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Abstract. It is shown that a complex normal projective variety has non-positive Ko-

daira dimension if it admits a non-isomorphic quasi-polarized endomorphism. The geo-

metric structure of the variety is described by methods of equivariant lifting and fibra-

tions. Endomorphisms of the projective spaces are also discussed and some results on

invariant subvarieties under the pullback of the endomorphism are obtained.

1. Introduction

We work over the complex number field C. Much progress has been recently made in

the study of endomorphisms of smooth projective varieties from the algebro-geometric

viewpoint. Especially, the following cases of varieties are well studied: projective sur-

faces ([44], [17]), homogeneous manifolds ([49], [11]), some special Fano threefolds ([28]),

projective bundles ([2]), and projective threefolds with non-negative Kodaira dimension

([16], [18]). Additionally, étale endomorphisms are investigated in [48] from the viewpoint

of the birational classification of algebraic varieties. However, there is neither a classifica-

tion of endomorphisms of singular varieties even when they are of dimension two, nor any

reasonably fine classification of non-étale endomorphisms of smooth threefolds, which are

then necessarily uniruled.

Let V be a normal projective variety of dimension n. An endomorphism f : V → V

is called polarized if there is an ample divisor H such that f ∗H is linearly equivalent to

qH (f ∗H ∼ qH) for a positive number q. In this case, f is a finite surjective morphism,

q is an integer, and deg f = qn (cf. Lemma 2.1 below). A surjective endomorphism of a

variety of Picard number one is always polarized. Polarized endomorphisms of smooth

projective varieties are studied in papers [14] and [55]. In this paper, we shall study

the polarized endomorphisms of normal projective varieties (not only smooth ones). The

following Theorems 1.1, 1.2 and 1.4 are our main results.

Theorem 1.1. Let f : X → X be a non-isomorphic polarized endomorphism of a normal

projective variety X. Then there exist a finite morphism τ : V → X from a normal
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projective variety V , a dominant rational map π : V ···→A× S for an abelian variety A

and a weak Calabi–Yau variety S (cf. Definition 1.6 below), and polarized endomorphisms

fV : V → V , fA : A→ A, fS : S → S satisfying the following conditions :

(1) τ ◦ fV = f ◦ τ , π ◦ fV = (fA × fS) ◦ π.
(2) τ is étale in codimension one.

(3) If X is not uniruled, then κ(X) = 0 and π is an isomorphism.

(4) If X is uniruled, then, for the graph Γπ ⊂ V ×A×S of π, the projection Γπ → A×S
is an equi-dimensional morphism birational to the maximal rationally connected

fibration (MRC fibration in the sense of [37]) of a nonsingular model of V .

(5) If dimS > 0, then dimS ≥ 4 and S contains a non-quotient singular point.

It is conjectured that dimS = 0 for S in Theorem 1.1 (cf. Conjecture 3.4). If X is

smooth and κ(X) ≥ 0, Theorem 1.1 (with S being a point) is proved in [14], Theorem 4.2.

For uniruledX, there is a discussion on endomorphisms and maximal rationally connected

fibrations in [55], Section 2.2, especially in Proposition 2.2.4 (cf. Remark 4.2 below).

Applying Theorem 1.1 and more, we have the following classification result:

Theorem 1.2. Let f : X → X be a polarized endomorphism of a normal projective

variety X of dimension n. Then κ(X) ≤ 0 and q♮(X) ≤ n for the invariant q♮(X)

defined in Definition 1.5. Furthermore, X is described as follows :

(1) If dimX ≤ 3 and q♮(X) = 0, then X is rationally connected.

(2) q♮(X) = n if and only if X is Q-abelian (cf. Definition 1.7 below).

(3) If q♮(X) ≥ n − 3, then there exist a finite covering V → X étale in codimension

one, a birational morphism Z → V of normal projective varieties, and a flat

surjective morphism ̟ : Z → A onto an abelian variety A of dimension q♮(X)

such that

• any fiber of ̟ is irreducible and reduced,

• a general fiber of ̟ is rationally connected.

Moreover, the fundamental group π1(X) has a finite index subgroup which is a

finitely generated abelian group of rank at most 2q♮(X).

(4) If q♮(X) = n− 1, then there is a finite covering V → X étale in codimension one

from a normal projective variety V satisfying one of the following conditions :

(a) V is a P1-bundle over an abelian variety.

(b) There exist a P1-bundle W over an abelian variety and a birational morphism

W → V whose exceptional locus is a section of the P1-bundle.

For a polarized endomorphism f : X → X, by [14], Corollary 2.2, we have a closed

immersion i : X → PN into a projective space PN together with an endomorphism
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g : PN → PN such that g ◦ i = i ◦ f . Therefore, g preserves i(X), i.e., g(i(X)) = i(X).

