rmm̄ = Rm̄m̄ = 0. The nonvanishing
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components of the Riemann tensor are Rplql . Since Rplql is

symmetric in exchanging p and q, there are six independent

nonvanishing components and they can be expressed in terms

of the following four NP variables,

Ψ2 = − 1

6
Rklkl ,

Ψ3 = − 1

2
Rklm̄l ,

Ψ4 = − Rm̄lm̄l ,

Φ22 = − Rmlm̄l ,

(6)

and the remaining nonzero NP variables are Φ11 = 3Ψ2/2,

Φ12 = Φ̄21 = Ψ̄3 and Λ = Ψ2/2.1 Ψ2 and Φ22 are real

while Ψ3 and Ψ4 are complex. So there are exactly six real

independent variables, and they can be used to replace the

six components of the electric part of the Riemann tensor.

These four NP variables {Ψ2, Ψ3, Ψ4, Φ22} can be clas-

sified according to their transformation properties under the

group E(2), the little group of the Lorentz group for massless

particles. E(2) consists of local transformations preserving

the null vector kμ, i.e., under E(2) transformation,

Ψ ′
2 = Ψ2,

Ψ ′
3 = e−iϑ (Ψ3 + 3ρ̄Ψ2),

Ψ ′
4 = e−i2ϑ (Ψ4 + 4ρ̄Ψ3 + 6ρ̄2Ψ2),

Φ ′
22 = Φ22 + 2ρΨ3 + 2ρ̄Ψ̄3 + 6ρρ̄Ψ2,

(7)

where ϑ ∈ [0, 2π) represents a rotation around the z direc-

tion and the complex number ρ denotes a translation in the

Euclidean 2-plane. From these transformations, one finds

out that only Ψ2 is invariant and the amplitudes of the four

NP variables are not observer-independent. However, the

absence (zero amplitude) of some of the four NP variables is

observer-independent. Based on this, six classes are defined

as follows [17].

Class II6 Ψ2 �= 0. All observers measure the same nonzero

amplitude of the Ψ2 mode, but the presence or

absence of all other modes is observer-dependent.

Class III5 Ψ2 = 0, Ψ3 �= 0. All observers measure the

absence of the Ψ2 mode and the presence of the

Ψ3 mode, but the presence or absence of Ψ4 and

Φ22 is observer-dependent.

Class N3 Ψ2 = Ψ3 = 0, Ψ4 �= 0 �= Φ22. The presence or

absence of all modes is observer-independent.

Class N2 Ψ2 = Ψ3 = Φ22 = 0, Ψ4 �= 0. The presence or

absence of all modes is observer-independent.

1 Note that in Ref. [17], Λ = −Ψ2/2 because Eardley et. al. chose a

different sign convention relating NP variables to the components of

the Riemann tensor.

Class O1 Ψ2 = Ψ3 = Ψ4 = 0, Φ22 �= 0. The presence or

absence of all modes is observer-independent.

Class O0 Ψ2 = Ψ3 = Ψ4 = Φ22 = 0. No wave is observed.

Apparently, Class II6 is the most general one. If Ψ2 �= 0, then

we may see all six modes in some coordinates. By setting

successive variables {Ψ2, Ψ3, Ψ4, Φ22} to zero, one obtains

less and less general classes, and eventually, Class O0 which

is trivial and represents no wave. These NP variables can also

be grouped according to their helicities. By setting ρ = 0 in

Eq. (7), one sees that Ψ2 and Φ22 have helicity 0, Ψ3 has

helicity 1 and Ψ4 has helicity 2.

In order to establish the relation between {Ψ2, Ψ3, Ψ4, Φ22}
and the polarizations of the gravitational wave, one needs

to examine the geodesic deviation equation in the Cartesian

coordinates [17],

ẍ j = d2x j

dt2
= −Rt j tk xk, (8)

where x j represents the deviation vector between two nearby

geodesics and j, k = 1, 2, 3. The so-called electric part Rt j tk

of the Riemann tensor is given by the following matrix,

Rt j tk =

⎛

⎝

− 1
2
(ℜΨ4 + Φ22)

1
2
ℑΨ4 −2ℜΨ3

1
2
ℑΨ4

1
2
(ℜΨ4 − Φ22) 2ℑΨ3

−2ℜΨ3 2ℑΨ3 −6Ψ2

⎞

⎠ ,

(9)

where ℜ and ℑ stand for the real and imaginary parts. So

these NP variables can be used to label the polarizations of

null gravitational waves. More specifically, ℜΨ4 and ℑΨ4

represent the plus and the cross polarizations, respectively;

Φ22 represents the transverse breathing polarization, and Ψ2

represents the longitudinal polarization; finally, ℜΨ3 and

ℑΨ3 represent vector-x and vector-y polarizations, respec-

tively. Figure 1 in Ref. [17] displays how these polariza-

tions deform a sphere of test particles, which will not be

reproduced here. In terms of Rt j tk , the plus mode is spec-

ified by P̂+ = −Rt xt x + Rt yty , the cross mode is speci-

fied by P̂× = Rt xt y , the transverse breathing mode is rep-

resented by P̂b = Rt xt x + Rt yty , the vector-x mode is rep-

resented by P̂xz = Rt xt z , the vector-y mode is represented

by P̂yz = Rt yt z , and the longitudinal mode is represented by

P̂l = Rt zt z . For null gravitational waves, the four NP vari-

ables {Ψ2, Ψ3, Ψ4, Φ22} with six independent components

are related with the six electric components of Riemann

tensor, and they provide the six independent polarizations

{P̂+, P̂×, P̂b, P̂xz, P̂yz, P̂l}. According to the E(2) classifi-

cation, the longitudinal mode which corresponds to nonzero

Ψ2 belongs to the most general class �6. The presence of

the longitudinal mode means that all six polarizations are

123



378 Page 4 of 15 Eur. Phys. J. C (2018) 78 :378

present in some coordinate systems. Although we obtain the

six polarizations according to the E(2) classification for gen-

eral metric theory of gravity, the polarizations of gravitational

waves in alternative theories of gravity are unknown in gen-

eral, so we need to discuss them case by case.

