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1 Introduction

The top-quark is the heaviest known particle and measurements of its properties provide

important insights into the Standard Model of Particle Physics and beyond. Top-quark

pair production at hadron colliders like the LHC or Tevatron is an important process for

Standard Model precision measurements as well as searches for new physics. Considering

the hadronic production of stable top-quark pairs, the prediction from Quantum Chromo-

dynamics (QCD) is compelete to next-to-next-to leading order (NNLO) for the total cross

section [1] and for differential distributions [2–4]. More recently NLO corrections from

electroweak interactions [5, 6] were also incorporated. A more complete modelling of pair

production including decay and off-shell effects is available to NLO accuracy in QCD [7, 8]

in the case of the di-lepton channel and more recently also for the semi-leptonic chan-

nel [10]. These results were extended to pair production in association with a jet [11, 12],

which is of relevance for inclusive production at NNLO.

Corrections to the top-quark decay process are known through NNLO in QCD [13, 14].

This has allowed for a partial prediction of the pair-production differential cross sections

with decay modelled within the Narrow Width Approximation (NWA) [15]. The only

missing piece of information is the exact contribution from NNLO production followed by

LO decay of the top quarks. This requires the knowledge of polarised two-loop amplitudes

for this process, which is the subject of this publication.

The evaluation of the polarised two-loop amplitudes closely follows the lines of [16]. To

obtain spin and color dependence of the amplitudes, we use projection techniques, which
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were also successfully applied in various two-loop calculations, for instance [17]. The most

demanding part of this calculation is the reduction and evaluation of involved scalar inte-

grals. The appearing scalar integrals can be reduced to the same set of master integrals as

those involved in the evaluation of the spin-summed amplitude. The evaluation of these

master integrals uses a variety of analytical and numerical techniques. Exploiting the sys-

tem of differential equations obeyed by these master integrals is the core idea behind these

methods. Most of the physical phase space region can be accessed by solving the differential

equations numerically. The regions of phase space that contain physical singularities can-

not be reliably accessed using numerical integration. We perform deep power-logarithmic

expansions around these singularities in order to obtain precise values for the master inte-

grals. We provide the results in terms of an expansion around the production threshold, a

high energy expansion, as well as an interpolation grid. To present and discuss some fea-

tures of our results, we recast the obtained coefficients with respect to a basis in color and

spin space, in terms the spin density matrix of the top quarks alone. Although our results

are obtained with numerical methods, there is also progress in the analytic evaluation of

master integrals for this process [18–22].

This paper is organised in the following way. In the next section we define the spin and

color structures into which the amplitudes are decomposed. We also discuss the projection

method we used to obtain the coefficients. Afterwards, we describe the methods used to

obtain numerical values for the master integrals in the physical phase space region as well

as the improvements we made considering the choice of the master integral basis. Next,

we present and discuss the results for the obtained coefficients. We close with conclusions

and outlook.

2 Structure of the amplitude

2.1 Spin and color structures for virtual amplitudes

The production of heavy quark pairs at hadron-hadron colliders involves two partonic QCD

processes at lowest multiplicity

gg → QQ̄ and qq̄ → QQ̄ . (2.1)

The momenta are assigned as follows

g, q(p1) + g, q̄(p2) → t(p3) + t̄(p4) , (2.2)

with on-shell conditions

p21 = p22 = 0 , p23 = p24 = m2
t . (2.3)

We define the following kinematic invariants

s ≡ (p1 + p2)
2 , t ≡ m2

t − (p1 − p3)
2 , u ≡ m2

t − (p2 − p3)
2 , (2.4)

where the relation s − t − u = 0 holds as a consequence of the aforementioned on-shell

conditions and momentum conservation. These invariants are related to the scattering
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angle θ of the top quark (with respect to the beam axis in p1 direction) and the top quark

velocity β as

t =
s

2
(1− β cos θ) , u =

s

2
(1 + β cos θ) , with β =

√

1− 4
m2

t

s
. (2.5)

The bare scattering amplitude can be expanded in a perturbative series in αs = g2s/4π and

reads up to second order

|Mg,q(αs,mt, ǫ)〉 = 4παs

[

∣

∣

∣M(0)
g,q(mt, ǫ)

〉

+
(αs

2π

) ∣

∣

∣M(1)
g,q(mt, ǫ)

〉

+
(αs

2π

)2 ∣
∣

∣M(2)
g,q(mt, ǫ)

〉

]

.

(2.6)

To facilitate the calculation of polarized virtual amplitudes, we decompose them in terms

of color and spin (Lorentz) structures in the color ⊗ spin space of external particles.

The color and spin decompositions of virtual amplitudes can be written as
∣

∣

∣M(l)
g,q(mt, ǫ)

〉

=
∑

i,j

c
(l)
ij (mt, s, t, ǫ) |C

g,q
i 〉 ⊗ |Sg,q

j 〉 , (2.7)

where l = number of loops, and the |Cg,q
i 〉 , |Sg,q

j 〉 on the right-hand side represent, re-

spectively, the chosen basis structures in the color ⊗ spin space. We denote the state of

the external particles by |a, b, c, d〉 in color and |h1, h2, h3, h4〉 in spin space, where a, b and

h1, h2 concern the initial state, while c, d and h3, h4 the final state, in the same order as

for the kinematics. With this notation, the color and spin basis structures of eq. (2.7) can

be written in full generality in the case of a gluon initial state as

〈a, b, c, d|Cg
i 〉 = (Cg

i )
ab
cd ,

〈h1, h2, h3, h4|S
g
i 〉 = ǫ1(h1)µǫ2(h2)ν ū3(h3)(Si)

gµνv4(h4) , (2.8)

and similarly for a quark initial state

〈a, b, c, d|Cq
i 〉 = (Cq

i )abcd ,

〈h1, h2, h3, h4|S
q
i 〉 = v̄2(h2)Γiu1(h1)ū3(h3)Γ

′
iv4(h4) . (2.9)

Notice that in our work, we do not choose any specific representation of spinors or po-

larisation vectors. Thus, for example, h3,4 are not necessarily helicities in the case of the

heavy quarks. By providing results in terms of spin structures Si, we allow to translate

the amplitudes to any particular polarisation basis. For phenomenological applications, we

provide the spin density matrix, which contains all the necessary information in terms of

spin vectors of the heavy quarks, see section 2.3.

The color decomposition basis of amplitudes can be chosen straightforwardly. For the

gg → tt̄, we use the natural basis

Cg
1 = (T aT b)cd ,

Cg
2 = (T bT a)cd ,

Cg
3 = Tr{T aT b}δcd . (2.10)
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In the case of quark annihilation in the initial state, the color basis reads

Cq
1 = δabδcd ,

Cq
2 = δadδcb . (2.11)

For each of the color structures Ci, we decompose the amplitudes further in terms

of spin (Lorentz) structures. To this end, we assume that all four external particles are

confined to 4-dimensional space and are on-shell with physical polarization states (i.e. 4-

dimensional equations of motion are satisfied). Under this condition, we have in total

24 = 16 different physical helicity configurations both in the gg → tt̄ and the qq̄ → tt̄

process. Additional symmetry properties enjoyed by the amplitudes can lead to relations

which further reduce the number of linearly independent structures. Indeed, on top of

the aforementioned kinematic constraints, QCD interactions are invariant with respect to

parity, under which the helicity of each of the four external particles is flipped, while the

color structures are left unchanged. This symmetry then reduces the linearly independent

spin structures down to 8 (in 4-dimensional space), both in the gg → tt̄ and qq̄ → tt̄ cases.