Thus, it is important to study endomorphisms of projective spaces and their subvarieties

preserved by the endomorphisms. As a corollary of Theorem 1.1, we have: If V ⊂ Pn is

an irreducible subvariety satisfying g(V ) = V , then either V is uniruled or κ(V ) = 0. In

fact, g|V : V → V is a polarized endomorphism of degree > 1.

We can also consider subvarieties V which is preserved by g−1, i.e., g−1(V ) = V . Such

subvarieties are called exceptional, or completely invariant, in the study of dynamical

systems, and the following conjecture is studied (cf. [15], [12], [8]):

Conjecture 1.3. Let f be an non-isomorphic surjective endomorphism of PN . If an

irreducible subvariety V ⊂ Pn satisfies f−1(V ) = V as a subset, then V is a linear

subspace.

The paper [8] asserted the conjecture to be affirmative, but unfortunately, one of the

authors of the paper informed us that the proof contains a gap and the assertion there

should be regarded as a conjecture. We consider Conjecture 1.3 for a hypersurface V (i.e.,

a reduced divisor of Pn). If V is a smooth hypersurface, then the conjecture is almost

solved by [12] or by a result in [4] (cf. [15] for earlier approach in the case of n = 2). We

shall complete the case of smooth hypersurfaces, and moreover, prove the following on

the conjecture:

Theorem 1.4. Let f be a non-isomorphic surjective endomorphism of a projective space

Pn of dimension n ≥ 2. Let V ⊂ Pn be a hypersurface satisfying f−1(V ) = V as a subset.

(1) deg(V ) ≤ n+1 and V has only normal crossing singularities in codimension one.

(2) Every irreducible component Vi of V is uniruled with deg(Vi) ≤ n. If Vi is smooth,

then Vi is a hyperplane.

(3) If V is a union of hyperplanes, then V is normal crossing.

(4) If n = 2, then V is a union of at most three lines.

(5) If n = 3, then any irreducible component Vi is a hyperplane or a cubic rational

surface.

Notation and Conventions. For things related to the birational classification theory

of algebraic varieties and the minimal model theory of projective varieties, we follow the

notation in standard references such as [33], [36], etc. One remark is that the Kodaira

dimension of a projective variety is defined as that of its non-singular model. The linear

equivalence relation is denoted by the symbol ∼, the Q-linear equivalence relation by ∼Q,

and the numerical equivalence relation by ∼∼∼.
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An endomorphism f : X → X is called polarized (resp. quasi-polarized) if f ∗H ∼ qH

for an ample divisor (resp. a nef and big divisor) H for some positive integer q (cf.

Lemma 2.1 below).

For a projective variety Z, the singular locus is denoted by SingZ and the smooth

locus Z \ SingZ by Zreg. Note that, for a normal variety Z, a finite morphism Z ′ → Z

étale in codimension one from a normal variety Z ′ corresponds to a finite index subgroup

of π1(Zreg).

Definition 1.5. Let X be a normal projective variety. Then the irregularity q(X) is

defined as dim H1(X,OX). We define a new invariant q◦(X) to be the supremum of q(X ′)

for normal projective varieties X ′ admitting a finite surjective morphism X ′ → X which

is étale in codimension one. We define another invariant q♮(X) to be q◦(T ) for the special

MRC fibration X ···→T defined in [46], Section 4.3; see also Lemma 4.1.

If X is a smooth projective variety, then q◦(X) equals qmax(X) defined in [48]. If X

has only canonical singularities and κ(X) = 0, then q◦(X) ≤ dimX by [30].

Definition 1.6. A normal projective variety Y with only canonical singularities is called

a weak Calabi–Yau variety if KY ∼ 0 and q◦(Y ) = 0.

Note that this definition is slightly different from that in [48]. A weak Calabi–Yau

variety has dimension at least two. A two-dimensional weak Calabi–Yau variety is nothing

but a normal projective surface such that the minimal resolution of singularities is a K3

surface and that there is no finite surjective morphism from any abelian surface.

Definition 1.7. A normal projective variety W is called Q-abelian if there are an abelian

variety A and a finite surjective morphism A→ W which is étale in codimension one.

In the definition, we may choose A→ W to be Galois by taking the Galois closure. If

W is Q-abelian, then q◦(W ) = dimW . A similar notion “Q-torus” is introduced in [43],

which is a Kähler version and is restricted to étale coverings.
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2. Some basic properties

A surjective endomorphism of a normal projective variety is a finite morphism by the

same argument as in [16], Lemma 2.3. In fact, such an endomorphism f : X → X induces

an automorphism f ∗ : N
1(X)→ N

1(X) of the real vector space N
1(X) := NS(X)⊗R for

the Néron–Severi group NS(X), whence the pullback of an ample divisor is ample.

