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the isolation parameters and study the effects the isolation cuts have on the cross section

unpolarized case. We demonstrate the good accuracy of our method over a wide range of

der, taking into account also the next—to—leading order fragmentation contribution in the
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has some advantages over the Monte Carlo method. Our results for the next—to—leading OCR Output

deal with the effects of isolation. We shall see that our analytical approximation method

on the theoretical study of ref. [6] where a Monte Carlo program of [5] has been used to

calculation of the isolation effects for the unpolarized ’direct’ contribution is partly based

analytical formulas, for both the unpolarized and the longitudinally polarized case. Our

the next—to—leading order fragmentation contribution. We present our results, which are

’direct’ contributions from ab —>·ycd, a, b, c and d referring to partons, as well as for

over quite a wide range of the isolation parameters. We develop this method for the

photon cross section in next—to—leading order which is very quick and surprisingly accurate

In the following we outline an approximate method for calculating the isolated prompt

that the theoretical calculation incorporates the isolation criterion as much as possible.

fraction of the photon energy. It is necessary in order to compare theory with experiment

by requiring that the hadronic energy in a cone around the photon be less than a certain

isolate the photon signal from the hadronic background. This is generally accomplished

to the case of fixed target experiments, experimentalists must perform cuts in order to

In practice, when measuring the direct photon cross section at colliders, in contrast

next-to-leading order has been a handicap.

next—to-leading order calculations, lack of spin-dependent structure functions evolved in

[15]. The results of these studies have been mainly positive although in the case of the

usefulness of (inclusive) polarized prompt photon production for settling the AG question

next-to-leading order (O(cmZ)) studies [12, 13, 14] have been performed, examining the

gf [9, 10]. In this context, first leading order (O(ozoz8)) studies [11] and more recently

tion g]' [8] and the more recent SMC and El42 Collaboration results on the neutron’s

surprising result of the EMC measurement of the spin dependent proton structure func

measure the polarized gluon distribution AG of the proton has been stimulated by the

prompt photon production for longitudinal polarization of the proton beams in order to

has been studied quite extensively [1-7]. More recently, interest in the possibility of using

constraining the gluon distribution of the proton is well documented and in this context

ing some of its most important parameters. For example the utility of this process for

collisions provides important tests of perturbative QCD and is very useful for constrain

It has been recognized for a long time now that prompt photon production in hadronic

1 Introduction



mentation of parton-type c into a photon which takes the momentum fraction z of the OCR Output

d6·“b""’d(.§, U)/dv, and Dgfz, being the distribution function at scale Mf for the frag

the sum correctly running over all 2 —> 2 QCD subprocesses ab ——> cd with cross sections

(1)

fg? : 52E dz EW; d"f¤f(”1»M2)fz?($¤»M2) DZ(¤»M}),
~ cab-+cd ~LO _ _ Z iW

pA, pg given by

final state parton into a photon and is for a collision of two hadrons A, B with momenta

from each other. Another leading order contribution comes from the fragmentation of a

particle, which will give rise to hadrons, are more or less back—to-back and thus separated

2 —+ 2 subprocesses qg —> 7q and qq -—> yy for which the photon and the other final state

implemented into the calculation. Here the dominant contributions arise from the hard

In a leading order (O(cm,)) theoretical study this experimental criterion can be easily

R = \/(An)2 + (Ad)?. For small rapidities of the prompt photon we have R M 6.

of a circle, centered on the photon, in cms rapidity (7;) and azimuthal angle (45) space via

photon is the isolation cone. Strictly speaking, the cone opening is defined by a radius R

parameter c is generally called the energy resolution parameter and the cone around the

eE., where E., is the photon’s energy and c is a small parameter of order 0.1 [16, 17]. The

angle 6 around the photon the sum of the energies of accompanying hadrons is less than

Experimentally, a prompt photon is considered as isolated if inside a cone of half—opening

2 Isolated Prompt Photon Production

our analytical results.

isolation on the unpolarized prompt photon cross section. The appendices A-C contain

accuracy of our results by comparing with Monte Carlo results and study the effects of

results for the polarized case. In section 3 we present numerical results. We examine the

order. Section 2.3 shows the modifications to be made in order to obtain the corresponding

2.2 we apply our method to the case of the fragmentation contribution in next—to—leading

the effects of isolation cuts on the °direct’ (non·fragmentation) contributions. In section

with isolation. More specifically, in subsection 2.1 we describe our method for calculating

rest of this paper is organized as follows. In section 2 we describe our method for dealing

order fragmentation piece and the polarized isolated cross section are entirely new. The



for the isolated cross section. OCR Output

around the photon (Hg. la). As mentioned above, such contributions have to be excluded

of the final state partons carrying more energy than 6E, happens to be inside the cone

leading order processes qg —> cyq and qq ——> cyg it is now possible kinematically that one

tion arise from the various possible ’direct° 2 —+ 3 processes ab —> 7cd. In contrast to the

In next—to-leading order (O(o4a3)) important contributions to prompt photon produc

strong reduction of the size of the fragmentation contribution.

instead of M f ~ O(pT) for the non—isolated case. The constraint (4) usually leads to a

M: N @(6pr) (6)

and the choice of a 6-dependent scale [6]

Zmi»,,_:IH&X[l—V+Vl’l/;··,1 ]:;)
which converts zmin into

1 + E
——— Z z , 4 ( )

The effect of isolation on eq. (1) is simply the additional constraint [6]

tl : —-$(1 — v) (3)

fl E (pa — pc)2 via
Finally, the variable v is connected with the 2 —> 2 subprocess Mandelstam variable

$1IgS

z(1— v)
2 ( )

l— V

zv °

VW

Zmin 1- V + VW ,

VW {Tow

1 — V @,.-77

variable xT 5- 2pT/\/-5, where S = (pA + pg)2, we have defined
the transverse momentum pT of the prompt photon relative to the beam axis and the

zv distribution of parton a in a hadron A [18] at the scale M 2. Furthermore, introducing

leading order (O(aa,)) contribution. In eq. (1), ff(x, M 2) denotes as usual the Bjsarken

parent parton. The functions DZ(z, are of order O(a/us) and thus make eq. (1) a



inclusive prompt photon production, i.e. of the processes ab —-> eyed [2, 3, 13]. These OCR Output

culations of the complete next·to-leading order corrections for the ’direct’ (hard) part of

Apart from the Monte Carlo program of Baer et al. [5] there exist two analytical cal

2.1 Isolation cuts on the ’direct’ contributions ab -—>·ycd

high energy colliders such as RHIC [19].

of the incoming hadrons. These results will probably be important for future polarized

In section 2.3 we shall present the corresponding results for longitudinal polarization

alternative.

computer—time consuming, and our approximation method probably offers the only viable

As for this contribution, a Monte Carlo calculation would certainly be too difficult and

tion contribution, which have to be included for a consistent calculation, is entirely new.