It is now ready to apply this framework to discuss some

specific metric theories of gravity. For example, GR predicts

the existence of the plus and the cross polarizations, and it

can be easily checked that only Ψ4 �= 0. For Brans-Dicke

theory [19], there is one more polarization, the transverse

breathing polarization, excited by the massless scalar field, so

in addition to Ψ4 �= 0, Φ22 is also nonzero [17]. In particular,

Ψ2 = 0, so the longitudinal polarization is absent in Brans-

Dicke theory. So for Brans-Dicke theory,

RBD
t j tk =

⎛

⎝

− 1
2
(ℜΨ4 + Φ22)

1
2
ℑΨ4 0

1
2
ℑΨ4

1
2
(ℜΨ4 − Φ22) 0

0 0 0

⎞

⎠ . (10)

In the next section, the plane gravitational wave solution to

the linearized equation of motion will be obtained for Horn-

deski theory, and the polarization content will be determined.

It will show that because of the massive scalar field, the elec-

tric part of the Riemann tensor takes a different form from

Eq. (10). Its components are expressed in terms of a different

set of NP variables.

3 Gravitational wave polarizations in Horndeski theory

In this section, the polarization content of the plane gravi-

tational wave in Horndeski theory will be determined. The

action of Horndeski theory is [20],

S =
∫

d4x
√

−g(L2 + L3 + L4 + L5), (11)

where

L2 = K (φ, X), L3 = −G3(φ, X)�φ,

L4 = G4(φ, X)R + G4,X

[

(�φ)2 − (∇μ∇νφ)(∇μ∇νφ)
]

,

L5 = G5(φ, X)Gμν∇μ∇νφ − 1

6
G5,X [(�φ)3

−3(�φ)(∇μ∇νφ)(∇μ∇νφ)

+2(∇μ∇αφ)(∇α∇βφ)(∇β∇μφ)].

Here, X = −∇μφ∇μφ/2, �φ = ∇μ∇μφ, the functions

K , G3, G4 and G5 are arbitrary functions of φ and X , and

G j,X (φ, X) = ∂G j (φ, X)/∂ X with j = 4, 5. Horndeski

theory reduces to several interesting theories as its subclasses

by suitable choices of these functions. For example, one

obtains GR with K = G3 = G5 = 0 and G4 = 1/(16πG).

For Brans-Dicke theory, G3 = G5 = 0, K = 2ωX/φ and

G4 = φ. And finally, to reproduce f (R) gravity, one can set

G3 = G5 = 0, K = f (φ) − φ f ′(φ) and G4 = f ′(φ) with

f ′(φ) = d f (φ)/dφ.

The variational principle gives rise to the equations of

motion. The full set of equations can be found in Ref. [41],

for instance. For the purpose of this work, one expands the

metric tensor field gμν and φ in the following way,

gμν = ημν + hμν, (12)

φ = φ0 + ϕ, (13)

where φ0 is a constant. The equations of motion are expanded

up to the linear order in hμν and ϕ,

−1

2
K (0) + G4(0)G(1)

μν − G4,φ(0)(ϕμν − ημν�ϕ) = 0,

(14)

K,φ(0) + [K,X (0) − 2G3,φ(0)]�ϕ + K,φφ(0)ϕ

+G4,φ(0)R(1) = 0, (15)

where � = ∂μ∂μ from now on, G4(0) = G4(φ0, 0), K (0) =
K (φ0, 0), and G

(1)
μν and R(1) are the linearized Einstein tensor

and Ricci scalar, respectively. In addition, the symbol K,X (0)

means the value of K,X = ∂K/∂ X at φ = φ0 and X = X0 =
0, and the remaining symbols can be understood similarly.

In order to obtain the gravitational wave solutions around

the flat background, one requires that gμν = ημν and φ = φ0

be the solution to Eqs. (14) and (15), which implies that

K (0) = 0, K,φ(0) = 0. (16)

Substituting this result into Eqs. (14) and (15), and after some

algebraic manipulations, one gets,

(� − m2)ϕ = 0, (17)

G(1)
μν − G4,φ(0)

G4(0)
(∂μ∂νϕ − ημν�ϕ) = 0, (18)

where G4(0) �= 0 and the mass squared of the scalar field is

m2 = − K,φφ(0)

K,X (0) − 2G3,φ(0) + 3G2
4,φ(0)/G4(0)

. (19)

For Brans-Dicke theory, K,φφ(0) = 0, so m = 0. For the

f (R) theory, one gets m2 = f ′(0)/3 f ′′(0), which agrees

with the previous work [37].

One can decouple Eq. (18) from Eq. (17) by reexpressing

them in terms of the auxiliary tensor field h̃μν defined by,

h̃μν = hμν − 1

2
ημνη

αβhαβ − ημνσϕ, (20)

with σ = G4,φ(0)/G4(0). The original metric tensor pertur-

bation can be obtained by inverting the above relation, i.e.,

hμν = h̃μν − 1

2
ημνη

αβ h̃αβ − ημνσϕ. (21)
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Therefore, Eq. (18) becomes

∂ρ∂(μh̃
ρ

ν)
− 1

2
�h̃μν − 1

2
ημν∂ρ∂σ h̃ρσ = 0, (22)

The equations of motion remain invariant under the gauge

transformation,

ϕ
′ = ϕ, h̃′

μν = h̃μν − ∂μξν − ∂νξμ + ημν∂ρξρ, (23)

with x ′μ = xμ + ξμ. Therefore, one can choose the trans-

verse traceless gauge ∂ν h̃μν = 0, ημν h̃μν = 0 by using

the freedom of coordinate transformation, and the linearized

Eqs. (17) and (18) become the wave equations

(� − m2)ϕ = 0, (24)

�h̃μν = 0. (25)

By the analogue of h̄μν = hμν − ημνη
ρσ hρσ in GR, it is

easy to see that the field h̃μν represents the familiar massless

graviton and it has two polarization states: the plus and cross

polarizations. The scalar field ϕ is massive in general, and it

decouples from the massless tensor field h̃μν . Suppose the

massless and the massive modes both propagate in the +z

direction with the wave vectors,

kμ = (Ω, 0, 0,Ω), qμ = (qt , 0, 0, qz), (26)

respectively, where the dispersion relation for the scalar field

is q2
t −q2

z = m2. The propagation speed of the massive scalar

field is v =
√

q2
t − m2/qt . The plane wave solutions to Eqs.