Lemma 2.1. Let f : X → X be an endomorphism of an n-dimensional normal projective

variety X such that f ∗H ∼∼∼ qH for a positive number q and for a nef and big divisor

H. Then q is a positive integer and deg f = qn. Moreover, the absolute value of any

eigenvalue of f ∗ : N
1(X)→ N

1(X) is q.

Proof. Comparing the self intersection numbers (f ∗H)n and Hn, we have deg f = qn.

In particular, q is an algebraic integer. Since f ∗H and H belong to the Néron-Severi

subgroup, q should be a rational number. Hence, q is an integer. Let λ be the spectral

radius of f ∗ : N
1(X)→ N

1(X), i.e., the maximum of the absolute values of eigenvalues of

f ∗. Then, there is a nef R-Cartier R-divisor D such that D 6∼∼∼ 0 and f ∗D ∼∼∼ λD by [6].

Suppose that λ 6= q. Then DHn−1 = 0 by

λqn−1DHn−1 = f ∗D(f ∗H)n−1 = (deg f)DHn−1 = qnDHn−1.

This is a contradiction, since we can derive D ∼∼∼ 0 from DHn−1 = 0 as follows (cf.

Lemma 2.5 below): If Γ is a prime divisor, then DΓHn−2 = 0. In fact, there exist a

positive rational number a and an effective Q-divisor E such that H ∼Q aΓ + E, which

induces

0 ≤ aDΓHn−2 = −DEHn−2 ≤ 0.

Applying the argument above successively, we infer that DAn−1 = 0 for any ample divisor

A and that DΓAn−2 = 0 for any prime divisor Γ. Thus, by induction on dimension,

D|Γ ∼∼∼ 0. Therefore, DC = 0 for any irreducible curve C, since there is a prime divisor

containing C. Thus, D ∼∼∼ 0. Therefore, we have λ = q. For the spectral radius λ′ of

(f ∗)−1, λ′−1 is the minimum of the absolute values of eigenvalues of f ∗. We also have a

nef R-Cartier R-divisor D′ such that D′ 6∼∼∼ 0 and f ∗D′ = λ′−1D′ by [6]. Then, λ′ = q−1

by the same reason above. Hence, the absolute value of any eigenvalue is q. �

The endomorphism in Lemma 2.1 is shown to be quasi-polarized by the following:

Lemma 2.2. Let f : X → X be an endomorphism of an n-dimensional normal projective

variety X such that f ∗H ∼∼∼ qH for a positive number q and for a nef and big divisor H.

Then the following conditions are satisfied :

(1) The absolute value of any eigenvalue of f ∗ : H1(X,OX)→ H1(X,OX) is
√
q.



6

(2) There is a nef and big divisor H ′ such that H ′ ∼∼∼ H and f ∗H ′ ∼Q qH
′.

Thus, f is quasi-polarized by H ′.

Proof. (1): There exist birational morphisms µ : M → X and ν : Z → X from smooth

projective varieties M and Z, and a generically finite surjective morphism h : Z → M

such that µ ◦ h = f ◦ ν. We may assume that the birational map ψ := µ−1 ◦ ν : Z → M

is holomorphic. Then, we have a commutative diagram:

H1(X,OX)
f∗−−−→ H1(X,OX) H1(X,OX)

µ∗

y ν∗

y µ∗

y

H1(M,OM)
h∗−−−→ H1(Z,OZ)

ψ∗

←−−−
≃

H1(M,OM).

Let φ(x) be the image of x ∈ H1(X,OX) by the composition

H1(X,OX)
µ∗−→ H1(M,OM)

≃−→ H0,1(M) ⊂ H1(M,C),

where H0,1(M) is the (0, 1)-part of the Hodge decomposition of H1(M,C). Then, for

x ∈ H1(X,OX), we have ψ∗φ(f ∗(x)) = h∗φ(x) by the diagram above. We consider the

following hermitian form on H1(X,OX):

〈x, y〉 = −
√
−1

∫

M
φ(x) ∪ φ(y) ∪ (µ∗c1(H))n−1 ∈ C.

This is positive definite by Lemma 2.3 below. We have the equality

〈f ∗(x), f ∗(y)〉 = q〈x, y〉

for x, y ∈ H1(X,OX) by the calculation

(deg h)〈x, y〉 = −
√
−1

∫

Z
h∗(φ(x)) ∪ h∗(φ(y)) ∪ (h∗µ∗c1(H))n−1

= −
√
−1

∫

Z
ψ∗φ(f ∗(x)) ∪ ψ∗φ(f ∗(x)) ∪ (ν∗f ∗c1(H))n−1

= −
√
−1

∫

M
φ(f ∗(x)) ∪ φ(f ∗(y)) ∪ (µ∗f ∗c1(H))n−1

= qn−1〈f ∗(x), f ∗(y)〉,

where deg h = deg f = qn. Therefore, q−1/2f ∗ is a unitary transformation with respect

to 〈 , 〉. Thus, the absolute value of any eigenvalue of q−1/2f ∗ is 1.