Moreover, the study of the effects of isolation on the next-to-leading order fragmenta

fluctuations inherent to the Monte Carlo calculation which were also observed in ref.

voluted with parton distributions. Secondly, it does not suffer from the large numerical

magnitude since it is based on simple analytic expressions which only need to be con

that our approximation method has several advantages. Firstly, it is faster by orders of

isolation of the direct contribution numerically and thus ’exactly’. Nevertheless we think

note that there is a Monte Carlo program by Baer et al. [5] which is able to deal with the

subsection 2.2 is devoted to an analysis of the isolated fragmentation contribution. We

Subsection 2.1 deals with isolating the ’direct’ contributions from ab —> 7cd, whereas

imation method for dealing with the isolation of prompt photons in next—to-leading order.

In the following two subsections we will present a simple, yet very accurate, approx

rise to additional hadronic energy accompanying the photon which invalidates eq.

around the photon which is of course possible kinematically (fig. lb). This parton gives

if a non-fragmenting parton from the 2 —> 3 QCD process is also radiated into the cone

restricted by 6E., again leads to the cut This cut is, however, in general not sufficient

cross section the requirement that the remaining hadronic energy after fragmentation be

processes where one of the outgoing partons fragments into a photon. For the isolated

to be rather important at small xy. Here there are contributions from all 2 —> 3 QCD

into account the fragmentation contribution beyond the leading order which turns out

ln a complete and consistent next—to-leading order calculation one also has to take



where the ’®’ denote proper convolutions (integrations), the precise form of which is imOCR Output

;l
~ — 2T 2 2 u g-Y ® f¤(¢1»M)fb(¤¤z,M )®¤P~rq(Z) » (8)

6 d&ab_iqd

P2 lpoled3 qd"P~ pole d3P2 [pox.;
EWQ] Z _ EiEE lfgi

is, before final state factorization, for small e schematically given by

in order to extract the singularities, the pole structure of E,d3o·f]f‘f’/d3p, -— E.,d30‘jf*,b/clap.,
[21]. Thus, working in dimensional regularization with n = 4 -— 21* space-time dimensions

could become collinear with. For c —> 0 the photon would become completely isolated

other for 6 —> 0 because in this limit there is no final state parton in the cone the photon

larities in the difference E,d30Q§fl /d3pW = E.,d3a;?f1/d3p,, —E.,d3ajQ*f/dap., must cancel each

singularities in E.,d3ajQjb/d3p.,. To be more precise, let us first note that the collinear singu
fragmentation functions D;(z, M;), and the same step has to be taken for the final state

nal state singularities. In the latter case these singularities were absorbed into the photon

next—to-leading order inclusive cross section E,d3aQ?§'/d3pW before factorization of the fi

of the photon by an outgoing quark [20], just as this was the case in the calculation of the

this cross section one also encounters mass singularities coming from the collinear emission

Before starting the calculation of E.,d3aj§jb/d3p,, let us note that in the calculation of

nevertheless very accurate.

to give a simple approximation for the subtraction cross section E,d3aj}*f’/d3pq which is

photon fragmentation functions [2, 3, 13]. Furthermore, as we shall soon see, it is possible

mass singularities have been factored into the initial state parton distributions and the

celled between the virtual (2 —-> 2) and the 2 ——> 3 next—to-leading order contributions and

complete cancellation of all poles has already taken place, i.e. infrared poles have can

cross section E.,d30·;]?f'/d3pW is perturbatively well defined in itself in the sense that a

position of E.,d3crQf$'/d3pW in eq. (7) has several advantages. First of all, the inclusive

which is accompanied by hadronic energy more than 6E, inside the cone. The decom

Eqdgajjb/d3p, being the cross section for producing a prompt photon with energy E.,

vwdBm d3p~ d3P~
(7)I Eg_ E[ · féif fgf

subtraction piece [6]:

’direct’ cross section since the latter can be written as the inclusive cross section minus a

theless they present the most convenient starting point for the treatment of the isolated

unobserved particles c and d, and thus no longer allow for isolation cuts directly. Never

calculations have been performed integrating over the full phase space of the outgoing



and eventually lead to an infrared divergence at c = U The reason for this is simple: OCR Output

soft gluons being radiated into the cone which give rise to a logarithmic dependence on c

when c becomes very small. In this case the subtraction cross section is dominated by

are suppressed by powers of 6 and are negligible. The only exception from this occurs

E.,d3aj§‘f’/d3p., and E,d3aQf‘fI/d3p.,. All remaining pieces in the subtraction cross section

dependence on the factorization scheme which must be the same in the calculation of

According to our previous discussion they are furthermore needed since they contain the

terms constant with respect to 6, since these turn out to be of numerical relevance.

singularities arising in the calculation of E`,d3aj#’/d3p,,. We shall also consistently keep

E,d30*jQ*;’ /d3p, for small 6 is logarithmic in 6 which is a remnant of the final state collinear

needed for isolating it, is rather narrow [23]. As we shall see below, the leading behavior of

for E,d3a,"];*,b/d3p.,, we shall assume that 6 is small, i.e. that the cone around the photon,

the relevant frame for collider experiments. In order to find a semi-analytical expression

We perform our actual calculation of E.,d3aj}‘f’/d3p, in the hadronic cms since this is

scheme.

our results (i.e. those for E,d3af,?fl/d3p., and for E,,d3aj}‘Tb/d3p.,) to another factorization

collinear singularities. As was pointed out in ref. [13], it is straightforward to transform

use the same factorization scheme, namely the MS—scheme [22], for the subtraction of the

our previous calculation [13], that we have to work in dimensional regularization and to

in E.,d3aj;b/dgp, in the same manner as in E.,d3a;?fl/d3p.,. This means, in accordance to

with each other via eq. It is of course crucial to perform the subtraction of the poles

that the pole terms in E,d3a,Q?fl/dgp, and E.,d30j§‘,b/d3p., are in principle factorized along

the same way they were factorized in the calculation of E,,d30,QQ?fl/d3p,, keeping in mind

Therefore, in the calculation of E,d30j}‘f’/d3p,, we can simply subtract the pole terms in