(24) and (25) take the following form

h̃μν = eμνe−ik·x , (27)

ϕ = ϕ0e−iq·x , (28)

where ϕ0 and eμν are the amplitudes of the waves with

kνeνμ = 0 and ημνeμν = 0.

3.1 Polarizations

The polarizations of gravitational wave can be extracted by

studying the relative acceleration of two nearby test particles

moving in the field of the gravitational wave. One assumes

that the matter fields minimally couple with the metric tensor

gμν , while there are no direct interactions between the matter

fields and the scalar field φ. Therefore, freely falling test

particles follow geodesics, and the relative acceleration is

given by the linearized geodesic deviation equations Eq. (8).

The polarizations of gravitational wave can be understood

by placing a sphere of test particles in the spacetime, and

studying how this sphere deforms. With the solutions (27)

and (28), one calculates the electric part Rt j tk for the plane

wave solution (27) and (28). Written as a 3 × 3 matrix, it is

given by

Rt j tk =
⎛

⎜

⎜

⎜

⎝

− 1
2
q2

t σϕ + 1
2
Ω2h̃xx

1
2
Ω2h̃xy 0

1
2
Ω2h̃xy − 1

2
q2

t σϕ − 1
2
Ω2h̃xx 0

0 0 − 1
2

m2σϕ

⎞

⎟

⎟

⎟

⎠

.

(29)

From this expression, one can easily recognize the familiar

plus and cross polarizations by setting ϕ = 0, which leads

to a symmetric, traceless matrix with nonvanishing compo-

nents Rt xt x = −Rt yty = Ω2h̃xx/2 and Rt xt y = Rt yt x =
Ω2h̃xy/2. Indeed, h̃μν generates the plus and the cross polar-

izations.

To study the polarizations caused by the scalar field, one

sets h̃μν = 0. If the scalar field is massless (m = 0) as in

Brans-Dicke theory, one finds out that Rt zt z = 0, and the

scalar field excites only the transverse breathing polarization

with Rt xt x = Rt yty . If the scalar field is massive, one can

perform a Lorentz boost such that qz = 0, i.e., one works in

the rest frame of the scalar field. In the rest frame, from Eq.

(29), we find that q2
t = m2 and Rt xt x = Rt yty = Rt zt z �= 0.

the geodesic deviation equations are,

ẍ j = 1

2
m2σϕx j , j = 1, 2, 3. (30)

Suppose the initial deviation vector between two geodesics

is x
j
0 = (x0, y0, z0), and one integrates the above equations

twice to obtain the changes in the deviation vector,

δx j ≈ −1

2
σϕx

j
0 . (31)

From the above equation, one finds that if σ is independent of

the mass m, so are δx j . However, for f (R) gravity, m2σ =
1/3, so δx j is proportional to 1/m2 [37]. Eq. (31) implies that

the sphere of test particles will oscillate isotropically in all

directions, so the massive scalar field excites the longitudinal

mode in addition to the breathing mode. Note that in the rest

frame of a massive field (such as ϕ) one cannot take the

massless limit, as there is no rest frame for a massless field

with the speed of light as its propagation speed. However,

the massless limit can be taken in Eq. (29) if the rest frame

condition qt = m is not imposed a prior. In the massless

limit, Rt zt z = 0 and Rt xt x = Rt yty �= 0.

However, in the actual observation, it is highly unlikely

that the test particles, such the mirrors in aLIGO/VIRGO, are

at the rest frame of the (massive) scalar gravitational wave.

So one should also study how the scalar gravitational wave
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deforms the sphere when qz �= 0. In this case, the deviation

vector is given by

δx ≈ −1

2
σϕx0, (32)

δy ≈ −1

2
σϕy0, (33)

δz ≈ −1

2

m2

q2
t

σϕz0. (34)

When the gravitational wave passes by, this sphere deforms

as shown in Figs. 1 and 2 for the massive and massless scalars,

respectively. In each figure, Panel (a) shows how the sphere

deforms in the 3 dimensional space in which the semitrans-

parent ellipsoids are the results of deforming the spheres, and

Panels (b) and (c) show the top view and the side view with

the dashed ellipses representing the results of the deforma-

tion of the circles, respectively. Because of the cylindrical

symmetry around the z axis, the x Oy cross section is not

displayed in each figure. In both figures, one finds out that

Panels (b) behave the same, as Eqs. (32) and (33) are inde-

pendent of the mass. So Panels (b) represent the transverse

breathing polarization, as the circle (the intersection of the

original sphere with the x Oy plane) deforms to a circle of a

different size. From Panel (c) in Fig. 1, one finds out that the z

coordinates of the test particles change (except the test parti-

cles on x Oy plane), and the change in z is smaller than that in

x (or y). This panel represents the longitudinal polarization.

In contrast, Panel (c) in Fig. 2 shows that the z coordinates

of the test particles remain the same, so in the massless case,

there does not exist the longitudinal polarization. Note that in

the above discussion, we distinguish the breathing polariza-

tion [described by Eqs. (32) and (33)] from the longitudinal

one [described by Eq. (34)] in the massive case, but since

they are excited by the same field ϕ, they represent a sin-

gle degree of freedom. We thus call the polarization state

excited by the scalar a mix polarization of the breathing and

the longitudinal polarizations.