(2): Let m be the order of c1(f
∗H − qH) in H2(X,Z). By the exponential exact

sequence

H1(X,OX)
ǫ−→ H1(X,O⋆X)→ H2(X,Z)

we can find an element x ∈ H1(X,OX) with OX(m(f ∗H − qH)) = mǫ(x). There is an

element y ∈ H1(X,OX) such that f ∗y − qy = x by (1). Let H ′ be a divisor such that

OX(H −H ′) = ǫ(y). Then m(f ∗H ′ − qH ′) ∼ 0. Thus, we are done. �
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The following is used in Lemma 2.2:

Lemma 2.3. Let M be an n-dimensional smooth projective variety and H a nef and big

divisor. Then the Hermitian form 〈 , 〉 on H0,1(M) defined by

〈ξ, η〉 = −
√
−1

∫

M
ξ ∪ η ∪ c1(H)n−1

is positive definite.

Proof. If H is ample, then it is positive definite by the hard Lefschetz theorem. Thus,

the bilinear form is positive semi-definite even if we replace H with a nef divisor. Let W

be a prime divisor of M . Then

−
√
−1

∫

M
ξ ∪ ξ ∪ c1(H)n−2 ∪ c1(W )

is non-negative for any ξ ∈ H0,1(M). In fact, it is equal to

−
√
−1

∫

W̃
ϕ∗(ξ) ∪ ϕ∗(ξ) ∪ c1(ϕ∗H)n−2

for a resolution of singularities ϕ : W̃ → W , and it is non-negative by the reason above.

There exist a positive integer m, a smooth ample divisor A, and an effective divisor

E =
∑
eiEi such that mµ∗H ∼ A+ E. Then

m〈x, x〉 = −
√
−1

∫

M
φ(x) ∪ φ(x) ∪mc1(µ∗H)n−1

= −
√
−1

∫

A
φ(x)|A ∪ φ(x)|A ∪ c1(µ∗H|A)n−2

+
∑

ei(−
√
−1)

∫

Ei

φ(x)|Ei
∪ φ(x)|Ei

∪ c1(µ∗H|Ei
)n−2.

Hence, if 〈x, x〉 = 0, then

−
√
−1

∫

A
φ(x)|A ∪ φ(x)|A ∪ c1(µ∗H|A)n−2 = 0.

Since µ∗H|A is nef and big, we can consider the induction on dimM . Then, we infer that

φ(x)|A = 0 as an element of H0,1(A). Hence φ(x) = 0, since H1(M,OM(−A)) = 0 by the

Kodaira vanishing theorem, and since H1(M,OM) → H1(A,OA) is injective. Thus, we

are done. �

Remark. The proof of Lemma 2.2 is similar to that of [55], Theorem 1.1.2, where X is

assumed to be smooth.

The following is a property of Galois closures of powers fk = f ◦ · · · ◦ f (cf. [47]):

Lemma 2.4. Let f : X → X be a non-isomorphic surjective endomorphism of a normal

projective variety X. Let θk : Vk → X be the Galois closure of fk : X → X for k ≥ 1 and

let τk : Vk → X be the induced finite Galois covering such that θk = fk ◦ τk. Then
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there exist finite Galois morphisms gk, hk : Vk+1 → Vk such that τk ◦ gk = τk+1 and

τk ◦ hk = f ◦ τk+1.

Proof. The composition fk ◦τk+1 : Vk+1 → X → X is Galois since so is fk+1 ◦τk+1 = θk+1.

Hence, fk ◦ τk+1 factors the Galois closure θk of fk. Thus, τk+1 = τk ◦ gk for a morphism

gk : Vk+1 → Vk. Let Hi be the Galois group of f i ◦ τk+1 : Vk+1 → X for 0 ≤ i ≤ k + 1.

Then Vk is regarded as the Galois closure of Vk+1/H1 → Vk+1/Hk+1, thus Vk ≃ Vk+1/H for

the maximal normal subgroup H of Hk+1 contained in H1. Hence, we have a morphism

hk : Vk+1 → Vk with τk ◦ hk = f ◦ τk+1. �

The following is a generalization of a part of the Hodge index theorem:

Lemma 2.5. Let X be a smooth projective variety of dimension n and let D a pseudo-

effective R-divisor. Suppose that DH1H2 · · ·Hn−1 = 0 for nef and big R-divisors H1, . . . ,

Hn−1. Then the positive part Pσ(D) of the σ-decomposition of D in the sense of [45] is

numerically trivial.