QCD interactions are also invariant under charge conjugation. However, this operation

also involves the color structure. For this reason, we did not impose C-symmetry when

determining the basis of Lorentz structures for the color-stripped amplitudes. For the same

reason, implications from Bose-symmetry between the two gluons are not considered at this

point, but rather used as a test at the end of the calculation.

At this point, we discuss the particulars for the two specific amplitudes, since additional

symmetry properties are process dependent.

Let us first consider the gg → tt̄ case. Here, we assume that both polarisation vectors

are orthogonal to both of the initial state momenta, p1 and p2 (see eq. (2.2)). This reduces

the number of degrees of freedom to the physical two. Spin sums should, therefore, be

performed with

∑

h

ǫ∗µ(h)ǫν(h) =

(

−gµν +
p1µp2ν + p1νp2µ

p1 · p2

)

. (2.12)

After stripping off the external wave functions we choose the following set of 8 Lorentz

structures, with suppressed spinor indices

Sgµν
1 =

1

s
(γµpν3 + γνpµ3 ) , Sgµν

2 =
mt

s
gµν1 ,

Sgµν
3 =

1

smt
pµ3 p

ν
31 , Sgµν

4 =
1

sm2
t
/p1p

µ
3p

ν
3 ,

Sgµν
5 =

1

s
/p1g

µν , Sgµν
6 =

1

smt
/p1 (γ

νpµ3 + γµpν3) ,

Sgµν
7 =

1

s
(γµpν3 − γνpµ3 ) , Sgµν

8 =
mt

s

(

/p1g
µν − /p1γ

µγν
)

. (2.13)

The additional factors of mt and s are inserted such that all structures are dimensionless

once multiplied with spinors (which are assumed to have mass dimension 1/2). The struc-

tures are grouped according to whether they are symmetric (S1 to S6) or anti-symmetric
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(S7 and S8) under the exchange of µ ↔ ν. It can be checked explicitly that each of the

above Lorentz structures is mapped back to itself under the parity transformation (up to

a phase factor). The Gram determinant of this set of structures is not identically zero,

assuring that they are linearly independent.

In case of the qq̄ → tt̄ process with massless initial-state quarks and limited to QCD

interactions, the massless quark line is disconnected from the massive top-quark line. Chi-

rality conservation in QCD, therefore, implies that only half of the helicity configurations of

the initial-state massless quarks are non-zero. Once this additional constraint is accounted

on top of those aforementioned ones, one finds that there are only four independent helicity

amplitudes left. We therefore choose the following set of 4 Lorentz structures of the form

S = Γ⊗ Γ′ (Γ denotes a string of γ matrices)

Sq
1 =

1

smt
/p3⊗1 , Sq

2 =
1

sm2
t
/p3⊗/p1 , Sq

3 =
1

s
γµ⊗γµ , Sq

4 =
1

smt
γµ⊗(/p1γµ) , (2.14)

where the left-hand side of the ⊗ symbol concerns the massless fermion line, while the

right-hand side concerns the massive fermion line. Again, the linear independence of these

structures can be verified via the Gram determinant.

The coefficient functions of the above color and spin decomposition of amplitudes can

be extracted by performing the usual projection procedure. In short, the projection of

the virtual amplitude onto each of the chosen basis structures gives an equation linear in

the coefficient functions. The collection of all projections onto the linearly independent,

complete set of basis structures then forms an invertible linear algebraic equation system

in the coefficient functions, which can be solved straightforwardly. The coefficient matrix

of this linear algebraic equation system is identical to the Gram matrix of the chosen basis.

We note already at this point that in our calculation, the structures Sg
6 and Sq

4 have

vanishing coefficients for all color structures.

Even though we performed our calculations with the basis specified in eq. (2.10),

it is possible to express the coefficient functions for the gluon channel in terms of the

orthonormal basis

Cg
8S

=

√

2NC

(N2
C − 1)(N2

C − 4)

(

Cg
1 + Cg

2 −
2

NC
Cg
3

)

, (2.15)

Cg
8A

=

√

2

NC(NC − 1)

(

Cg
1 − Cg

2

)

, (2.16)

Cg
1
=

2
√

NC(NC − 1)
Cg
3 , (2.17)

whereNC = 3 is the number of colors, and 8S, 8A denote the symmetric and anti-symmetric

octet states respectively, while 1 the singlet state. The advantage of this choice of basis

is that there is no mixing between the color structures when calculating color summed

amplitudes. On the other hand, with these structures the coefficient functions exhibit a

simple Bose symmetry. Indeed, for the spin structures Sg µν
1 , Sg µν

2 , Sg µν
3 , Sg µν

7 , Sg µν
8 the

coefficients of Cg
8S

and Cg
1
are symmetric under the exchange cos θ → − cos θ, while the
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coefficient of Cg
8A

is anti-symmetric under this transformation. For the spin structures

Sg µν
4 and Sg µν

5 the situation is reversed, the coefficients of Cg
8S

and Cg
1
are anti-symmetric

while Cg
8A

have symmetric coefficients. These properties are consistent with the numerical

results, and constitute a test of the calculation.

2.2 Ultraviolet and infrared renormalisation

The chosen color ⊗ spin basis may be used in d-dimensions after extension of the spin

structures by evanescent combinations. For physical applications, however, we should only

need 4-dimensional quantities. Due to the presence of infrared singularities, meaning-

ful amplitudes are only obtained after the usual ultraviolet renormalisation followed by

infrared subtraction (multiplicative renormalisation). This procedure results in so-called

finite remainders, which are, however, scheme dependent.

The UV renormalized amplitude reads
∣

∣

∣

∣

MR
g,q(α

(n
f
)

s ,m, µ, ǫ)

〉

=

(

µ2eγE

4π

)−2ǫ

Zg,qZQ

∣

∣M0
g,q(α

0
s,m

0, ǫ)
〉

, (2.18)

where we used the on-shell wave function renormalisation constants Zg, Zq and ZQ. The

renormalised heavy quark mass m is related to the bare mass by m0 = Zmm. The coupling

constant is renormalized in the MS scheme with nf = nl + nh active flavours

α0
s =

(

eγE

4π

)ǫ

µ2ǫZ
(n

f
)

αs α
(n

f
)

s (µ) . (2.19)

As argued in [16] a decoupling of the heavy flavours from the running of αs is necessary to

correctly accommodate for heavy quark mass effects in regimes where the produced heavy

quarks are not very relativistic. This decoupling can be achieved by the replacement

α
(n

f
)

s = ζαsα
(n

l
)

s , (2.20)

where ζαs is the decoupling constant.