E.,d30;[}fl/d3p, in [13] are of course completely factorized, i.e. do not contain any poles.

production (E.,d3aQQ‘f'/d3p.,) as the starting point for our calculation. The results for
As mentioned above, we want to use our previous results [13] for inclusive prompt photon

proceed via eq. (8) to factorize the poles appearing in the calculation of E,d30jQ*;’/dap,.

obey a next-to—leading order QCD evolution equation. In practice, we do not have to

contribution (1), giving rise to °dressed° photon fragmentation functions D;,Y(z, which

The pole term (8) can thus be factored at some scale M I ~ 6 PT [6] into the fragmentation

corresponds to that of eq. (1) when the limit (4), z 2 1/(1+6), is implemented for small c.

function, and p an arbitrary mass scale. It becomes obvious that the structure of eq. (8)

material for our present purpose, P,,_,(z) : (1 + (1 —z)2)/z is the quark—to—photon splitting



k2 : E2(1, cos Ol, sin Ol cos 02, OCR Output

kl : E,(1, 1,0,...,0) ,

with respect to kl, i.e.

partons and the photon. Furthermore, Ol and 02 are the polar and azimuthal angles of kg

with fl = (pl — kl)2, {il = (pz — kl)2, where pl, pg and kl are the momenta of the incoming

3 + fi
'UJ E ··

v 5 1 —{- { ,

where we have defined

>< v2`3’(w(1 — v))`T (1 — w)1`2T [ d0; sin"2T 02 d0l0]’ , (10)
6 "2

(1— U)dR3 _ is (4¤)2T (1 - v + vw>vwdvdw _ (4¢r)"1`(1 — 2r) 3 1- v -1- vw VW(1— V)
’<*·*> M

6 around the photon reads in the hadronic cms frame [25]

the process a(pl)b(p2) —> *y(kl)c(k2)d(k3) with parton c being inside a cone of half—angle

For small 6 (small—cone approximation) the n : 4 — 2·r—dimensional phase space for

and contribute to C.

above, only the first two subprocesses which involve gluon radiation can give lne terms

(anti)quarks in the final state can lead to contributions to A and B whereas, as discussed

qq —> vqq, qq —> vqq, qq —> vqql qq -> vq’q’ and qq' —> vqq’- Only the pr<>¢<·>SS€S with

the completely inclusive calculation (E.,d30QQ*fl/d3p.,) [13], namely qc] —> eygg, qg -+ ·yqg,
the coefficient functions A, B and C. The contributing subprocesses are the same as in

A and B also depend on c due to the isolation cuts. It is now our purpose to extract

where the coeflicients A, B and C are functions of the kinematical variables. Note that

dPv
(9). E.,—=Aln6-{-B-{-C6 lnc , 3

dwzq

approximated subtraction cross section:

for the subtraction piece. Thus schematically we have the following structure of our

are logarithmically dependent on e in order to improve the accuracy of the approximation

e is fixed by the experimental resolution, it is necessary to keep the contributions which

not a perturbatively well-defined quantity for a massless particle Although in reality

A completely isolated cross section, with no hadronic energy at all in the isolation cone, is



— TZP.,,,(z,T) = (15) OCR Output
1 (1 2 + Z)

where

14 T>»<>dR3 (;46)2’ ~ ddvw 2; ~ -lP 1- —‘— dvdw d M v+vw»T> dd <5»1-dddd,»
abqqd

space via eq. (13) one obtains

2 ——> 3 matrix elements containing quarks in the final state and integrating over phase

the 62111 c pieces) can be anticipated. After imposing the collinear limit on the various

The general structure of the final result for E.,d30j;b/d3p, (disregarding for the moment

elements are suppressed by powers of 6 after phase space integration.

contributions from factorization. As can be easily seen, all other terms in the matrix

for the TL-dimensional 2 —+ 3 phase space (10), or from finite (with respect to T ——> O)

from terms ~ T / $12 in the matrix elements, from factors like (1 — w)1"2’ in the expression

with respect to 6, which are the terms corresponding to B in eq. These can arise only

tion A in eq. lt is also straightforward to keep all terms having a constant behavior

subtraction cross section for small 6, i.e. allows for the extraction of the coefficient func

6"ZT in eq. (13), when expanded in powers of T, leads to a logarithmic behavior of the

ities. As discussed above, these are removed by the factorization procedure. The factor

(where B(;1:, y) is the Beta function), which gives rise to the expected collinear singular

d0 ··’*040 -1* ~--B-- -6·" 1 062 gsm 2 i73+ 1301 1 1 /()0 l_cOS01 T 2 2 (( ()
6 1-*

a quark or antiquark) lead to an angular integral of the type [25]

appears do we have to keep a finite 01. Terms ~ 1/sl; (which only appear if particle 2 is

S12 I (kl + kg)2 2 ···· COS 0])

nificantly. Only when the inverse of

Imposing the collinear kinematics (11), (12) on the matrix elements simplifies these sig

(12)Z E E I L P 2/ W 1 — v + vw(1 ) L
with

(11)ie ~ pki

cos 01 z 1, in the matrix elements for ab —> ycd. Then we have

In the small—cone approximation, 6 —> 0, we can usually set 01 z 0, i.e. sin 01 m O and



2 71 —— v + vw _ 7 21 ( ) OCR Output) (1 — w E : E -Z-T > E C
section, namely

tegration limits in eq. (19) stem from the condition which defines our subtraction cross

and the subscript ’1’ indicates that eq. (19) does not contain the lnc pieces. The in

2 —- f- — v (20)
1 — V

vw
xl : 1

VW

where

(19)

,-4 Z-- d 4 ,, ,1142 ,M2 1- *-4*- gpv 1 Trp; §LW+$ UV/VW/U wx1f(xl )x2fb(x2 )Uw( U)$dUdw
1·7(1‘;qd*'*ag’+‘* 1 V d6·°*’

is also constant with respect to 6. Explicitly our results read

6pT eliminates 6 from the logarithm in eq. (18) turning this logarithm into a term which

why it is crucial to keep the terms constant with respect to 6: Choosing a scale of order

corresponding to the term proportional to T in eq. (15). Eq. (18) shows another reason

the logarithmic piece being a remainder of the 1 / T poles, and the nonlogarithmic piece

ln + z ,’PA,q(z) = (18)
1+1- 2 v21—w2E262 ( Z)

with

p'Y abqd U
(17)~ T~»ggj··· ~ 2 rf ® f¤(¤¤1»M2)fb(¤¢z»M2) ®<>¢'P~q(Z)

d30.s;1b d6.z1b—>qd

factorized result for E,d3ajQ*,b/d3pq (without the 62111 e pieces) is the following:

quark—to·photon splitting functions in eqs. (14) and (16). Thus the structure of the final

present in eqs. (14) and (16). This is not true, however, for the T-dependent terms in the

cancel out as well as all terms proportional to T in d6(.§, y, T)/dy which are equally
ab_iqd

eq. (15). Taking the difference of eqs. (14) and (16) and expanding in T the pole terms

where P.,q(z) is the four-dimensional splitting function to be obtained by setting T = 0 in