Proof. We may assume the negative part Nσ(D) to be zero. We consider the induction

on n = dimX. If n = 2, then D is nef and DH = 0; thus D ∼∼∼ 0 by the Hodge index

theorem. Suppose that n ≥ 3. Let A be a non-singular ample divisor of X. Since Hn−1

is big, there exist a positive rational number a and an effective R-divisor E such that

Hn−1
∼∼∼ aA+ E. Then

0 ≤ aDAH1 · · ·Hn−2 = −DEH1 · · ·Hn−2 ≤ 0.

Here, we use the property that D|Γ is pseudo-effective for any prime divisor Γ. Then we

have D|A ∼∼∼ 0 by induction on n. Since DAn−1 = D2An−2 = 0, we have D ∼∼∼ 0 by the

hard Lefschetz theorem. �

The following is proved for smooth varieties in [48], Proposition 4.3:

Lemma 2.6. Let V be a normal projective variety with only canonical singularities and

with KV ∼Q 0. Then there exists a finite morphism τ : V ∼ → V satisfying the following

conditions, uniquely up to isomorphism over V :

(1) τ is étale in codimension one.

(2) q◦(V ) = q(V ∼).

(3) τ is Galois, and deg τ is minimal among finite coverings satisfying the conditions

(1), (2).

We call τ the Albanese closure of V in codimension one.
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Proof. The same argument as in [48] works as follows: We may assume that q◦(V ) > 0.

There is a Galois covering W → V étale in codimension one with q(W ) = q◦(V ). Then

KW ∼Q 0 and W has only canonical singularities. Let W → Alb(W ) be the Albanese

map of W ; this is holomorphic since W has only rational singularities. Let Gal(W/V )

be the Galois group of W/V . Then we have a natural homomorphism Gal(W/V ) →
Aut(H1(Alb(W ),Z)). Let W0 be the quotient space of W by the kernel of the homo-

morphism. Then the Galois covering W0 → V also satisfies the conditions (1), (2). Let

W ′ → V be any covering satisfying the conditions (1), (2). Then there exist finite mor-

phisms W ′′ → W and W ′′ → W ′ over V such that the composite W ′′ → V is Galois

and étale in codimension one. Then W ′′
0 ≃ W0 and there is a morphism W ′ → W0 over

V . Hence, V ∼ := W0 satisfies the required conditions and V ∼ → V is unique up to

non-canonical isomorphism. �

A surjective endomorphism of the direct product of certain varieties is split. The

following gives an example:

Lemma 2.7. Let A be an abelian variety and S a normal projective variety with q(S) = 0

and at most rational singularities. Suppose that S is not uniruled. Let f : S×A→ S×A
be a surjective morphism. Then f = fS × fA for suitable endomorphisms fS and fA of S

and T , respectively.

Proof. Note that f induces a surjective endomorphism fA of A = Alb(S × A). We can

write f(s, a) = (ρa(s), fA(a)), where ρ : A→ Sur(S), a 7→ ρa, is a morphism into

Sur(S) := {g : S → S | g is a surjective morphism}.

By [26], Theorem 3.1, the compact subvariety Im(ρ) is contained in the orbit of some

fS ∈ Sur(S) by the action of Aut0(S). For a nonsingular model S ′ of S, the birational

automorphism group Bir(S ′) contains Aut0(S) as a subgroup. By [24], Theorem (2.1),

Bir(S ′) is a disjoint union of abelian varieties of dimension equal to q(S ′) = q(S) = 0.

Thus Im(ρ) is a single element, say {fS}. Then f = fS × fA. �

The following is proved in [46], Section 4.3:

Lemma 2.8. Let π : X → Y be an equi-dimensional surjective morphism of normal

projective varieties with connected fibers. Let fX : X → X and fY : Y → Y be endomor-

phisms such that π ◦ fX = fY ◦ π. If fX is polarized (resp. quasi-polarized), then so is

fY . Here, if deg fX = qdimX , then deg fY = qdimY .
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3. The non-uniruled case

We shall study non-isomorphic quasi-polarized endomorphisms of non-uniruled normal

projective varieties in this section.

Example 3.1. Let A be an abelian variety of dimension n and let H be a symmetric

ample divisor, i.e., H is ample and ι∗H ∼ H for the involution ι : x 7→ −x. Then the

multiplication map µm : A ∋ x 7→ mx = x + · · · + x ∈ A by an integer m is polarized

by H as µ∗
mH ∼ m2H (cf. [41], Chapter II, § 6, Corollary 3). Let X = A/ι be the

quotient variety by the involution ι. Then µm descends to a polarized endomorphism fm

of X of degree deg µm = m2n. If dimA is even, then KX ∼ 0 and X has only canonical

singularities. In particular, X is non-uniruled and admits a non-isomorphic polarized

endomorphism. If dimX = 2, then X is birational to a K3 surface, hence fm for m > 1

is not nearly étale in the sense of [48], Definition 3.2 (cf. [48], Example 3.14).