In summary, the polarizations of gravitational waves in

Horndeski theory include the plus and cross polarizations

induced by the spin 2 field h̃μν . The scalar field excites both

the transverse breathing and longitudinal polarizations if it

is massive. However, if it is massless, the scalar field excites

merely the transverse breathing polarization. In terms of the

basis introduced for the massless fields in [17], there are three

polarizations: the plus state P̂+, the cross state P̂× and the

mix state of P̂b and P̂l . In the massless limit, the mix state

reduces to the pure state P̂b. Note that the vector modes P̂xz

and P̂yz are absent in Horndeski theory, this seems to be in

conflict with the E(2) classification because the longitudinal

mode P̂l is present, so we need to discuss the application of

E(2) classification.

x

y Top view

(b)

(a)

x

z Side view

(c)

Fig. 1 The transverse breathing and the longitudinal polarizations

excited by the massive scalar field

3.2 Newman-Penrose variables

Now we calculate the NP variables with the plane wave solu-

tion (27) and (28), we get

Ψ2 = 1

12
(Rt xt x + Rt yty − 2Rt zt z

+ 2Rxyxy − Rxzxz − Ryzyz) + 1

2
i Rt zxy

= 0,

(35)
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x

y Top view

(b)

(a)

x

z Side view

(c)

Fig. 2 The transverse breathing polarization excited by the massless

scalar field

and the nonvanishing ones are

Ψ4 = −Ω2(h̃xx − i h̃xy), (36)

Φ22 =
(qt +

√

q2
t − m2)2

4
σϕ, (37)

Φ00 =
(qt −

√

q2
t − m2)2

(qt +
√

q2
t − m2)2

Φ22, (38)

Φ11 = Λ = m2

2(qt +
√

q2
t − m2)2

Φ22. (39)

Note that Ψ2 = −Rt zt z/6 for null gravitational waves only,

in general case we should use Eq. (35). The naive applica-

tion of the ELLWW framework to the massive case gives

the conclusion that Horndeski gravity has the plus, cross and

transverse breathing polarizations, because Ψ2 = Ψ3 = 0.

Moreover, Φ00 is absent and both Φ11 and Λ are proportional

to Ψ2 in the ELLWW framework, which is in contradiction

with Eqs. (38) and (39). These indicate the failure of this

framework for the massive Horndeski theory. In particular,

the absence of Ψ2 means that there would be no longitu-

dinal polarization if the ELLWW framework were correct.

However, the previous discussion in Sect. 3.1 clearly shows

the existence of the longitudinal polarization. Therefore, the

ELLWW framework cannot be applied to a theory which

predicts the existence of massive gravitational waves. The

massive scalar field excites both the breathing and longitudi-

nal polarizations.

In fact, Rt j tk can be rewritten in terms of NP variables as

a matrix displayed below,

Rt j tk =

⎛

⎝

ϒ − 1
2
ℜΨ4

1
2
ℑΨ4 0

1
2
ℑΨ4 ϒ + 1

2
ℜΨ4 0

0 0 −2(Λ + Φ11)

⎞

⎠ , (40)

with ϒ = −2Λ− Φ00+Φ22
2

. It is rather different from Eq. (10).

From the above expression, it is clear that some linear com-

binations of Φ00, Φ11, Φ22 and Λ correspond to the trans-

verse breathing and the longitudinal polarizations. In partic-

ular, ϒ = −2Λ − (Φ00 + Φ22)/2 represents the transverse

breathing polarization, while −2(Λ + Φ11) represents the

longitudinal polarization. The plus and cross polarizations

are still represented by ℜΨ4 and ℑΨ4, respectively. In the

massless limit, Φ00 = Φ11 = Λ = 0 according to Eqs. (38)

and (39), so Eq. (40) takes the same form as Eq. (10) since

the ELLWW framework applies in this case. Note that when

the scalar field is massive, Eq. (40) actually takes the same

form as Eq. (29) by setting qz = 0 and qt = m in Eqs. (36),

(37), (38) and (39).

These discussion tells us that the detection of polarizations

probes the nature of gravity. If only the plus and cross modes

are detected, then gravitation is mediated by massless spin

2 field and GR is confirmed. The detection of the breath-

ing mode in addition to the plus and cross modes means

that gravitation is mediated by massless spin 2 and spin 0

fields. If the breathing, plus, cross and longitudinal modes

are detected, then gravitation is mediated by massless spin 2

and massive spin 0 fields. For the discussion on the detection

of polarizations, please see Refs. [42,43].
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4 Experimental Tests

4.1 Interferometers

In this subsection, the response functions of the interferom-

eters will be computed for the transverse breathing and lon-

gitudinal polarizations following the ideas in Refs. [28,44].

The detection of GW170104 placed an upper bound on the

mass mg of the graviton [3],

mg < mb = 7.7 × 10−23 eV/c2. (41)

In obtaining this bound,the assumed dispersion relation E2 =
p2c2 +m2

g , leads to dephasing δΨ (mg) of the waves relative

to the phase evolution in GR, which is given by the template

of the waveform predicted by GR. The constraint on δΨ (mg)

from the observations was used to derive the bound on mg .

Since there are only the plus and cross polarizations in GR,

this bound might not be simply applied to the scalar mode.

Whether Eq. (41) can be applied to the scalar graviton is

beyond the scope of the present work. Here we assume that

the upper bound mb is applicable to the scalar field and study

how the upper bound affects the detector responses to the

scalar mode. This bound potentially places severe constraint

on the effect of the longitudinal polarization on the geodesic

deviation in the massive case in the high frequency band,

while the transverse breathing mode can be much stronger as

long as the amplitude of scalar field ϕ is large enough. There-

fore, although there exits the longitudinal mode in the mas-

sive scalar-tensor theory, the detection of its effect is likely

very difficult in the high frequency band. However, in f (R)

gravity, the displacement in the longitudinal direction is inde-

pendent of the mass and the displacements in the transverse

directions become larger for smaller mass, so this mix mode

can place strong constraints on f (R) gravity.