16 ( ), T)- A —— -— P 1 —————————, TM~q( ¤+vw) dv (—S»1_U+UwT 112 (?) ‘{G.b—>qd da vw

MS factorization is carried out by subtracting a term proportional to

d6(§,y,T)/dy are the cross sections for the processes ab —-> qd in n dimensions.
ab_’qd

is the mdimensional splitting function for the quark—to—photon transition, and the
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which derives from the lower limit of the w integration and turns out to be crucial for

where, apart from the leading ln c term, we have kept a non—leading term in the logarithm

V FEE v, w V c MW,. 9% ~ — A., "’"f("~ U In tim) » qq
limits for the v and the w integration are as in eq. (19). For small 6 we may write

phase space integration, where f (v,w) is a function regular at w = 1. The integration

matrix elements have the structure f(v, w)/(1 — w) in the small-cone approximation after

energy. Since according to eq. (12) Eg ~ (1 — w) in the collinear limit, we find that the

the logarithms of c arise from terms ~ 1/Eg in the matrix elements, where Eg is the gluon

which shows that the ln c pieces are suppressed by 62 [28] for small 6. As was noted in [6]

o E 4102 010101 Z (23)jd/" /s 0 0
6 6%

the trivial phase space integral

to consider the 2 ——> 3 matrix elements in 4 dimensions. Instead of eq. (13) we only need

means that the Inc terms are not accompanied by ln6 factors. It is therefore sufficient

can arise from gluons inside the cone since there is no direct photon gluon coupling. This

outgoing prompt photon. In contrast to quarks being collinear to the photon, no 1/T-poles

the 2 —> 3 matrix elements in the limit when a final state gluon becomes collinear to the

subprocesses which have final state gluons. The procedure is as before: We consider

radiated into the cone, i.e. they can only come from the qq —> 7gg and qg —>·yqg

considered in ref. As mentioned before, the Inc pieces arise from soft gluons being

Let us now turn to the extraction of the In e pieces. This problem was already partly

d6“b"°d(§,y)/dy in appendix A.

radiating the photon in the reaction ab —> ycd. For convenience we list the cross sections

(22) have been properly symmetrized in order to account for the possibility of particle d

where y : vw/(1-0-}-vw) and eq and ef, are the charges of q and q'. The final states in eq.

(22)
99—* 799
I ,c§————;;(3, y) + cg ——L;(§, y) ford&q(qq d&qq q

qq —> vqqfor ’’26;,———%(3, y) I I2 IqI

99 —’ 799dvdw 2rr 1 — v + vw eg (da¤;;·¤¢(§’y) + d&q;;’.q°(§,y)) for
99 _* 799fordégb _ a v'P.,q(1 — v + vw) €gX { (·’?;l)
99 _* 799fory ;)q2c2L`—— 3
99 _’ 'Y99forg Q;gg, y)c—dqqg§
QQ " 799for

For the various subproccsses we have [27]
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/W /W/U1A EW- : Q ggldvAdwx1f,,(x1,M2)x2fb(x2,M2)vw(1- v)sm (28)
d3O.i:g.cI 1 V 1 déab

the direct reactions ab ——> cycd. Inserting Evd3ajQ*Tb/d3p,|_ + E.Yd3aj§‘f’/d3p.,|q together with
for the subtraction cross section and completes our calculation of the isolation effects in

E.,d30jf*f’ /d3p~|1 and E.,d3aj?f’/d3p.,|_ from eqs. (19) and (25) gives the final expression
the photon at various possible legs in the process qej ->·yg(g) (qg —>·yq(g)). Adding up

for qrj (qg) scattering stems from the fact that the gluon can be radiated collinear to

xl and 2:2 are defined as in eq. (2), setting z : 1 there. The color structure of défb/dv

which are essentially the Born cross sections for prompt photon production. Furthermore,

(27)Tqg I 1+ (1 · U)?

Tia = U2 + (1 - v)2

with vl = 1- v and

otherwise

.. * v(l 12).9
dy, E?36 (C_£.. - _.._T ____ L v + v dv - 3 ln <U_VW>>< ( NC ——%——¤`—iTqg for qg.—-> syqg (26)%`—§Q%?'*¥*T.,q for qri —+ sygg

where

v(},7 2 wp? VWE#*i:— /4 ., M2 ,M21- 25 y 13vrvif (wi. )¤¤zfb(¤vz )v( v)S d( )
d6.abd3O,sub 1 V

We now give our final result for the ln 6 contributions (i.e. the coefficient C in eq. (9)):

of 6 and 6.

the ln 6 pieces are of minor importance for the subtraction cross section over a wide range

turns out in the numerical evaluation (i.e. by comparing with Monte Carlo results) that

were able to consistently keep all constant pieces) than it is with respect to 6. However, it

therefore anticipate that our approximation is probably better with respect to 6 (where we

cone, i.e. from terms in the matrix elements which do not behave like 1/(1 — w). We

contributions (with respect to 6) since these can also arise from quarks being inside the

approximation. Nevertheless, we do not try to consistently keep the other non-leading

presence of the lower w integration limit in the logarithm in eq. (24) is needed for a good

This can be both soft (w —> 1) and hard (w small) gluons, which explains that the

gluons being inside the cone around the photon with energy larger than 6E., (see eq.

the subtraction cross section: In principle we want to subtract all contributions from

a good accuracy if 6 is not very small. The reason for this is that we are dealing with
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this approximation we have according to eq. (12)

which essentially means that particle ’2’ is almost collinear with particle ’1° in fig. 2. In

(see fig. 2). We shall again evaluate E.,d30·}'j2g/d3p., in the small—cone approximation
E}$;"g and E2 being the energies of the fragmentation remnant and the additional parton

but + E2 2 eE., , (30)

Q 6E, (equivalent to eq.