The following result is fundamental:

Theorem 3.2. Let f : V → V be a surjective endomorphism of a normal projective

variety V and let H be a nef and big Cartier divisor on V such that f ∗H ∼ qH for a

positive integer q > 1. Suppose that V is not uniruled. Then, there exist a projective

birational morphism σ : V → X onto a normal projective variety X, an endomorphism

fX of X, and an ample divisor A on X such that

(1) X has only canonical singularities with KX ∼Q 0,

(2) f ∗
XA ∼ qA,

(3) fX ◦ σ = σ ◦ f , and

(4) H ∼ σ∗A.

Proof. From the ramification formula KV = f ∗KV +R and n = dimV , we have

(q − 1)KVH
n−1 +RHn−1 = 0.

Thus, KVH
n−1 ≤ 0. Let µ : Y → V be a birational morphism from a smooth projective

variety Y . Since Y is not uniruled, KY is pseudo-effective by [7] (cf. [39], §11.4.C). Then

KY (µ∗H)n−1 = KVH
n−1 = 0. Hence KY

∼∼∼ Nσ(KY ) by Lemma 2.5, and κσ(Y ) = κ(Y ) =

0 by [45], Chapter V, Corollary 1.12 and Theorem 4.8. In particular, KY ∼Q E for an

effective Q-divisor E such that E(µ∗H)n−1 = 0. Therefore, KY + µ∗H has a Zariski-

decomposition whose negative part is E and whose positive part is Q-linearly equivalent

to µ∗H by [45], Chapter III, Proposition 3.7. Then, the positive part is semi-ample by

a version of base point free theorem (cf. [20], (A.5); [31], Theorem 1; [42], Theorem 0).

Therefore, Bs |mH| = ∅ for m ≫ 0. Let σ : V → X be a birational morphism onto a

normal projective variety X defined by the free linear system |mH| for m ≫ 0. Then
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H ∼ σ∗A for an ample divisor A on X. Since (µ∗E)Hn−1 = RHn−1 = 0, µ∗E and

R are σ-exceptional. In particular, X has only canonical singularities and KX ∼Q 0.

By considering the Stein factorization of the composite σ ◦ f : V → X, we have an

endomorphism fX of X such that fX ◦ σ = σ ◦ f . Then, fX is étale in codimension one

and f ∗
XA ∼ qA. �

The following gives a sufficient condition for a normal projective variety admitting

polarized endomorphisms to be Q-abelian:

Theorem 3.3. Let f : X → X be a non-isomorphic polarized endomorphism of a normal

projective variety X. Assume that f is étale in codimension one, and that for any point

P ∈ SingX, there is an analytic open neighborhood U of P such that π1(Ureg) is finite.

Then X is a Q-abelian variety.

Proof. Let A be an ample divisor on X such that f ∗A ∼ qA. For a positive integer k, let

θk : Vk → X be the Galois closure of fk, and let τk, θk, gk, and hk be as in Lemma 2.4.

We set Ak to be the ample divisor τ ∗kA. Then g∗kAk ∼ Ak+1 and h∗kAk ∼ qAk+1.

For a point P ∈ SingX, let U ⊂ X be an analytic open neighborhood such that

π1(Ureg) is finite. For a point Q ∈ θ−1
k (P ), let V be the connected component of θ−1

k (U)

containing Q. Then

Π(U ; k) := π1(V \ θ−1
k (SingX)) = π1(Vreg)

is a normal subgroup of π1(Ureg), and it is independent for the choice of Q ∈ θ−1
k (P ), since

θk is Galois. Since SingX is compact, there is a positive integer k0 such that ♯Π(U ; k) =

♯Π(U ; k + 1) for any k ≥ k0 and for any such open neighborhood U of any point P ∈
SingX. Then gk, hk : Vk+1 → Vk are both étale for k ≥ k0. In particular, g−1

k (Sing Vk) =

h−1
k (Sing Vk) = Sing Vk+1, and the mapping degrees of gk : Sing Vk+1 → Sing Vk and

hk : Sing Vk+1 → Sing Vk are deg gk and deg hk, respectively. For d = dim Sing Vk <

dimVk = n, we have the equality

(deg gk)(Sing Vk)A
d
k = (Sing Vk+1)A

d
k+1 = q−d(deg hk)(Sing Vk)A

d
k

of intersection numbers. Thus, Sing Vk = ∅, since q−d deg hk = qn−d deg gk and Ak is

ample.