In the interferometer, photons emanate from the beam

splitter, are bounced back by the mirror and received by the

beam splitter again. The round-trip propagation time when

the gravitational wave is present is different from that when

the gravitational wave is absent. To simplify the calculation

of the response functions, the beam splitter is placed at the

origin of the coordinate system. Then the change in the round-

trip propagation time comes from two effects: the change in

the relative distance between the beam splitter and the mir-

ror due to the geodesic deviation, and the distributed grav-

itational redshift suffered by the photon in the field of the

gravitational wave [44].

First, consider the response function for the longitudinal

polarization. To this end, project the light in the z direction

and place the mirror at z = L . The response function is thus

given by,

|Yb|

|Yl|

10–7 10–5 0.001 0.100 10 1000

10–20

10–15

10–10

10–5

1

f(Hz)

|Y
(f

)|

Fig. 3 The absolute values of the longitudinal and transverse response

functions |Yl ( f )| and |Yb( f )| as functions of f for aLIGO (L = 4 km)

to a scalar gravitational wave with the mass m = mb (dashed red curve).

The solid curve denotes |Yb( f )| and the dashed curve denotes |Yl ( f )|

Yl( f ) = m2

16π3 f 3

{

4π f ei2π f L(v+1)

− e4iπ f L

(v − 1)3 L

[

ei2π f L(v−1)[2π f L (v − 1)

+ i2] + 2π f L (v − 1) − i2
]

+ 1

(v + 1) 3L

[

2π f L (v + 1) + ei2π f L(v+1)

× [2π f L (v + 1) + 2i] − i2
]}

,

(42)

where f = qt/(2π) is the frequency of gravitational waves

and the propagation speed v varies with the frequency. To

obtain the response function for the transverse mode, project

the light in the x direction and place the mirror at x = L .

The response function is,

Yb( f ) = ei2π f L + ei2π f L [2π f L − sin(2π f L)]
2π f L

, (43)

which is independent of the mass m of the scalar field.

Figure 3 shows the absolute values of the longitudinal and

transverse response functions for aLIGO (L = 4 km) to a

scalar gravitational wave with the mass m = mb. Comparing

the response functions shows that the transverse response is

much larger than that of the longitudinal mode in high fre-

quencies, so the detection of the longitudinal mode becomes

very difficult in the high frequency band.

One can also understand the difficulty to use the interfer-

ometers to detect the longitudinal polarizations in the follow-

ing way. Table 1 lists the magnitudes of |ẍ j/x
j
0 | normalized

with σϕ for the longitudinal and the transverse modes assum-
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Table 1 The dependence of the magnitudes of |ẍ j /x
j
0 | for the longi-

tudinal and transverse modes on the frequencies of gravitational waves

in units of Hz2σϕ assuming the scalar mass is mb

100 Hz 10−3 Hz 10−7 Hz

Longitudinal 2.81×10−15 2.81×10−15 2.81×10−15

Transverse 1.97 × 105 1.97×10−5 1.97×10−13

ing the graviton mass is also mb at three different frequencies:

100 Hz, 10−3 Hz, and 10−7 Hz. The first frequency lies in

the frequency band of the ground-based detector like aLIGO

and VIRGO, the second frequency lies in the frequency band

of space-borne observatory like LISA, and the last frequency

lies in the sensitive band of pulsar timing arrays [45].

Table 1 shows that the effect of the longitudinal mode

on the geodesic deviation is smaller than that of the trans-

verse mode by 19 to 9 orders of magnitude at higher frequen-

cies. But at the lower frequencies, i.e., at 10−7 Hz, the two

modes have similar amplitudes. Therefore, aLIGO/VIRGO

and LISA might find it difficult to detect the longitudinal

mode, but pulsar time arrays should be able to detect the mix

polarization state with both the longitudinal and transverse

modes. The results are consistent with those for the massive

graviton in a specific bimetric theory [46].

4.2 Pulsar timing arrays

A pulsar is a rotating neutron star or a white dwarf with a very

strong magnetic field. It emits a beam of the electromagnetic

radiation. When the beam points towards the Earth, the radi-

ation can be observed, which explains the pulsed appearance

of the radiation. Millisecond pulsars can be used as stable

clocks [47]. When there is no gravitational wave, one can

observe the pulses at a steady rate. The presence of the grav-

itational wave will alter this rate, because it will affect the

propagation time of the radiation. This will lead to a change

in the time-of-arrival (TOA), called time residual R(t). Time

residuals caused by the gravitational wave will be corre-

lated between pulsars, and the cross-correlation function is

C(θ) = 〈Ra(t)Rb(t)〉, where θ is the angular separation of

pulsars a and b, and the brackets 〈 〉 imply the ensemble aver-

age over the stochastic background. This enables the detec-

tion of gravitational waves and the probe of the polarizations.

The effects of the gravitational wave in GR on the time

residuals were first considered in Refs. [48–50]. Hellings and

Downs [51] proposed a method to detect the effects by using

the cross-correlation of the time derivative of the time resid-

uals between pulsars, while Jenet et. al. [52] directly worked

with the time residuals instead of the time derivative. The

later work was generalized to massless gravitational waves

in alternative metric theories of gravity in Ref. [53], and fur-

ther to massive gravitational waves in Refs. [54,55]. More

x

z

l

qz

Earth

Pulsar

n

Fig. 4 The gravitational wave is propagating in the direction of q̂z ,

and the photon is traveling in −n̂ direction at the leading order. l̂ is

perpendicular to q̂z and in the same plane determined by q̂z and n̂. The

angle between n̂ and l̂ is β

works have been done, for example, Refs. [56–59] and ref-

erences therein.