cone, satisfying the conditions

traction cross section which is the cross section for an additional particle being inside the

the (insufficient) z-cut (4) implemented, and E.,d30j';Qg/d3p., is the fragmentation sub

(1+E)where E.,d30;?:J/d3p7 is the next—to—leading order fragmentation cross section with

v pw d PWd pd

d3 iso! d3 ZZ]/(1+0 d3 sub

contribution E.,d30;}f°[fg/d3pq in the following way:

We therefore set up our calculation of the isolated next—to—leading order fragmentation

remnants plus the energy of the additional non—fragmenting particle be smaller than eE.,.

this happens we have to make sure that the sum of the energies of the fragmentation

radiated into the cone (fig. lb) since this gives rise to additional hadronic energy. If

section 2, the cut (4) is in general no longer sufficient if a non—fragmenting parton is also

energy after fragmentation is restricted by eE.,. As we pointed out in the beginning of

duced a cut on the fragmentation variable z which expresses that the remaining hadronic

it is very convenient to start by introducing a subtraction piece. In eq. (4) we have intro

mentation. The procedure is quite similar to that outlined in the last subsection. Again

In this section we want to extend our method to the case of next—to—leading order frag

contribution

2.2 Isolation cuts on the next-to-leading order fragmentation

compact analytical form in ref. [13].

subprocess cross sections d6“b/dvdw for the inclusive cross section were published in a

into eq. (7) yields the direct piece of the isolated prompt photon cross section. The
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(37)c [ln 6(.A+.A’ln e)+B +C62lne

is for small e and 6 given by

pressed proportional to c. In comparison to eq. (9), the basic structure of E,d30}‘;;g/d3p.,

the constraint z 2 1/ (1 + e). For small 6 the fragmentation contribution is therefore sup

(1+°)E,d3a}j‘gg/d3p,, as well as E,d3cr;?:;/d3p., and E.,d30·}';;g/d3p, vanish for c ——+ 0 due to
state what kind of terms are expected in the final result. The first thing to note is that

d&j,'b"’°/dvdw for the subtraction piece in the small-cone approximation. Let us first

as E.,d30QQ?fl/d3p., in eq. (7) is. We shall now calculate the subprocess cross sections

are of course factorized and thus free of singularities and perturbatively well—defined just

have been calculated by Aversa et al. [29] and are available in a FORTRAN code. They

(1+2processes with particle c being observed, needed for the calculation of E.,d30;;: J / d3p,,
The subprocess cross sections d&“b"°/dvdw for the various contributing 2 —> 3 QCD sub

z(1 — v)
2 = 2 (36)

1 — V

x Z 1 zvw
VW

where V and W are defined as in eq. (2) and

,, M2 M2 12* 2 ·L (i— - f(xi, )f»(¤¤z, > c(z,M,·)5 dvdw 9 l_v+vw Z(1+¤)) ,
déab-»c 1

Pv
E : il d3 d d Uwd Z. 3);-lmax(1·—V+VW,Ti;) ./VW/z -A/W/zu

1—(l—V)/z1Jw:2

(34)Af¤(:v»M2)fb(¤¤z»M2)DZ(z»M?)Sh ,
d*ab—>c

W 3d PW
d wf¤y _ l 1 d d §»L}nax(1—V+VW,$) ZA/W/z UAW/zu

1—-(1-V)/z1dael?/(1+<)

and E.,d3a}§f2g/d3p.,:

(1+°)We are now in the position to write down the general expressions for E.,d30;?:;/d3pW

(33)1 < -..i; z( +€)'1—v+vw
Eq. (30) then turns into

(32)Tm Efmg =(1· Z)E1 = +E~
1 - Z

takes place (see fig. 2). Furthermore, we have

whcrc E1 = E,/ z is the energy of the fragmenting parton before the fragmentation process
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B) can again only stem from the ·r-terms in the n-dimensional splitting functions. Since

ture as the 1/ T pole terms did. In the lVI·8—scheme the non-logarithmic pieces (coefficient

A, A') are remnants of the factorized collinear singularities and thus have the same struc

times 2 ——+ 2 QCD cross sections. As before, the ln6 pieces (corresponding to coefficients

obtain the final result. One has to collect all suitable combinations of splitting functions

structure of eq. (22) emerging from these equations, it is now rather straightforward to

for the direct piece in the last subsection. Taking a look at eqs. (14)-(18) and the simple

calculate our fragmentation subtraction cross section also in the MS—scheme just as we did

corresponding FORTRAN code there is an option to choose the MS—scheme. We therefore

have to make sure that we use the same factorization scheme as that in ref. [29]. In the

(for which we take the results of Aversa et al. [29]) are also already factored out. We only

(1+°)present calculation we can therefore just subtract the poles since those in E,d30;§:!/d3p,
in (I), leading again to a next-to-leading order fragmentation function DQ(z, In our

a typical graphical representation given by fig. 3. The contribution from (38) is absorbed

T M2N ·;age dv 2 2 r ·y 2 ® f¤(¢1»M)fb(¤¤2»M)®¤sPe¤(Z I ® D.(Z»M,») »
6 dwbiicd

p'Y [pole pw [polepil [pole
3

(38)Z E·v‘gag “ E·v
za iw: d3U z we221/(1+0

(1+°)of E,d30·}§‘jg/d3p., = E.,d30;?;;/d3p, — E,d30}’jZg/d3p., is schematically given by
Before the factorization of final state mass singularities has taken place, the pole structure

factorization. The justification for this is similar to the discussion accompanying eq. (8):

In this way one encounters final state collinear (1 / T) singularities which are removed by

out in the last subsection and integrate them over phase space via eqs. (10) and (13).

final state parton) published in [31], impose on them the collinear kinematics worked

elements for the 2 —+ 3 QCD subprocesses (with all possible choices for the observed

are quite easy to calculate. The principal way to extract these is to take the matrix

production. The remaining contributions corresponding to the coefficients A, A' and B

will be completely immaterial for the full final cross section for isolated prompt photon

rather hard to calculate) might slightly influence the accuracy of E,d3a}‘j;g/d3p,, but
numerically rather small. Therefore the neglect of the 66211*16 terms here [3U] (which are

view is supported by the fact that the term C62lne in eq. (9) also turns out to be

A, A' and B and neglect the contribution from C which should be less important. This

contribution in eq. (37). We shall restrict ourselves to the extraction of the coefficients

with new coefficients A, A', B and C. We have anticipated the presence of an eln6 Inc
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the initial state is polarized. The same is true for the functions 'P.,q(z) in eq. (18) and

our previous equations since we are dealing with unpolarized prompt photons and only