Then gk, hk : Vk+1 → Vk are étale morphisms between smooth projective varieties with

deg hk = (deg f)(deg gk). Hence, we have

c1(Vk)A
n−1
k = c1(Vk)

2An−2
k = c2(Vk)A

n−2
k = 0

by a similar calculation of intersection numbers as above. Then c1(Vk) is numerically

trivial by the hard Lefschetz theorem. Moreover, the vanishing of c2 implies that an
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étale covering of Vk is an abelian variety by [54] (cf. [3]). Therefore, X is a Q-abelian

variety. �

Remark. A result of Campana [10], Corollary 6.3 gives another proof of Theorem 3.3 in

the case where KX ∼Q 0 and X has only quotient singularities.

The following conjecture is proved in [14], Theorem 4.2, in case X is smooth:

Conjecture 3.4. A non-uniruled normal projective variety admitting a non-isomorphic

polarized endomorphism is Q-abelian.

For the case of normal varieties, we have the following partial answer:

Proposition 3.5. Conjecture 3.4 is true if dimX ≤ 3 or if X has only quotient singu-

larities.

Proof. By Theorem 3.3, it is enough to show that any singular point has a connected ana-

lytic open neighborhood U such that π1(Ureg) is finite. IfX has only quotient singularities,

then this is true. We know that X has only canonical singularities by Theorem 3.2. If

dimX ≤ 2, then X has only quotient singularities. If dimX = 3, then the finiteness of

π1(Ureg) is proved in [51], Theorem 3.6. Thus, we are done. �

Even though Conjecture 3.4 is not solved yet, we have the following:

Proposition 3.6. Let X be a normal projective variety with a non-isomorphic polarized

endomorphism f . If X is not uniruled, then there exist an abelian variety A, a weak

Calabi–Yau variety S, a finite morphism τ : A × S → X and polarized endomorphisms

fA : A→ A, fS : S → S such that

(1) τ is étale in codimension one, and

(2) τ ◦ (fA × fS) = f ◦ τ .

Proof. We know that X has only canonical singularities and KX ∼Q 0 by Theorem 3.2.

Let X ′ → X be the global index-one cover, i.e., the minimal cyclic covering satisfying

KX′ ∼ 0. By the uniqueness of the global index-one cover, there is an endomorphism

f ′ : X ′ → X ′ compatible with f . If q◦(X) = 0, then X ′ is a weak Calabi–Yau variety,

and the assertion holds. Hence, we may assume that q◦(X) > 0.

Let X̃ = (X ′)∼ → X ′ be the Albanese closure ofX ′ in codimension one (cf. Lemma 2.6).

By the uniqueness of Albanese closure, X̃ admits an endomorphism f̃ compatible with f

and f ′. For the Albanese map α : X̃ → A := Alb(X̃), by [30], Theorem 8.3, there is an

étale covering θ : T → A such that

X̃ ×A T ≃ S × T
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over T for a fibre S of α. This S is weak Calabi–Yau by the definition of q◦. Taking

a further étale covering, we may assume that T ≃ A and θ : T → A is just the multi-

plication by a positive integer m for certain group structure of A. Let f ′
A : A → A be

the induced endomorphism of A satisfying α ◦ f̃ = f ′
A ◦ α. By [48], Lemma 4.9, there

is an endomorphism fA of A such that θ ◦ fA = f ′
A ◦ θ. Let W be the fiber product of

α : X̃ → A and θ : A → A. Then f̃ × fA induces an endomorphism fW of W which is

compatible with f . In particular, fW is polarized by the pullback of an ample divisor on

X. We have an endomorphism fS : S → S such that fW = fS × fA by Lemma 2.7. Here,

fS and fA are polarized by Lemma 2.8. Thus, we are done. �

Theorem 1.1 for non-uniruled X is proved by Theorem 3.2 and Propositions 3.5, 3.6.

4. The proof of Theorems 1.1 and 1.2

The following result gives a descent property of polarized endomorphisms by maximal

rationally connected fibrations, which is proved in [46], Section 4.3.

Lemma 4.1. Let f : X → X be a quasi-polarized endomorphism of a normal projective

variety X. Suppose that X is uniruled but not rationally connected. Then there exist a

birational morphism σ : W → X, an equi-dimensional surjective morphism p : W → Y ,

and quasi-polarized endomorphisms fW : W → W , fY : Y → Y such that

(1) W and Y are normal projective varieties,

(2) Y is not uniruled,

(3) a general fiber of p is rationally connected,

(4) σ ◦ fW = f ◦ σ, and p ◦ fW = fY ◦ p.
Here, if f is polarized, then fY is also polarized and deg fY = (deg f)dimY/ dimX .

The dominant rational map p ◦ σ−1 : X ···→Y is the special MRC fibration defined in

[46], Section 4.3. The variety W is characterized as the normalization of the graph of

p ◦ σ−1. If f is polarized, then so is fW since it is induced from f × fY .