In their treatments, it is assumed that all the polarization

modes have the same mass, either zero or not. If all polar-

izations propagate in the +z direction at the speed of light,

there will be three linearly independent Killing vector fields,

χ
μ
1 = δ

μ
1 , χ

μ
2 = δ

μ
2 , and χ

μ
3 = δ

μ
0 + δ

μ
3 . Using the con-

servation of pμχ
μ
j ( j = 1, 2, 3) for photon’s 4-velocity pμ

satisfying pν∇ν pμ = 0, one obtains the change in the locally

observed frequency of the radiation and integrates to obtain

the time residual R(t) [48,60,61]. One could also directly

integrate the time component of the photon geodesic equa-

tion to obtain the change in the frequency [54,62]. The later

method can be applied to massive case. In the present work,

a different method will be used by simply calculating the

4-velocities of the photon and observers on the Earth and

the pulsar. Since different polarizations propagate at differ-

ent speeds, there are not enough linearly independent Killing

vector fields. The first method cannot be used any way.

In order to calculate the time residual R(t) caused by the

gravitational wave solution (27) and (28), one sets up a coor-

dinate system shown in Fig. 4, so that when there is no gravi-

tational wave, the Earth is at the origin, and the distant pulsar

is assumed to be stationary in the coordinate system and one

can always orient the coordinate system such that the pul-

sar is located at xp = (L cos β, 0, L sin β). q̂z is the unit

vector pointing to the direction of the gravitational wave,

n̂ is the unit vector connecting the Earth to the pulsar, and

l̂ = q̂z ∧ (n̂ ∧ q̂z)/ cos β = [n̂ − q̂z(n̂ · q̂z)]/ cos β is the

unit vector parallel to the y axis. In the leading order, i.e.,

in the absence of gravitational waves, the 4-velocity of the

photon is uμ = γ0(1,− cos β, 0,− sin β) with γ0 = dt/dλ

a constant and λ an arbitrary affine parameter. The perturbed

photon 4-velocity is uμ = uμ +vμ, and since gμνuμuν = 0,

one obtains
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v0 = γ0

2
h̃11 cos2 β − v1 cos β − v3 sin β. (44)

Note that one chooses the gauge such that e11 = −e22, e12 =
e21 are the only nonvanishing amplitudes for h̃μν , which can

always be made. The photon geodesic equation is

0 =duμ

dλ
+ Γ μ

ρσ uρuσ

≈γ0
duμ

dt
+ Γ μ

ρσ uρuσ .

(45)

The calculation shows that

v0 = γ0

{

σϕ0 cos[(qt + qz sin β)t − qz(L + te) sin β]

−e11

2
(1 − sin β) cos[Ω(1 + sin β)t

−Ω(L + te) sin β]
}

, (46)

v1 = γ0{−σϕ0 cos β cos[(qt + qz sin β)t − qz(L + te) sin β]
+e11 cos β cos[Ω(1 + sin β)t − Ω(L + te) sin β]}, (47)

v2 = γ0e12 cos β cos Ω[(1 + sin β)t − (L + te) sin β], (48)

v3 = γ0

{

− σϕ0 sin β cos[(qt + qz sin β)t − qz(L + te) sin β]

−e11

2
(1 − sin β) cos[Ω(1 + sin β)t

−Ω(L + te) sin β]
}

, (49)

where te is the time when the photon is emitted from the

pulsar. Eq. (46) is consistent with Eq. (44).

The 4-velocities of the Earth and the pulsar also change

due to the gravitational wave. Take the 4-velocity of the Earth

for instance. Suppose when the gravitational wave is present,

its 4-velocity is given by u
μ
e = u0

e(1, ve). The normalization

of u
μ
e implies that

u0
e = 1 + 1

2
h00 + O(v2

e ). (50)

The geodesic equation for the Earth is,

0 =d2xμ

dτ 2
+ Γ μ

ρν

dxρ

dτ

dxν

dτ

≈(u0
e)

2

(

d2xμ

dt2
+ Γ μ

00

)

+ u0
e

du0
e

dt

dxμ

dt
,

(51)

where τ is the proper time and xμ are the coordinates of the

Earth. One sets x = y = 0, which is consistent with Eq. (51).

Then, one obtains the following solution

v3
e ≈ − qz

2qt

σϕ0 cos qt t. (52)

In addition, with Eq. (50),

u0
e = 1 + 1

2
σϕ0 cos qt t. (53)

So the 4-velocity of the Earth is approximately

uμ
e =

(

1 + 1

2
σϕ0 cos qt t, 0, 0,− qz

2qt

σϕ0 cos qt t

)

. (54)

Similarly, one can obtain the 4-velocity of the pulsar, which

is

uμ
p =

(

1 + 1

2
σϕ0 cos(qt t − qz L sin β), 0,

0,− qz

2qt

σϕ0 cos(qt t − qz L sin β)

)

,

(55)

up to linear order. The form of u
μ
p can be understood, realizing

that χ
μ
1 and χ

μ
2 are still the Killing vector fields.

Therefore, the frequency of the photon measured by an

observer comoving with the pulsar is

fe = − uμuμ
p

= γ0

[

1 + qt − qz sin β

2qt

σϕ0 cos(qt te − qz L sin β)

− e11

2
(1 − sin β) cos Ω(te − L sin β)

]

,

(56)

and the frequency measured by another observer on the Earth

is

fr = − uμuμ
e

=γ0

[

1 + qt − qz sin β

2qt

σϕ0 cos qt (te + L)

− e11

2
(1 − sin β) cos Ω(te + L)

]

.

(57)

The frequency shift is thus given by

fe − fr

fr
= qt − qz q̂z · n̂

2qt

σ
[

ϕ(t − L , Ln̂) − ϕ(t, 0)
]

− n̂ j n̂k

2(1 + q̂z · n̂)

[

h̃ jk(t − L , Ln̂) − h̃ jk(t, 0)
]

,

(58)

where t = te + L is the time when the photon arrives at

the Earth at the leading order. This expression (58) can be

easily generalized to a coordinate system with an arbitrary

orientation and at rest relative to the original frame. It can be

checked that in the massless limit, the change in the ratio of

frequencies agrees with Eq. (2) in Ref. [53]. The contribution

of the massive scalar field also agrees with Eq. (2) in Ref. [55]

which was derived provided all polarizations have the same

mass.