The wave-function and the coupling renormalisation (including decoupling) act multi-

plicatively on the amplitudes and, therefore, also on the coefficients cij . The mass renor-

malization counter term, on the other hand, requires an additional decomposition of the

lower order amplitudes into color ⊗ spin structures. The necessary renormalisation and

decoupling constants are given in the appendix A.

The UV renormalized coefficient functions still contain infrared divergences. However,

the infrared structure is known in terms of lower order amplitudes [23–29], and can be

extracted from the UV renormalised amplitude
∣

∣

∣
M(0)

n

〉

=
∣

∣

∣
F (0)
n

〉

, (2.21)

∣

∣

∣
M(1)

n

〉

= Z(1)
∣

∣

∣
M(0)

n

〉

+
∣

∣

∣
F (1)
n

〉

, (2.22)

∣

∣

∣M(2)
n

〉

= Z(2)
∣

∣

∣M(0)
n

〉

+ Z(1)
∣

∣

∣F (1)
n

〉

+
∣

∣

∣F (2)
n

〉

(2.23)

=
(

Z(2) − Z(1)Z(1)
) ∣

∣

∣
M(0)

n

〉

+ Z(1)
∣

∣

∣
M(1)

n

〉

+
∣

∣

∣
F (2)
n

〉

, (2.24)
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where |Fn〉 is the finite remainder amplitude, we are interested in. Z = 1+ Z(1) + Z(2) +

O
(

αs
3
)

is the IR renormalization constant. It is an operator in color space and can be

obtained from its renormalisation group equation

d

d lnµR
Z (ǫ, {pi}, {mi}, µR) = −Γ ({pi}, {mi}, µR)Z (ǫ, {pi}, {mi}, µR) , (2.25)

where the anomalous dimension Γ is given in the appendix A. Since the Z operator acts

in color-space, the terms Z(i)
∣

∣

∣M
(k)
n

〉

have to be projected back onto the color structures

to obtain the corresponding counter terms for the coefficients. The minimal definition of

the renormalisation operator Z, which consists of poles in the dimensional regularisation

parameter only, specifies our IR renormalisation scheme uniquely.

In [61], it was shown that the triple-color correlators of the soft anomalous dimension

matrix cannot contribute to spin and color summed matrix elements. Since we keep color

and spin dependence this is no longer true in our case. In fact, our calculation is the first

to rely on the coefficient

∑

(I,J)

∑

k

i fabcTa
I T

b
J T

c
k f2

(

βIJ , ln
−σJk vJ · pk
−σIk vI · pk

)

,

to correctly obtain all poles of the coefficients functions. In consequence, it constitutes the

first non-trivial cross-check of this contribution to the soft anomalous dimension matrix,

which was originally derived in [28].

2.3 Spin density matrix

For illustration of our results, we choose to recast the amplitude into a more convenient

form. In general, since each coefficient has a real and imaginary part, our calculation

yields 54 real functions. However, not all of them enter independently into physical predic-

tions. Therefore, we also evaluate the spin density matrix, which contains all the necessary

information on the top-quark spin dependence and is sufficient for phenomenological ap-

plications.

The spins of the top-quarks in their rest frame can be described by two normalised

spin 3-vectors ŝt and ŝt̄. They correspond to two four-vectors st and st̄ in the center of

mass frame which have the properties

s2t = s2t̄ = −1 and p3 · st = p4 · st̄ = 0 . (2.26)

The vectors st and st̄ enter the matrix element through the insertion of the spin projectors

u(p3, st)ū(p3, st) =
(

/p3 +m
) 1

2

(

1 + γ5/st
)

, (2.27)

v(p4, st̄)v̄(p4, st̄) =
(

/p4 −m
) 1

2

(

1 + γ5/st̄
)

. (2.28)

Since we work with finite remainders without any divergences, the presence of the γ5 matrix

does not constitute any complication. Indeed, the spin density matrix is simply evaluated

– 7 –
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in 4 dimensions. The two-loop contribution to the spin-density matrix for both partonic

processes can be decomposed as

R2-loop
q,g (st, st̄) = 2Re

〈

M0
q,g

∣

∣M2
q,g

〉

(st, st̄) = Aq,g + (C)q,g

(

(st · st̄)

)

+ (Bt)q,g

(

ǫµναβp1µp2νp3αstβ

)

+ (Bt̄)q,g

(

ǫµναβp1µp2νp3αst̄β

)

+ (D1)q,g

(

(p1 · st)(p1 · st̄)

)

+ (D2)q,g

(

(p2 · st)(p2 · st̄)

)

+ (E12)q,g

(

(p1 · st)(p2 · st̄)

)

+ (E21)q,g

(

(p2 · st)(p1 · st̄)

)

. (2.29)

These functions are related to the 2-loop components of the spin density matrix Rq,g as

defined in [51] through

R2-loop
q,g =

1

4
Tr [Rq,g(1+ ŝtσ)⊗ (1+ ŝt̄σ)]

∣

∣

∣

∣

2-loop

. (2.30)

The coefficients of the occurring structures are functions of cos θ and β only. In pure

QCD C,P and CP invariance hold and imply that Bt = Bt̄ = B as well asD1 = D2 = D [51]

for both channels. Therefore we are left with

R2-loop
q,g = Aq,g + (B)q,g

(

ǫµναβp1µp2νp3αstβ + ǫµναβp1µp2νp3αst̄β

)

+ (C)q,g

(

(st · st̄)

)

+ (D)q,g

(

(p1 · st)(p1 · st̄) + (p2 · st)(p2 · st̄)

)

+ (E12)q,g

(

(p1 · st)(p2 · st̄)

)

+ (E21)q,g

(

(p2 · st)(p1 · st̄)

)

. (2.31)

In the gluon case we have an additional bose-symmetry which implies that the functions

Ag, Cg, Dg are symmetric in cos θ and that Bg has to be an antisymmetric function in cos θ.

It also implies the relation E12g(cos θ) = E21g(− cos θ).

3 Scalar integrals

The coefficients functions cij are given by linear combinations of a large number of scalar

integrals with rational coefficients in s, t,m2 and ǫ. These scalar integrals are expressed

through linear combinations of master integrals using an Integration-by-Parts (IBP) re-

duction. We can rewrite the coefficients, as well as the master integrals, in terms of

dimensionless variables ms = m2/s and x = t/s. From the IBP relations we can obtain a

system of differential equations for the master integrals

ms
∂

∂ms

~I(ms, x, ǫ) = A(ms)(ms, x, ǫ)~I(ms, x, ǫ) , (3.1)

x
∂

∂x
~I(ms, x, ǫ) = A(x)(ms, x, ǫ)~I(ms, x, ǫ) , (3.2)

where A(ms) and A(x) are matrices whose elements are rational functions in ms, x and ǫ.

– 8 –



J
H
E
P
0
3
(
2
0
1
8
)
0
8
5

Figure 1. Class of diagrams leading to enhanced matrix elements at high energy and low scattering

angle.

We do not choose the same set of master integrals as in the spin summed calculation.