Note, however, that we must not change the photon fragmentation function DQ(z, M in

(45)Tqg ——> ATM = 1 — (1 — v)2

Tqa _+ Mia Z ·Tqa = · (U2 +<1- U)2

helicities. Analogously, we have to replace Tqq and Tqg in eq. (27) by

difference of cross sections for the two different relative settings of the incoming partic1es’

hadronic as well as subprocess cross sections, the ’A’ being defined as in eq. (42) as the

for all parton distributions and cross sections. The latter replacement corresponds to

and 0 —> A0 (44)

2 2ff(:1:,M) —> Aff(;c,M)

(19), (22), (25), (26), (28), (34) and (35) to the polarized case by making the replacements

and ff(;v, M2) introduced before. We can now easily adapt the cross sections in eqs. (1),
difference in eqs. (42) and (43) one recovers the usual unpolarized quantities E.,d3a/amp.,

in hadron A with positive helicity. It should be noted that taking the sum instead of the
H-)

where denotes the distribution of parton type rz with positive (negative) helicity

<43)
2 2)_Argh. M) E (1,:<x. M2) — (r;(MM2) ,2)+

distributions

incoming hadrons with helicities hl and hz. Let us also introduce the polarized parton

E,d30(hlh2)/d3p, denoting the cross section for the production of a prompt photon by

pvpw pwE —» d d d M2)
d3A d3 dg ——

polarized case. The quantity of interest now is the cross section difference

few replacements are necessary in our previous formulas to make them suitable for the

perform experiments with two colliding longitudinally polarized hadron beams. Only a

come relevant at future high·energy colliders such as RHIC where it will be possible to

to deal with longitudinal polarization of the incoming hadrons. This issue should be

In this subsection we want to briefly show how our results need to be modified in order

larized beams

OCR Output2.3 Isolated prompt photon production with longitudinally po
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program of Baer et al. [5] is not freely distributed we have set up our own Monte Carlo

to compare with the ’exact’ numerical solution from a Monte Carlo program. Since the

the direct contribution to isolated prompt photon production. For this purpose we have

The first thing we want to study is the accuracy of our approximation method for

order. We reserve the actual comparison with data for a future publication [34].

of the isolation effects for the direct and the fragmentation contribution in next-to-leading

tion [16, 17]. Rather, we want to test the accuracy of our method and show the general size

quantitative comparisons with existing collider data on isolated prompt photon produc

larized isolated prompt photon production. It is not the purpose of this study to make

We shall now present some numerical results for our approximation method for unpo

3 Numerical results

one day be calculated.

other ingredient of E7d3Aa}j°,fg/d3p,, namely E,d3Aa;;:g/d3p., (cf. eq. (29)), can/(Hf)

these results do not depend on the treatment of 75. They will become relevant when the

cross sections dA6§b“’°/dvdw (to be used in the polarized version of eq. (35)). Again,

by using the results of appendix C to obtain the polarized subtraction piece subprocess

2 —+ 3 QCD subprocesses are not known up to now [33]. Nevertheless, it is straightforward

calculated for the polarized case. The reason is that the cross sections for all the polarized

Unfortunately, the next-to-leading order fragmentation contribution can not yet be

'P.,q(z) in eq. (18) does not, since it is unpolarized.

us note that our results do not depend on the 75 scheme chosen because the function

cross section. We present the dA6“b"’°‘l(.§, y)/dy (which we now need) in appendix C. Let

enables us to perform isolation cuts also on the direct piece of the polarized prompt photon

dimensions. Making the modifications (44) and (45) in eqs. (19), (22) and (25)—(27) now

the (consistent) HVBM-scheme [32] was used to deal with 75 and 6,,,,,,., in n = 4 — 2T

recently calculated in refs. [12, 13] in the W.-scheme. In the latter calculation [13]

prompt photon production needed in the polarized versions of eqs. (7) and (28) were

The subprocess cross sections dA&“b/dvdw for the direct part of inclusive polarized

be kept.

'PU (i,j = q,g) in eq. (40). These functions also refer to the final state and thus have to
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accuracy of our approximation method. This can be seen in figs. 5 a,b which have not

time consuming [39] and has fluctuations which are sometimes even of the order of the

is still very good. It should be stressed that the Monte Carlo program is very computer

at very large 6 which of course is expected. Nevertheless, even for 6 = 0.7 and 6 = 0.2 it

a,b the approximation for E.,d3a,§§*f'/d3p, tends to break down at large 6 and, in particular,

our approximation for E.,d30Q§§'/d3p, is generally far better than 10%. According to figs. 5

section is only a subdominant part of the full isolated cross section (see below). Therefore

over a wide range of values for 6 and 6. lt should be emphasized that the subtraction cross

approximation for the subtraction cross section E,d3aj}Qb/d3p, is much better than 10%

py = 50 GeV, at zero rapidity, rg = 0. One can easily see that the accuracy of our

as a function of 6 and 6 for two values of the transverse momentum, pT = 20 GeV and

w arr P~r)MC

otherwise stated. In figs. 5 a,b we show the relative deviation

and (initial state) factorization scales and M f == 6pT for the fragmentation scale unless

a typical value for recent pj} colliders. We choose p = M = py for the renormalization

contributions from b quarks. We study the case of pp collisions at x/E = 1 TeV which is
in ref. [36]. We perform our calculations by setting N f = 5, neglecting, however, the

AQCD values and threshold conventions determined along with the structure functions

(;r being the renormalization scale) using the two loop expression for it and taking the

HERA data for F; [37, 38]. For consistency we calculate the strong coupling a,(]u2)

next—to-leading order [36] which have been found to be in perfect agreement with recent

For our numerical evaluation of E,d3ajQ*,b/dgp, we use the GRV parton distributions in

of 6C values, as they must be.

the final Monte Carlo results are independent of the collinear cut-off 6c over a wide range

over phase space, taking care of the proper isolation constraints. We have checked that

we can now use the matrix elements in four dimensions and numerically integrate them

the MS factorization of final state mass singularities [35]. For the rest of the calculation

safely calculate everything analytically as outlined in the last section and can perform

located inside the isolation cone and is concentric to it. Inside the very small cone we can

We have assumed a very small cone around the photon with opening 6c < 6 which is

The actual Monte Carlo calculation is performed following the lines outlined in ref.

have used our own results [13] for the unintegrated 2 —> 3 matrix elements for ab —>·ycd.