Eq. (58) gives the frequency shift caused by a monochro-

matic gravitational wave. Now, consider the contribution of
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a stochastic gravitational wave background which consists

of monochromatic gravitational waves,

h̃ jk(t, x)

=
∑

P=+,×

∫ ∞

−∞

dΩ

2π

∫

d2k̂
{

h̃ P (Ω, k̂)ǫP
jk exp[iΩ(t − k̂ · x)]

}

,

(59)

ϕ(t, x)

=
∫ ∞

−∞

dqt

2π

∫

d2q̂z

{

ϕ0(qt , q̂z) exp[i(qt t − qz q̂z · x)]
}

, (60)

where h̃ P (Ω, k̂) is the amplitude of the gravitational wave

propagating in the direction k̂ at the angular frequency Ω with

the polarization P = + or ×, ǫP
jk is the polarization tensor

for the polarization P , and ϕ0(qt , q̂z) is the amplitude for

the scalar gravitational wave propagating in the direction q̂z

at the angular frequency qt . Let î, ĵ, k̂ form a right-handed

triad frame so that î × ĵ = k̂, then ǫP
jk is given by

ǫ+
jk = î j îk − ĵ j ĵk, ǫ×

jk = î j ĵk + ĵ j îk . (61)

Assuming the gravitational wave background is isotropic,

stationary and independently polarized, one defines the char-

acteristic strains h̃ P
c and ϕc in the following way,

〈h̃ P∗(Ω, k̂)h̃ P ′
(Ω ′, k̂′)〉

= δ(Ω − Ω ′)δ(k̂ − k̂′)δP P ′ π |h̃ P
c |2(Ω)

4Ω
, (62)

〈ϕ∗
0(qt , q̂z)ϕ0(q

′
t , q̂ ′

z)〉 = δ(qt − q ′
t )δ(q̂z − q̂ ′

z)
|ϕc|2(qt )

qt

,

(63)

where the star ∗ indicates the complex conjugation.

Since the gravitational wave with the plus or cross polar-

ization behaves exactly the same way as in GR which can

be found in Ref. [53], the focus will be on the contribution

of the scalar field in the following discussion. The total time

residual in TOA caused by the stochastic gravitational wave

background is

R(T ) =
∫ ∞

−∞

dqt

2π

∫

d2q̂z

∫ T

0

dt
fe − fr

fr
, (64)

where the argument T is the total observation time. Substi-

tuting Eq. (58) (ignoring the second line) in, one obtains

R(T ) =
∫ ∞

−∞

dqt

2π

∫

d2q̂z

qt − qz q̂z · n̂

i2q2
t

ϕ0(qt , q̂z)(e
iqt T − 1)

× [1 − e−i(qt +qz q̂z ·n)L ].
(65)

Therefore, one can now consider the correlation between two

pulsars a and b which are located at positions xa = L1n̂1

and xb = L2n̂2, respectively. The angular separation is θ =
arccos(n̂1 · n̂2). The cross-correlation function is thus given

by

C(θ) = 〈Ra(T )Rb(T )〉

=
∫ ∞

m

dqt

∫

d2q̂z

(qt − qz q̂z · n̂1)(qt − qz q̂z · n̂2)

4π2q5
t

× |ϕc|2(qt )P,

(66)

where

P = 1 − cos Δ1 − cos Δ2 + cos(Δ1 − Δ2), (67)

and Δ j = (qt +qz q̂z · n̂ j )L j with j = 1, 2. In obtaining this

result, one uses Eq. (63), and takes the real part. In addition,

T drops out, since the ensemble average also implies the

average over the time [53].

Since the gravitational wave background is assumed to be

isotropic, one can calculate C(θ) by setting

n̂1 = (0, 0, 1), (68)

n̂2 = (sin θ, 0, cos θ). (69)

Also, let q̂z = (sin θg cos φg, sin θg sin φg, cos θg), so

Δ1 = (qt + qz cos θg)L1, (70)

Δ2 = [qt + qz(sin θg cos φg sin θ + cos θg cos θ)]L2, (71)

and

C(θ) =
∫ ∞

m

dqt

∫

dθgdφg sin θg

|ϕc|2(qt )

4π2q5
t

(qt − qz cos θg)

[qt − qz(sin θg cos φg sin θ + cos θg cos θ)]P.

(72)

In the observation, pulsars are far away enough, so that

qt L j ≫ 1. This implies that one can approximate P ≈ 1

when θ �= 0, as the phases in cosines in the definition (67)

of P oscillate fast enough. The integration can be partially

done, yielding

C(θ) ≈
∫ ∞

m

dqt

|ϕc|2(qt )

πq3
t

(

1 +
q2

z

3q2
t

cos θ

)

. (73)

But for θ = 0, one cannot simply set cosines in P to 1. In this
case, one actually considers the auto-correlation function, so
n̂1 = n̂2 and L1 = L2 = L . The auto-correlation function is
thus given by
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C(0) =2

∫ ∞

m
dqt

|ϕc|2(qt )

πq3
t

[

1 +
q2

z

3q2
t

+ 2

q2
t L2

cos qt L cos qz L

+
(

2

qt L
− 1

qz L
+ 2

q2
t qz L3

− qz

q2
t L

)

cos qt L sin qz L

− 2

qt qz L2
sin qt L sin qz L

]

.

(74)

Note that the observation time T sets a natural cutoff for the

frequency, i.e., qt ≥ 2π/T . So the lower integration limits

in Eqs. (73) and (74) should be replaced by Min{m, 2π/T }.
Usually, one assumes that ϕc(qt ) takes a form of ϕc(qt ) ∝

(qt/qc
t )α with qc

t some characteristic angular frequency. α is

called the power-law index, and usually, α = 0, −2/3 or −1

[53,63]. One can numerically integrate Eqs. (73) and (74) to

obtain the so-called normalized correlation function ζ(θ) =
C(θ)/C(0). In the integration, suppose the observation time

T = 5 years and the mass of the scalar field is mb = 7.7 ×
10−23 eV/c2 [3]. The distance L takes a large enough value

so that qt L ≫ 1 is satisfied. This gives rise to the right panel

in Fig. 5, where the power-law index α takes different values.