There is an enhancement of the matrix elements at high energies and small/large scattering

angles resulting from diagrams of a t/u-channel type as indicated in figure 1. These en-

hancements require numerically very stable results for the master integrals in these phase

space regions. For this reason, we decided to try a basis for a subset of the integrals, which

corresponds to the ǫ-form of the differential equation (see next section). Our hope was that

in this basis the numerical evaluation will become more stable. Ultimately, this turned out

not to be the case. We stress, nevertheless, that the results obtained in the old and new

bases for the spin summed amplitudes agree to several digits, within the accuracy of the

calculation.

3.1 Canonicalization

With the hope to achieve a better stability when numerically solving the differential equa-

tions for master integrals involved in the two-loop gg → tt̄ process, we choose to put the

equation system partially into the ǫ-form [30], where the right-hand side of the differential

equation system is proportional to ǫ = d−4
2 and the singularities are only simple poles in the

kinematic variables. Algorithmic approaches have been devised to arrive at the ǫ-form for

a given differential equation system for master-integrals in a single variable [31, 32]. They

have been implemented in Fushsia [34] and Epsilon [35] which are publicly available.

In the case of multiple variables there also exists an algorithm, presented in refs. [36, 37]

and implemented in a program called Canonica. It is well known that, for a given set

of master integrals, an ǫ-form is not always achievable by a rational transformation of the

integral basis. It is also not always possible [32, 38, 39] even with more general transforma-

tions. In particular, ref. [32] provides a strict criterion for the existence of an ǫ-form in the

case of master integrals of a single variable. In particular, the 4-dimensional homogeneous

part of the differential equation system typically corresponds to high-order Picard-Fuchs

differential equations that do not factorize completely [39]. The simplest counter example

is given by the differential equations of the master integrals of the two-loop sunset diagrams

with identical masses [40, 41], where solutions involve elliptic integrals.

The topology of the two-loop sunset diagrams with equal masses appears in the IBP-

reduction of the master integrals of the two-loop gg → tt̄ diagrams. Thus, it is not a

surprise that the full system of differential equations of the 422 master integrals involved

cannot be completely put into the ǫ-form. In addition, a considerable amount of sectors
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require individual coordinate transformations in order to arrive at their respective ǫ-forms

by rational transformations (in the new variables). Since we would like to numerically

integrate the full differential equation system of all master integrals in one go, we are then

forced to divide the master integrals into two subsets: those that can be directly put into

the ǫ-form via a rational transformation in the original variables and those that cannot.

The second subset essentially consists of master integrals fulfilling any of the following

three conditions:

1) their expressions involve elliptic integrals;

2) coordinate transformations are required in order to reach their ǫ-form;

3) their derivatives involve any one of the aforementioned two kinds of master integrals.

Under such tight selection criteria, there are only 65 master integrals that can be directly

transformed into the basis observing the ǫ-form (in the original variables). They are iden-

tified and then subsequently moved to the front of the differential equation system of the

422 master integrals, without spoiling the block-wise triangular structure of the differen-

tial equation system. The numerical evaluation of the complicated master integrals are

expected to benefit from the ǫ-form of these 65 master integrals. The differential equation

system of these 65 master integrals in question involves more than one variable,1 and we

employ the package CANONICA [37] to find the rational transformation matrix needed

for obtaining the ǫ-form. A few modifications of the program were made in order to tackle

this 65-by-65 system with less time consumption.

As a side remark, we would like to briefly mention the following point. Due to the

existence of remnant rational transformations that preserve the ǫ-form of a differential

equation system, the new basis integrals defined by the rational transformation matrix

returned by the package CANONICA [37] are not guaranteed to be of uniform weight [30,

38]. Upon a closer examination, we find that in general not all of these remnant rational

transformations respecting the ǫ-form (if it exists) are of weight 0 according to the counting

rules laid in [30, 38].

To be more specific about this, we find this remnant freedom to be the following.

Under any rational transformation mixed with any coordinate-transformation under the

condition of keeping the resulting differential system still rational in the new variables,

the remnant rational transformations that preserve the ǫ-form of the differential equation

system (assuming it exists and is represented by ǫdÃ), read

T̂R(ǫ) = T̂I(ǫ)Ĉ , (3.3)

where Ĉ can be any invertible constant matrix of rational numbers of the same dimension as

the ǫ-form coefficient-matrix dÃ. T̂I(ǫ) is independent of kinematics but possibly possesses

some non-trivial ǫ-dependence. It can be any element from the invariance symmetry group

of the coefficient-matrix dÃ with matrix elements being Laurent-polynomials in ǫ with

rational numerical coefficients. In other words, T̂I(ǫ) is a matrix that is invertible and

1We treat the triangle graphs as part of box topologies. In principle, one could single out this class of

graphs and solve them separately. In this case, there is a basis in which they only depend on one variable.

We were interested in trying canonicalization in the multivariate case.
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commutes with dÃ with all its matrix-elements living in the ring of ǫ over rational numbers.

Owing to its invertibility and the fact that it consists of rational numbers only, the matrix

Ĉ always preserves the uniform weight feature of the vector on which it acts (if this feature

is there in the first place). However, some of T̂I(ǫ) with non-trivial ǫ-dependence can turn a

list of uniform weight master-integrals into a list of non-uniform-weight integrals, and vice

versa, even though both perfectly observe ǫ-form differential equations. Since there is no

reference to the concrete boundary conditions of the differential equations in the process

of finding the rational transformation done by the package CANONICA, it is therefore

not guaranteed that the solutions of the ǫ-form differential equations thus obtained are of

uniform weight.

3.2 Master integral evaluation

We subdivide the physical phase space region into three regions, the high energy limit

where ms → 0, the threshold region β → 0, and the “bulk” which describes the rest of the

phase space region.

For the numerical integration of the new set of master integrals, high precision bound-

aries are needed. They are obtained from the power-logarithmic expansion in the high

energy limit from the original set of master integrals. The first few terms of those ex-

pansions were obtained with Mellin-Barns techniques using the MB package [46]. These

expansions are exact in t, where in some cases the differential equations were used to get

the exact behaviour from the limit t = 0. In this double limit m2 → 0 and t → 0 the inte-

grals were evaluated numerically with very high precision and then resummed with PSLQ

algorithm [47] or XSummer [48]. These first terms were used to derive deep expansions in

ms by using the available differential equations. These deep expansions were subsequently

used to compute high precision boundaries for the numerical integration.

Starting from the numerical results obtained from the deep power logarithmic expan-

sion, we perform a numerical integration along contours in the complex plane. In our

programs we incorporate software from [49] for solving the differential equations and [50]

to handle higher precision numbers. The endpoints of the contours define an interpolation

grid. In the region which is accessible with this method, i.e. where the coefficient func-

tions are not too singular, we evaluate the amplitudes using this interpolation grid. The

sampling points are the same as in [1, 52–54] with an extension to higher values of β.

In the limit β → 0 some master integrals show singular behavior and are difficult to

obtain with the method of numerical integration. We perform a deep power-logarithmic

expansion of the master integrals in β by again exploiting the differential equations up to

O
(

β50
)

and O
(

ln10 β
)

. This expansion is done for several fixed angles cos θ with unknown

boundary conditions, which are finally determined by matching to the results obtained by

numerical integration.