code which calculates the subtraction piece E.,d3aj§f’/d3p,, in eq. For this program we
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transform from the DIS,-scheme to the M-§—scheme as described in ref. [41]. For the

we use the next—to—leading order photon fragmentation functions of GRV [41] which we

fragmentation contribution. In addition to the distributions and parameters used before,

We now show some results for the effects of isolation on the next—to—leading order

subtraction cross sections.

results for the direct piece. From now on we shall solely use our approximations for the

by a Monte Carlo program since this is a rather hard task and needless in view of our

not attempt to check the accuracy of our approximation for this contribution numerically

proximation also works for the next—to—leading order fragmentation contribution. We do

The success of our approximation method for the direct piece implies that our ap

6 : 0.6.

by our results. At rapidity 1] = 1 our approximation starts to break down already at

small in order to make 6 coshr] still small. We have found this criterion to be confirmed

small-cone approximation to be a good approximation. Thus at large 7;, 6 must be very

jet study of ref. [40], 6cosh n, not 6, is the relevant quantity that must be small for the

Let us note that our approximation breaks down at large rapidities. According to the

thus to increase the cross section.

a negative contribution. The effect of subtracting E,d3ajQ*,b/d3p, from E.,d30QQ‘f'/d3p., is

E.,d3ajQ*,b/dsp., is negative. This feature stems from the logarithm in eq. (18) which gives
at small pT, exactly where our approximation is most accurate. From fig. 6 one infers that

which is certainly completely negligible. Note, however, that E.,d30j}‘,b/d3p., is important

E,d30·jQ*;’/d3p., at this PT thus leads to an overall error in E.,d30},f‘,?1/d3p, of about 0.5%

less than 5% already at pT M 50 GeV. An error of roughly 10% in our approximation for

line). As can be seen, both results are again very similar. The ratio Rd,. has decreased to

method for E,d3aj}‘,b/d3p., (solid line) and also using our Monte Carlo program (dashed

vs. py for fixed 6 : 0.4 and c = 0.1. We have calculated Rdi, using our approximation

_ _ E~d3¤&$$'/d°z>~ E~d3¤L?$’ /d31>~ — E~d3¤§1’."/d3p-{
Rdf, E _ (47) ’

E~d3¤§}‘f’/d3z>~

large pT. This is shown in fig. 6 where we have plotted the ratio

drawback since the subtraction piece becomes rather small and eventually negligible at

At larger pT the approximation seems to become slightly worse. This is, however, no
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of M I- values.

using again 6 = 0.4 and 6 : 0.1. The result is obviously a straight line over a wide range

next—to—leading order as a function of M f for two fixed values of PT and fixed p = M = pT,

ated cross section for prompt photon production (i.e. E,d3aQf$1/dap., + E,d30‘}f°Jg/d3p.,) in
a very weak dependence on M f. This can be seen in fig. 11 where we show the full isol

cross section) if it were possible to set 6 = 0 there. For 6 gé 0 but small we thus anticipate

scale would drop out completely from E,d3a,Q§$'/d3p., (which dominates the full isolated

ation scale M f. As we discussed in subsection 2.1, the dependence on the fragmentation

Finally we briefly study the dependence of our results on the choice for the fragment

behavior found in [6] which once more demonstrates the correctness of our results.

at fixed 6 = 0.4 (for fig. 9) or fixed 6 = 0.1 (for fig. 10). We can reproduce the rather flat

Baer et al. [5] was used. We use three different values for py, pT : 20, 50 and 100 GeV

on the parameters 6 and 6, which was also calculated in ref. [6] where the program of

ln figs. 9 and 10 we show our results for the dependence of E,d3aQ§‘§l /d3p.,+E.,d3oj.’,°,[g/d3p.,

isolated prompt photon production is substantial at small PT but not dominant.

the isolated next-to—leading order fragmentation contribution on the full cross section for

as a function of PT for the above values for 6 and 6. Fig. 8 shows that the influence of

°+“)E~d3¤§?f'/d3p~ - E~,<i3¤.§3"/d31>~ + E~d3¤§?f]/d3p~ — E~d3¤?¥2g/d3p~
.;.;:.mEd3¤?:;“*"/dm — Ed3¤:/d

E d3 i¤¤lr$Oz ~ User /d°"1>~ + E~d3¤;mg/d3P~
R E (49)

Y(gp7E’d3UTTOl/d3

study its importance, fig. 8 shows the ratio

by the constraint (4) and much smaller than it would be without any isolation cut. To

noted that the full isolated fragmentation cross section E,d3a}i‘fg/d3p, is strongly reduced

more important relative to the cross section it is subtracted from. It should, however, be

one also infers that Rfmg > Rdir, i.e. in the case of fragmentation the subtraction piece is

subtraction piece is again negative, thus enhancing the cross section. From figs. 6 and 7

piece is again small at large PT but important at small pT. As for the direct case, the

versus pgp for 6 = 0.4 and 6 == 0.1. It becomes obvious that the influence of the subtraction

_ _2 _ "°” ` E~d3¤3¢°Jg/d3p~ E.d3¤;$:;"r’/ep. — Eidwzzg/d3p~ (48,
E~d3¤}'¢Zg/d3P~E~d3¤}`$Z,,/ 631%

eq. (29))

(1+€)calculation of E,d3a;;;;/d3p., we use the program of [29]. Fig. 7 shows the ratio (cf`.
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and using the functions ’P,, : q,g) defined in eq. (40), we have [27]:

E7? 1 — v + vw
Gs v N Z

the common factor

processes in the same way as it was done in the FORTRAN code of ref. [29]. Defining

the various processes ab —> cX, where parton c fragments into the photon. We order the

In this appendix we present the cross sections d&g"‘*°/dvdw (to be used in eq. (35)) for

traction cross section

Appendix B: Final results for the fragmentation sub

where Cp = 4/3, Ng = 3, and Nf is the number of active flavors.