Together shown are the normalized correlation functions for

the plus and cross polarizations (labeled by “GR”), and for the

transverse breathing polarization (labeled by “Breathing”)

in the left panel. The normalized correlation function for

the transverse breathing polarization can be obtained simply

by setting the mass m = 0. It is clear that ζ(θ) behaves

very differently for h̃μν and ϕ, so it is possible to determine

whether there are polarizations induced by the scalar field

using pulsar timing arrays. Note that since L is large enough,

ζ(θ) barely changes with L .

One could also vary the mass of the scalar field. The result

is shown in Fig. 6. This figure displays ζ(θ) for six different

multiples of mb, including m = 0 labeled by “Breathing”.

The power-law index α is chosen to be 0. It shows that at

large angles, ζ(θ) is very sensitive to smaller masses with

mb/5 � m � mb, but for m � mb or m � mb/5, ζ(θ)

almost remains the same. Therefore, the measurement of the

correlation can be used to constrain the mass of the scalar

field.

In Ref. [55], Lee also analyzed the time residual of TOA

caused by massive gravitational waves and calculated the

cross-correlation functions. His results (the right two pan-

els in his Fig. 1) differ from those on the right panel in

Fig. 5, because in his treatment, the longitudinal and the

transverse polarizations were assumed to be independent. In

Horndeski theory, however, it is not allowed to calculate the

cross-correlation function separately for the longitudinal and

the transverse polarizations, as they are both excited by the

same field ϕ and the polarization state is a single mode.

GR

Breathing

0 50 100 150

–0.1

0.0

0.1

0.2

0.3

0.4

0.5

(
)

=0

=–2/3

=–1

0 50 100 150

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

(
)

Fig. 5 The normalized cross-correlation functions ζ(θ) =
C(θ)/C(0). The upper panel shows the cross-correlations when

the scalar field is massless, i.e., when there is no longitudinal polariza-

tion. The solid curve is for familiar GR polarizations (i.e., the plus or

cross ones), and the dashed curve for the transverse breathing polar-

ization. The lower panel shows the cross-correlations induced together

by the transverse breathing and longitudinal polarizations when the

mass of the scalar field is taken to be mb = 7.7 × 10−23 eV/c2. The

calculation was done assuming T = 5 yrs

5 Conclusion

This work analyzes the gravitational wave polarizations in

the most general scalar-tensor theory of gravity, Horndeski

theory. It reveals that there are three independent polariza-

tion modes: the mixture state of the transverse breathing

P̂b = Rt xt x + Rt yty and longitudinal P̂l = Rt zt z polar-

izations for the massive scalar field, and the usual plus

P̂+ = −Rt xt x + Rt yty and cross P̂× = Rt xt y polarizations

for the massless gravitons. These results are consistent with

the three propagating degrees of freedom in Horndeski the-

ory. Since the propagation speed of the massive gravitational
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Breathing
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0.55

0.60
(

)

=0

Fig. 6 ζ(θ) as a function of scalar mass m at α = 0. The calculations

were also done for a 5-year observation

wave depends on the frequency and is smaller than the speed

of light, the massive mode will arrive at the detector later

than the massless gravitons. In addition to the difference of

the propagation speed, the presence of both the longitudinal

and breathing states without the vector-x and vector-y states

are also the distinct signature of massive scalar degree of

freedom for graviton.

Using the NP variables, we find that Ψ2 = 0. For null

gravitational waves, this means that the longitudinal mode

does not exist. However, our results show that the longitudi-

nal mode exists in the massive case even though Ψ2 = 0. We

also find that the NP variable Φ00 �= 0, and Φ00, Φ11 and Λ

are all proportional to Φ22. These results are in conflict with

those for massless gravitational waves in [17], so the results

further support the conclusion that the classification of the

six polarizations for null gravitational waves derived from

the little group E(2) of the Lorentz group is not applicable

to the massive case. Although the longitudinal mode exists

for the massive scalar field, it is difficult to be detected in

the high frequency band because of the suppression by the

extremely small graviton mass upper bound. Compared with

aLIGO/VIRGO and LISA, pulsar timing arrays might be the

primary tool to detect both the transverse breathing and lon-

gitudinal modes due to the massive scalar field. In the mass-

less case, the longitudinal mode disappears and the mix state

reduces to the pure transverse breathing mode. Brans-Dicke

theory and f (R) gravity are subclasses of Horndeski theory,

so the general results obtained can be applied to those the-

ories. Despite the fact that in f (R) gravity, the longitudinal

mode does not depend on the mass of graviton, its magnitude

is much smaller than the transverse one in the high frequency

band, which makes its detection unlikely by the network of

aLIGO/VIGO and LISA, too. It is interesting that the trans-

verse mode becomes stronger for smaller graviton mass in

the f (R) gravity, so the detection of the mixture state can

place strong constraint on f (R) gravity.

For null gravitational waves, the presence of the longitu-

dinal mode means that all six polarizations can be detected

in some coordinate systems. For Horndeski theory, we find

that the vector modes are absent even though the longitudinal

mode is present. Since the massive scalar field excites both

the breathing and longitudinal polarizations, while the mass-

less scalar field excites the breathing mode only, the detec-

tion of polarizations can be used to understand the nature of

gravity. If only the plus and cross modes are detected, then

gravitation is mediated by massless spin 2 field and GR is

confirmed. The detection of the breathing mode in addition

to the plus and cross modes means that gravitation is medi-

ated by massless spin 2 and spin 0 fields. If the breathing,

plus, cross and longitudinal modes are detected, then grav-

itation is mediated by massless spin 2 and massive spin 0

fields.
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