4 Results

In this publication, we provide results for the finite remainders of all coefficient functions.

They are given in the form of an interpolation grid as well as kinematic expansions in the

high energy limit and near the production threshold. The decomposition into the structure
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coefficients yields maximal flexibility since they are independent of the frame, definition of

heavy quark spin vectors and other conventions.

At tree-level we find the following non-vanishing coefficients in case of gluons

c
(0)
11 =

−1

x
, c

(0)
21 =

−1

1− x
, (4.1)

c
(0)
15 =

2x− 1

x
, c

(0)
25 =

2x− 1

1− x
, (4.2)

c
(0)
17 = c

(0)
18 = −c

(0)
11 , c

(0)
27 = c

(0)
28 = −c

(0)
21 . (4.3)

These have the expected symmetry properties under the replacement cos θ → − cos θ or

x → 1− x. In case of quark-anti-quark annihilation we find only

c
(0)
13 =

1

2
, c

(0)
23 =

−1

6
, (4.4)

to be non-vanishing. We find that in both cases, quark and gluon initial state, one spin

structure has vanishing coefficients for every color structure at one and two-loops. Indeed,

in the case of gluons the coefficients ci6 vanish, as do the coefficients ci4 in the case of

quarks. All other spin structures have non-vanishing coefficients.

The high energy limit of the coefficients was calculated as an analytic power-logarith-

mic expansion in ms = mt

s
up to O

(

m4
s

)

, using the boundary expressions for the master

integrals. This expansion assumes that t, u ≫ m2
t and is therefore not valid in the region of

high-energy forward/backward scattering. The results were cross-checked against the spin

summed amplitude.

We want to mention that the depth of the expansion does not translate easily to the

expansion depth of the square summed or spin correlated matrix element since there is a

non trivial dependence on ms (or β in case of the threshold expansion) hidden in the spin

structures themselves.

The “bulk” region is parameterized on a grid which is specified by equally spaced

points in β

βi = i/80 , i ∈ [1, 79] , (4.5)

and two additional points close to the high energy boundary. The point β80 = 0.999 is

sufficient for LHC with 8TeV center-of-mass energy, which was the extent of the interpola-

tion grid of the spin summed calculation. Here, we extend the grid to β81 = 0.9997 which

corresponds to a center of mass energy of 14TeV, for contemporary applications. For cos θ

we choose 42 points obtained from

cos θ = ±xi , i ∈ [1, 21] , (4.6)

where we chose the xi as the 21 points obtained from the Gauss-Kronrod integration rule

of degree 10. Values for β < 0.1 were obtained from the threshold expansion of the master

integrals. The dependence on the number of light fermions is kept.
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In order to illustrate our results we plot the coefficients of the spin density matrix. We

introduce the following normalization factors, which were also used for the presentation of

the results in [16]

Ng =
β(1− β2)

4096π
and Nq =

β(1− β2)

576π
, (4.7)

and define

RF
g = Ng2Re

〈

M0
g

∣

∣F2
g

〉

(st, st̄) , (4.8)

RF
q = Nq2Re

〈

M0
q

∣

∣F2
q

〉

(st, st̄) , (4.9)

which have the same decomposition as in eq. (2.31). The coefficient functions of RF
g and

RF
q are visualised in figures 2 and 3 for nl = 5. The function A

n
l
=5

q,g is the spin-summed

and averaged two-loop finite remainder and was checked against the result from [16]. The

function B
n
l
=5

q,g describes the transverse polarization of the top quarks resulting from ab-

sorptive parts of the amplitude. At tree-level, this coefficient vanishes due to the absence

of complex couplings in QCD. At higher orders, the non-vanishing imaginary part of the

virtual amplitudes yields non-zero coefficients. The remaining functions encode the spin

correlations between the top and anti-top quark since their structures contain both spin

vectors. In the gluon channel, all expected symmetry properties under cos θ → − cos θ of

the coefficient functions are clearly fulfilled.

The threshold region is covered by points obtained from the deep power-logarithmic

expansions of the master integrals. In addition we perform a power-log expansion in β for

all coefficients up to β2. This is done for different but fixed scattering angles cos θ

cij(β, cos θn) =

2
∑

k=−2

2
∑

l=0

c̃ij,kl,nβ
k lnl β .

The dependence on θ was recovered by performing a fit for each set {c̃ij,kl,n}n to a poly-

nomial c̃ij,kl =
∑2+k

n=0 an cos
n θ separately for the real and imaginary part. The results are

also available in electronic format together with this paper. This expansion was used to

determine the corresponding coefficients of the spin density matrix as well. Up to O
(

β0
)

we reproduce the analytic result obtained for the spin-summed case in [16].

To study the quality and convergence of the expansion, we also calculated the density

matrix for a fixed angle (chosen to be the point x9) up to order O
(

β6
)

. In figures 4 and 5

we compare this expansion against the results obtained from the interpolation grid. We

show the difference2

(

X
n
l
=5

diff

)

(β, x9) =
(

X
n
l
=5

thres

)

(β, x9)−
(

X
n
l
=5

grid

)

(β, x9) , (4.10)

with X ∈ {Ag, Bg, Cg, Dg, E12g} for different expansion depths of
(

X
n
l
=5

thres

)

(β, x9). The

series seems to converge nicely and, if expanded up to O
(

β6
)

, provides a reasonable de-

scription of the amplitude in the region β < 0.3.

2We do not plot the relative difference, because the coefficient functions have a zero in the plotted region.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Finite remainder coefficient functions of the spin-density matrix in case of initial state

gluons for nl = 5.

5 Conclusions and outlook

We presented the decomposition of the heavy-quark pair production amplitude in terms

of spin and color structures at two-loop level. We provide results in terms of interpolation

grids and kinematic expansions for these coefficients. As a first application we calculated

the spin-density matrix for top-quark pairs. With this work we provide the missing piece

needed for the calculation of on-shell top-quark pair production and decay at NNLO in

QCD including spin-correlation effects in the narrow width approximation. We improved

the numerical results obtained for the involved master integrals by changing to a partly
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Finite remainder coefficient functions of the spin-density matrix in case of initial state

quarks for nl = 5.

canonical basis. The incorporation of these amplitudes in a full-fledged calculation of

top-quark pair production and decay is work in progress.