(2 H J") 2?($»y)d& NC 7m§(`§4+£4+&4) ~2 *2 ~2

(wl
d&?($»y) 1 rrd; A Cp NC @T({2+"2ll%‘?l

d& @?<$.y> ;@(;z+.;¤)[.@_&] NC $ ia $2
mi? (2+**) lz? ‘ nl;($»y)d6 l NO3 A A Ng OF 2 2

d&?($,y) é’+&’2+a2Q%[+£__;@] NC .2 £2 $2 NC$£
gg-(é,y)dé?j f MTCprro$2+122 §2+{2 2 32

NC g $2

”‘”‘ 0Fmi£2+a2?<é.y>
NC s {2

qd& CFm§$2+d’;($»y)
{E (pa — pc)2 = —-$(1 —— y) and {L E (pb — pC)2 : —.§y we have:

analytical results for the fragmentation subtraction cross section in appendix B. Using

for the processes ab -> cd (see for example [42]), to be used in eq. (22) and in our

In this appendix we collect the unpolarized 2 —> 2 QCD cross sections d6“b"’Cd(.§,y)/dy

Appendix A: 2 —> 2 QCD cross sections
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where z = 1 — v + vw and y = vw/(1 — v + vw), with d6“""°d(§,y)/dy given in eq. (50).

dvdw
(51)

;Z)dy
Ad6'gg"q N gg -( 3 y >) Pqq(Z)

d ydvdw

dN p(5, fp¤¤(z)d”g~qq ———* ‘ (8,y)dU·gg—>g (g¤(z)@ dy
ddvdw

A*N ¢> gz;j (M) + p¤q(z)@ (Zd&g9-vg N ¤()i*§dy
dvdw

A

1>’Z__j (A `*")+¢> qq(z)E,y)q()jddw ` @ dy (3)d5-Zy..q

q·d&
A _

;f d y *))p gq(z)@ 2<Nf_ 1)1> gq(z)—<· *21
dpdw

¤¤z)@ (· S; y)+Pg°(Z)@ *9)P(d ydégq-»g

dvdw

·‘N7’ j P¤¤(z)@ (g 1 y)d y )dégq-—>q (dq¤(Z);i
d vdw N JA A ' (3*/)

Adgz.9-oq

dydw
N? °”(Z)E 1 (`§=3/dAd6'€g—•q

dydw

A

N P°”(z)@ Jndggg-—>q

dvdw
Npg°(Z)Y@E._E .] *9)dO'2q~g

dvdw

A

Mp q()@( ~3 y)d&gq—>q

dvdw dy ’y))
d62q"q N (P°°(Z) ""· (3, y)+1>qg(Z)@Ei A ($
dvdw 2 dyN (P¤q(z)i(ig J., (5,y)+ Pg°(Z)@i-(3, 21)d5g<1·.,g

dvdw
qq(z _] A M (Sw)d&gq’..q

y
dvdw )E@ gq(Z d(5, V)

—»g

N (paq(z
d vdw

N q°(Z) [ A · (SW! )
d5g<1·..q
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A %_—(5»y) ($2 + 12 + 12; 2Cp s §2t2122
dA6-yy-my

A E;*—($,y) wm—L ({2 + 12) [Q - E] ZCFNC S m $2dA&ay—·q<i

NC é {1; $2A FSM)
dAgq€—·yy

Ng .§ t2A ?('Svy)
dA*<1y—·qy O

NC s | {2 $2 NG gi
__ +A ;iT—(S,y)

dA&q§—>q<i CFWOE I-§2;122{2+122 3Q

A W($»y)
dA&<1q—•<1<1 f MT + ‘ MCprro32-122 é2—{2 2 $2

NC é $2A T($»y)
dA6·q<i—>q6 Cp NO3 Z2 —§— 122

''

NC é {2A %‘·‘(—%3/)
dA6-qq—·qq Cp 7l'(1E.§2 — {L2

''

read [42]:

cross sections dA&§b/dvdw and dA&§b"’°/dvdw. The cross sections dA&"b”’°d(§,y)/dy
the relevant equations (22) and (51) to obtain the polarized subtraction piece subprocess

section 2.3 we then only have to replace the d6“b"°d(.§,y)/dy by the dA6“b"’°d(.€, y)/dy in

cross sections d6“b"’°d(.§,y)/dy presented in appendix A. According to the discussion in

this purpose we only need to know the polarized counterparts dA6“b“’°d(.§,y) / dy of the

In this appendix we finally collect our results for the case of longitudinal polarization. For

Appendix C: Results for the polarized case
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Fig. 10: Same as in fig. 9, but now as a function of the cone size 6 at fixed c = 0.1.

Mr = 6pr

GeV. As before we have chosen \/F = 1 TeV, 1] : 0 and the scales ii = M = py,
the energy resolution c at fixed cone size 6 = 0.4 for py = 20 GeV, 50 GeV and 100

Fig. 9: Dependence of the full isolated cross section E.,d3aQ§$l /d3p, + E,d30f)j°,fg/d3p., on

as defined in eq. (49), as a function of py.

8: The ratio R of isolated fragmentation contribution and full isolated cross sectionFig

calculated using our approximation method.

next-to-leading order fragmentation case, defined as in eq. (48), as a function of py,

7: The ratio Rfmg of subtraction cross section and isolated cross section for theFig

fig. 5.

E.,d30jQ*,°/dgp., calculated by the Monte Carlo program. The scales are chosen as in

to using our approximation for Eydgajff/d3p,, whereas the dashed one refers to

direct case, defined as in eq. (47), as a function of py. The solid line corresponds

6: The ratio Rd,. of subtraction cross section and isolated cross section for theFig

lu : M = py, but Mf = 6py. b: Same as in a, but for py = 50 GeV.

parameters 6 and c at x/8 = 1 TeV, py = 20 GeV and 7; = 0. We have chosen
5: az The relative deviation D defined in eq. (46) as a function of the isolationFig'

were defined in eq. (40).

small—cone approximation, corresponding to eq. (41). The functions 'Pgg and 'Pgq

4: a,b: Graphical representations for the two contributions to d&§g_°g/dvdw in theFig.

process (cf. eq. (38)).

3: Typical final state pole contribution in a next—to—leading order fragmentationFig'

fragmentation process with an additional parton in the isolation cone.

Fig. 2: Definitions for the energies of the involved particles in a next—to-leading order

tion cone.

to-leading order prompt photon production with an additional parton in the isola

an additional parton in the isolation cone. b: Fragmentation contribution to next

1: a: ’Direct’ contribution to next—to—leading order prompt photon production withFig'

Figure Captions
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factorization scales p : M = pT.

before we have chosen \/g = 1 TeV, 1] : 0, and the renormalization/ (initial state)
6 = 0.4 and 6 = 0.1. We have set M; : {6pT and vary { between 0.1 and 3. As

on the choice for the fragmentation scale M f for pT = 20 GeV and 50 GeV at fixed

Fig. 11: Dependence of the full isolated cross section E7d30Qf;’l/d3pA, + EA,d3a}j°Jg/dapw




