The full set of results of this paper is available at: https://git.rwth-aachen.de/mczakon/

PolarizedTTNNLO.
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A Renormalization constants and anomalous dimensions

We list all necessary renormalization constants up to the needed power in ǫ. The on-shell

renormalization constants are

Zg = 1 +





α
(n

f
)

s

2π



TFnh

{

−
2

3ǫ
−

2

3
lµ −

1

3
ǫl2µ −

π2

18
ǫ−

1

9
ǫ2l3µ −

π2

18
ǫ2lµ +

2

9
ǫ2ζ3

}

+





α
(n

f
)

s

2π





2

TFnh

{

TFnh

[

4

9ǫ
lµ +

2

3
l2µ +

π2

27

]

+ TFnl

[

−
4

9ǫ2
−

4

9ǫ
lµ −

2

9
l2µ −

π2

27

]

+CF

[

−
1

2ǫ
− lµ −

15

4

]

+ CA

[

35

36ǫ2
+

13

18ǫ
lµ −

5

8ǫ
−

5

4
lµ +

1

9
l2µ +

13

48
+

13π2

216

]}

,

Zq = 1 +





α
(n

f
)

s

2π





2

CFTFnh

[

1

4ǫ
+

1

2
lµ −

5

24

]

,

ZQ = 1 +





α
(n

f
)

s

2π



CF

{

−
3

2ǫ
− 2−

3

2
lµ − 4ǫ− 2ǫlµ −

3

4
ǫl2µ −

π2

8
ǫ− 8ǫ2 − 4ǫ2lµ − ǫ2l2µ

−
1

4
ǫ2l3µ −

π2

6
ǫ2 −

π2

8
ǫ2lµ +

1

2
ǫ2ζ3

}

+





α
(n

f
)

s

2π





2

CF

{

TFnh

[

1

4ǫ
+

1

ǫ
lµ +

947

72
+

11

6
lµ

+
3

2
l2µ −

5π2

4

]

+ TFnl

[

−
1

2ǫ2
+

11

12ǫ
+

113

24
+

19

6
lµ +

1

2
l2µ +

π2

3

]

+ CF

[

9

8ǫ2
+

51

16ǫ

+
9

4ǫ
lµ +

433

32
+

51

8
lµ +

9

4
l2µ −

49π2

16
+ 4 ln 2π2 − 6ζ3

]

+ CA

[

11

8ǫ2
−

127

48ǫ
−

1705

96

−
215

24
lµ −

11

8
l2µ +

5π2

4
− 2 ln 2π2 + 3ζ3

]}

,

Zm = 1 +





α
(n

f
)

s

2π



CF

{

−
3

2ǫ
− 2−

3

2
lµ − 4ǫ− 2ǫlµ −

3

4
ǫl2µ −

π2

8
ǫ− 8ǫ2 − 4ǫ2lµ − ǫ2l2µ

−
1

4
ǫ2l3µ −

π2

6
ǫ2 −

π2

8
ǫ2lµ +

1

2
ǫ2ζ3

}

+





α
(n

f
)

s

2π





2

CF

{

TFnh

[

−
1

2ǫ2
+

5

12ǫ
+

143

24

+
13

6
lµ +

1

2
l2µ −

2π2

3

]

+ TFnl

[

−
1

2ǫ2
+

5

12ǫ
+

71

24
+

13

6
lµ +

1

2
l2µ +

π2

3

]

– 17 –



J
H
E
P
0
3
(
2
0
1
8
)
0
8
5

+CF

[

9

8ǫ2
+

45

16ǫ
+

9

4ǫ
lµ +

199

32
+

45

8
lµ +

9

4
l2µ −

17π2

16
+ 2 ln 2π2 − 3ζ3

]

+CA

[

11

8ǫ2
−

97

48ǫ
−

1111

96
−

185

24
lµ −

11

8
l2µ +

π2

3
− ln 2π2 +

3

2
ζ3

]}

, (A.1)

where lµ = lnµ2/m2. The on-shell wave-function renormalization constants for the gluon

and light quark fields have been taken from [55, 56].

For the heavy-quark wave-function and mass renormalization constants we used expres-

sions from [57]. The MS renormalization constant for the strong coupling up to O

(

α
(n

f
)

s

2
)

is given in terms of beta-function coefficients

Zαs = 1−





α
(n

f
)

s

2π





b0
2ǫ

+





α
(n

f
)

s

2π





2
(

b20
4ǫ2

−
b1
8ǫ

)

, (A.2)

where

b0 =
11

3
CA −

4

3
TFnf , b1 =

34

3
CA

2 −
20

3
CATFnf − 4CFTFnf . (A.3)

The two-loop decoupling constant for the strong coupling is given by [58]

ζαs = 1 +

(

α
(n

l
)

s

2π

)

TFnh

{

2

3
lµ +

1

3
ǫl2µ +

π2

18
ǫ+

1

9
ǫ2l3µ +

π2

18
ǫ2lµ −

2

9
ǫ2ζ3

}

+

(

α
(n

l
)

s

2π

)2

TFnh

{

4

9
TFnhl

2
µ + CF

[

15

4
+ lµ

]

+ CA

[

−
8

9
+

5

3
lµ

]}

. (A.4)

The anomalous dimension of the Z operator used to define the finite remainder function is

given by [28]

ΓM({p}, {m}, µ) =
∑

(i,j)

Ti ·Tj

2
γcusp

(

α
(n

l
)

s

)

ln
µ2

−sij
+
∑

i

γi
(

α
(n

l
)

s

)

−
∑

(I,J)

TI ·TJ

2
γcusp

(

βIJ , α
(n

l
)

s

)

+
∑

I

γI
(

α
(n

l
)

s

)

+
∑

I,j

TI ·Tj γcusp

(

α
(n

l
)

s

)

ln
mI µ

−sIj

+
∑

(I,J,K)

i fabcTa
I T

b
J T

c
K F1(βIJ , βJK , βKI)

+
∑

(I,J)

∑

k

i fabcTa
I T

b
J T

c
k f2

(

βIJ , ln
−σJk vJ · pk
−σIk vI · pk

)

.

(A.5)

The lower case indices denote sums over massless particles while capital letters denote

sums over massive particles. The brackets (i, j, . . .) indicate that the sums go over different
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indicies. The action of the color operator Ta
i dependence on the type of the parton with

index c it acts on. After projecting the result onto the index b we have that in case of a

gluon (Ta)bc = −ifabc . In case of an outgoing quark (incoming anti-quark) (Ta)bc = T a
bc

and (Ta)bc = −T a
bc for a incoming quarks (or outgoing anti-quark). For the kinematic

dependence we have the definitions

sij = 2σijpipj+i0+ with σij = +1 if pi and pj in/out going and σij = −1 otherwise

p2I = m2
I vI = pI/mI coshβIJ = −sIJ/2mImJ .

In contrast to the spin and color summed case, where all triple color correlators vanish [61],

they are essential for the infrared finiteness of the structure coefficients. We also list the

anomalous dimensions occurring in eq. (A.5) necessary to obtain the finite remainders of

the two-loop amplitudes. The anomalous dimensions related to a single parton (collinear

in origin for massless partons and soft in origin for massive partons) are [25, 26]

γg
(

α
(n

l
)

s

)

=

(

α
(n

l
)

s

2π

)

{

−
11

6
CA +

2

3
TFnl

}

+

(

α
(n

l
)

s

2π

)2
{

CA
2

[

−
173

27
+

11π2

72
+

1

2
ζ3

]

+CATFnl

[

64

27
−

π2

18

]

+ CFTFnl

}

, (A.6)

γq
(

α
(n

l
)

s

)

= −

(

α
(n

l
)

s

2π

)

3

2
CF +

(

α
(n

l
)

s

2π

)2

CF

{

CA

[

−
961

216
−

11π2

24
+

13

2
ζ3

]

+CF

[

−
3

8
+

π2

2
− 6ζ3

]

+ TFnl

[

65

54
+

π2

6

]}

, (A.7)

γQ
(

α
(n

l
)

s

)

= −

(

α
(n

l
)

s

2π

)

CF +

(

α
(n

l
)

s

2π

)2

CF

{

CA

[

−
49

18
+

π2

6
− ζ3

]

+
10

9
TFnl

}

. (A.8)

The cusp anomalous dimensions are given by [59, 60]

γcusp

(

α
(n

l
)

s

)

=
α
(n

l
)

s

π
+

(

α
(n

l
)

s

2π

)2
{

CA

[

67

9
−

π2

3

]

−
20

9
TFnl

}

, (A.9)

γcusp

(

β, α
(n

l
)

s

)

= γcusp

(

α
(n

l
)

s

)

β cothβ

+

(

α
(n

l
)

s

2π

)2

2CA

{

coth2 β

[

Li3(e
−2β) + β Li2(e

−2β)− ζ3 +
π2

6
β +

1

3
β3

]

+cothβ

[

Li2(e
−2β)− 2β ln

(

1− e−2β
)

−
π2

6
(1 + β)− β2 −

1

3
β3

]

+
π2

6
+ ζ3 + β2

}

. (A.10)
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The two functions F1 and f2 are given by

F1(β12, β23, β31) =
1

3

3
∑

I,J,K

ǫI,J,K
αs

4π
g(βIJ)γcusp(βKI , αs) , (A.11)

f2

(

β12, ln
−σ23v2p3
−σ13v1p3

)

= −
αs

3π
g(β12)γcusp(αs) ln

(

−σ23v2p3
−σ13v1p3

)

, (A.12)

with the function

g(β) = coth β

[

β2 + 2β ln
(

1− e−2β
)

− Li2(e
−2β) +

π2

6

]

− β2 −
π2

6
. (A.13)
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Corrections to Heavy-Quark Pair Production: The Quark-Antiquark Channel, JHEP 07

(2008) 129 [arXiv:0806.2301] [INSPIRE].

[19] R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-Loop Planar Corrections to

Heavy-Quark Pair Production in the Quark-Antiquark Channel, JHEP 08 (2009) 067

[arXiv:0906.3671] [INSPIRE].

[20] R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Two-Loop

Leading Color Corrections to Heavy-Quark Pair Production in the Gluon Fusion Channel,

JHEP 01 (2011) 102 [arXiv:1011.6661] [INSPIRE].

[21] A. von Manteuffel and C. Studerus, Massive planar and non-planar double box integrals for

light Nf contributions to gg → tt̄, JHEP 10 (2013) 037 [arXiv:1306.3504] [INSPIRE].

[22] R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Light-quark

two-loop corrections to heavy-quark pair production in the gluon fusion channel, JHEP 12

(2013) 038 [arXiv:1309.4450] [INSPIRE].

[23] S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix

and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004

[hep-ph/0607309] [INSPIRE].

[24] A. Mitov, G.F. Sterman and I. Sung, The Massive Soft Anomalous Dimension Matrix at

Two Loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [INSPIRE].

[25] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory

Amplitudes, JHEP 06 (2009) 081 [Erratum JHEP 11 (2013) 024] [arXiv:0903.1126]

[INSPIRE].

[26] T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons,

Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021]

[INSPIRE].

– 21 –

https://doi.org/10.1103/PhysRevLett.116.052003
https://arxiv.org/abs/1509.09242
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.09242
https://doi.org/10.1007/JHEP11(2016)098
https://arxiv.org/abs/1609.01659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.01659
https://doi.org/10.1007/JHEP04(2013)059
https://arxiv.org/abs/1301.7133
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7133
https://doi.org/10.1103/PhysRevLett.110.042001
https://arxiv.org/abs/1210.2808
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2808
https://doi.org/10.1103/PhysRevD.96.051501
https://doi.org/10.1103/PhysRevD.96.051501
https://arxiv.org/abs/1705.08903
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.08903
https://doi.org/10.1007/JHEP02(2014)078
https://arxiv.org/abs/1312.6279
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6279
https://doi.org/10.1007/JHEP09(2015)128
https://arxiv.org/abs/1503.04812
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04812
https://doi.org/10.1088/1126-6708/2008/07/129
https://doi.org/10.1088/1126-6708/2008/07/129
https://arxiv.org/abs/0806.2301
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2301
https://doi.org/10.1088/1126-6708/2009/08/067
https://arxiv.org/abs/0906.3671
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3671
https://doi.org/10.1007/JHEP01(2011)102
https://arxiv.org/abs/1011.6661
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6661
https://doi.org/10.1007/JHEP10(2013)037
https://arxiv.org/abs/1306.3504
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3504
https://doi.org/10.1007/JHEP12(2013)038
https://doi.org/10.1007/JHEP12(2013)038
https://arxiv.org/abs/1309.4450
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4450
https://doi.org/10.1103/PhysRevD.74.074004
https://arxiv.org/abs/hep-ph/0607309
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0607309
https://doi.org/10.1103/PhysRevD.79.094015
https://arxiv.org/abs/0903.3241
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3241
https://doi.org/10.1088/1126-6708/2009/06/081
https://doi.org/10.1007/JHEP11(2013)024
https://arxiv.org/abs/0903.1126
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1126
https://doi.org/10.1103/PhysRevD.79.125004
https://arxiv.org/abs/0904.1021
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1021


J
H
E
P
0
3
(
2
0
1
8
)
0
8
5

[27] M. Czakon, A. Mitov and G.F. Sterman, Threshold Resummation for Top-Pair

Hadroproduction to Next-to-Next-to-Leading Log, Phys. Rev. D 80 (2009) 074017

[arXiv:0907.1790] [INSPIRE].

[28] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive

scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676]

[INSPIRE].

[29] A. Mitov, G.F. Sterman and I. Sung, Computation of the Soft Anomalous Dimension Matrix

in Coordinate Space, Phys. Rev. D 82 (2010) 034020 [arXiv:1005.4646] [INSPIRE].

[30] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.

110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[31] R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108

[arXiv:1411.0911] [INSPIRE].

[32] R.N. Lee and A.A. Pomeransky, Normalized Fuchsian form on Riemann sphere and

differential equations for multiloop integrals, arXiv:1707.07856 [INSPIRE].

[33] R.N. Lee, A.V. Smirnov and V.A. Smirnov, Solving differential equations for Feynman

integrals by expansions near singular points, arXiv:1709.07525 [INSPIRE].

[34] O. Gituliar and V. Magerya, Fuchsia: a tool for reducing differential equations for Feynman

master integrals to epsilon form, Comput. Phys. Commun. 219 (2017) 329

[arXiv:1701.04269] [INSPIRE].

[35] M. Prausa, epsilon: A tool to find a canonical basis of master integrals, Comput. Phys.

Commun. 219 (2017) 361 [arXiv:1701.00725] [INSPIRE].

[36] C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical

form, JHEP 04 (2017) 006 [arXiv:1611.01087] [INSPIRE].

[37] C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with

CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].

[38] J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015)

153001 [arXiv:1412.2296] [INSPIRE].

[39] L. Adams, E. Chaubey and S. Weinzierl, Simplifying Differential Equations for Multiscale

Feynman Integrals beyond Multiple Polylogarithms, Phys. Rev. Lett. 118 (2017) 141602

[arXiv:1702.04279] [INSPIRE].

[40] M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The Master differential equations for the two

loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118]

[INSPIRE].

[41] S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph,

Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].

[42] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate

β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[43] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res.

Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

[44] E.K. Leinartas, Factorization of rational functions of several variables into partial fractions,

Soviet Math. 22 (1978) 35.

[45] A. Raichev, Leinartas’s partial fraction decomposition, arXiv:1206.4740.

– 22 –

https://doi.org/10.1103/PhysRevD.80.074017
https://arxiv.org/abs/0907.1790
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1790
https://doi.org/10.1088/1126-6708/2009/11/062
https://arxiv.org/abs/0908.3676
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3676
https://doi.org/10.1103/PhysRevD.82.034020
https://arxiv.org/abs/1005.4646
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4646
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1806
https://doi.org/10.1007/JHEP04(2015)108
https://arxiv.org/abs/1411.0911
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0911
https://arxiv.org/abs/1707.07856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07856
https://arxiv.org/abs/1709.07525
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.07525
https://doi.org/10.1016/j.cpc.2017.05.004
https://arxiv.org/abs/1701.04269
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.04269
https://doi.org/10.1016/j.cpc.2017.05.026
https://doi.org/10.1016/j.cpc.2017.05.026
https://arxiv.org/abs/1701.00725
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.00725
https://doi.org/10.1007/JHEP04(2017)006
https://arxiv.org/abs/1611.01087
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.01087
https://doi.org/10.1016/j.cpc.2017.09.014
https://arxiv.org/abs/1705.06252
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06252
https://doi.org/10.1088/1751-8113/48/15/153001
https://doi.org/10.1088/1751-8113/48/15/153001
https://arxiv.org/abs/1412.2296
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2296
https://doi.org/10.1103/PhysRevLett.118.141602
https://arxiv.org/abs/1702.04279
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.04279
https://arxiv.org/abs/hep-th/9805118
https://inspirehep.net/search?p=find+EPRINT+hep-th/9805118
https://doi.org/10.1016/j.nuclphysb.2004.10.044
https://arxiv.org/abs/hep-ph/0406160
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0406160
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B192,159%22
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://arxiv.org/abs/1105.2076
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2076
https://arxiv.org/abs/1206.4740


J
H
E
P
0
3
(
2
0
1
8
)
0
8
5

[46] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys.

Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].

[47] H.R.P. Ferguson and D.H. Bailey, Numerical results on relations between fundamental

constants using a new algorithm, Math. Comput. 53 (1989) 649.

[48] S. Moch and P. Uwer, XSummer: Transcendental functions and symbolic summation in

form, Comput. Phys. Commun. 174 (2006) 759 [math-ph/0508008] [INSPIRE].

[49] P.N. Brown, G.D. Byrne and A.C. Hindmarsh, VODE: A Variable-Coefficient ODE Solver,

SIAM J. Sci. Stat. Comput. 10 (1989) 1038.

[50] D.H. Bailey, Y. Hida and X.S. Li, Quad-double/Double-double Computation Package, (2017)

http://crd.lbl.gov/∼dhbailey/mpdist/.

[51] W. Bernreuther and A. Brandenburg, Tracing CP-violation in the production of top quark

pairs by multiple TeV proton proton collisions, Phys. Rev. D 49 (1994) 4481

[hep-ph/9312210] [INSPIRE].

[52] P. Bärnreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron:

First Genuine NNLO QCD Corrections to qq̄ → tt̄+X, Phys. Rev. Lett. 109 (2012) 132001

[arXiv:1204.5201] [INSPIRE].

[53] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the

all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].

[54] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the

quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].

[55] M. Czakon, A. Mitov and S. Moch, Heavy-quark production in massless quark scattering at

two loops in QCD, Phys. Lett. B 651 (2007) 147 [arXiv:0705.1975] [INSPIRE].

[56] M. Czakon, A. Mitov and S. Moch, Heavy-quark production in gluon fusion at two loops in

QCD, Nucl. Phys. B 798 (2008) 210 [arXiv:0707.4139] [INSPIRE].

[57] D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z2 in QED, QCD and

the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [INSPIRE].

[58] W. Bernreuther and W. Wetzel, Decoupling of Heavy Quarks in the Minimal Subtraction

Scheme, Nucl. Phys. B 197 (1982) 228 [Erratum ibid. B 513 (1998) 758] [INSPIRE].

[59] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the

Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

[60] N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark

production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].

[61] M. Czakon and P. Fiedler, The soft function for color octet production at threshold, Nucl.

Phys. B 879 (2014) 236 [arXiv:1311.2541] [INSPIRE].

– 23 –

https://doi.org/10.1016/j.cpc.2006.07.002
https://doi.org/10.1016/j.cpc.2006.07.002
https://arxiv.org/abs/hep-ph/0511200
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0511200
https://doi.org/10.1090/S0025-5718-1989-0979934-9
https://doi.org/10.1016/j.cpc.2005.12.014
https://arxiv.org/abs/math-ph/0508008
https://inspirehep.net/search?p=find+EPRINT+math-ph/0508008
https://doi.org/10.1137/0910062 
http://crd.lbl.gov/~dhbailey/mpdist/
https://doi.org/10.1103/PhysRevD.49.4481
https://arxiv.org/abs/hep-ph/9312210
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9312210
https://doi.org/10.1103/PhysRevLett.109.132001
https://arxiv.org/abs/1204.5201
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.5201
https://doi.org/10.1007/JHEP12(2012)054
https://arxiv.org/abs/1207.0236
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0236
https://doi.org/10.1007/JHEP01(2013)080
https://arxiv.org/abs/1210.6832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6832
https://doi.org/10.1016/j.physletb.2007.06.020
https://arxiv.org/abs/0705.1975
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.1975
https://doi.org/10.1016/j.nuclphysb.2008.02.001
https://arxiv.org/abs/0707.4139
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.4139
https://doi.org/10.1007/BF01412333
https://inspirehep.net/search?p=find+J+%22Z.Physik,C52,111%22
https://doi.org/10.1016/0550-3213(82)90288-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B197,228%22
https://doi.org/10.1016/0550-3213(87)90277-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B283,342%22
https://doi.org/10.1103/PhysRevLett.102.232003
https://arxiv.org/abs/0903.2561
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,102,232003%22
https://doi.org/10.1016/j.nuclphysb.2013.12.008
https://doi.org/10.1016/j.nuclphysb.2013.12.008
https://arxiv.org/abs/1311.2541
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2541

	Introduction
	Structure of the amplitude
	Spin and color structures for virtual amplitudes
	Ultraviolet and infrared renormalisation
	Spin density matrix

	Scalar integrals
	Canonicalization
	Master integral evaluation

	Results
	Conclusions and outlook
	Renormalization constants and anomalous dimensions