Remark 4.2. The same assertion as Lemma 4.1 for polarized endomorphisms is stated

in [55], Proposition 2.2.4. However, the argument there is valid only when the maximal

rationally connected fibration is flat, which is not a priori available. The study of “in-

tersection sheaves” in [46] renders the flatness requirement redundant, and consequently

the expected assertion is proved in [46], Section 4.3.

Remark 4.3. In Lemma 4.1, there is a countable dense subset Y ⊂ Y such that for every

y ∈ Y , the fiber Wy = p−1(y) satisfies fk(Wy) = Wy for some k = k(y) > 0, and that fk

induces a quasi-polarized endomorphism of Wy (cf. [14], Theorem 5.1).
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Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Apply Lemma 4.1. Then Y has only canonical singularities and

KY ∼Q 0 by Theorem 3.2. Moreover, by Proposition 3.6, there exist a finite morphism

A × S → Y , which is étale in codimension one, from the direct product A × S for an

abelian variety A and a weak Calabi–Yau variety S, and polarized endomorphisms fA,

fS compatible with fY . Let Z be the normalization of the fiber product of W → Y and

A × S → Y . Then the first projection Z → W is étale in codimension one, since π

is equi-dimensional. Moreover, Z is irreducible since a general fiber of π is connected.

Thus, the endomorphisms fW and fA × fS induce a polarized endomorphism fZ of Z.

Let Z → V → X be the Stein factorization of Z → W → X. Then V → X is étale in

codimension one and V admits a polarized endomorphism fV compatible with f and fZ .

Let π : V ···→A × S be the induced rational map from the birational map Z → V and

the second projection Z → A × S. Then Z is just the normalization of the graph of π.

Thus, all the required things are proved. �

Proposition 4.4. Let X be an n-dimensional normal projective variety admitting a non-

isomorphic polarized endomorphism. If Conjecture 3.4 is true, then π1(X) contains a

finite index subgroup which is a finitely generated abelian group of rank at most 2q♮(X).

In particular, this holds if q♮(X) ≥ n− 3.

Proof. In Lemma 4.1, Y is Q-abelian by Conjecture 3.4. Note that q♮(X) = q◦(Y ) by

definition. Thus, if q♮(X) ≥ n − 3, then Y is Q-abelian by Proposition 3.5. Therefore,

there is a Galois covering A→ Y from an abelian variety which is étale in codimension one

over Y . Thus, π1(A)→ π1(Yreg) is an injection and its image is a finite index subgroup.

In particular, π1(Y ) has a finite index finitely generated abelian subgroup of rank at most

2 dimA = 2 dimY = 2q♮(X).

Let W → Y be the morphism in Lemma 4.1. Let W̃ → W and Ỹ → Y be birational

morphisms from smooth projective varieties such that the induced rational map W̃ → Ỹ

is holomorphic and smooth over the complement of a normal crossing divisor on Ỹ . Then

π1(W̃ ) ≃ π1(Ỹ ) since a general fiber is rationally connected, by [35], Theorem 5.2 (cf.

[48], Lemma 5.3). Here, π1(Ỹ ) ≃ π1(Y ) by [52] since Y has only quotient singularities.

For the birational morphism W̃ → X, we have a surjection π1(W̃ )→ π1(X). Thus, there

is a surjection π1(Y )→ π1(X), and the assertion holds. �

Lemma 4.5. Let Z be the normalization of the graph of V ···→A×S in Theorem 1.1 and

let ̟ : Z → A × S be the induced equi-dimensional morphism. Suppose that dimS = 0.

Then ̟ is flat, and any fiber of ̟ is irreducible and reduced. If dimZ = dimA+ 1, then

̟ is a P1-bundle.
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Proof. Let V → X, Z → V , Z → A, and A → Y be as in the proof of Theorem 1.1,

where S is a point. Let Z1 be the fiber product of ̟ : Z → A and fA : A→ A. Then the

other endomorphism fZ induces a commutative diagram

(*)

Z
ψ−−−→ Z1

p1−−−→ Z

̟

y p2

y ̟

y

A A
fA−−−→ A,

where p1 and p2 denote the first and second projections, and fZ = p1 ◦ ψ.

Step 1. We shall show that a non-empty Zariski closed subset Σ ⊂ A satisfying

f−1
A (Σ) ⊂ Σ is A:

We have a positive integer l such that f−l
A (Σ) = f−l−1

A (Σ) by Noetherian condition.

Hence, f−1
A (Σ) = Σ. Replacing f with a power fk, we may assume that f−1

A preserves

any irreducible component of Σ. Thus, we may assume that Σ is irreducible. Let fΣ be the

polarized endomorphism of Σ induced from fA. Then deg fA = qdimA and deg fΣ = qdim Σ

for some q > 1 by Lemma 2.1. On the other hand, deg fΣ = deg fA since fA is étale.

Thus, dim Σ = dimA, i.e., Σ = A.

Step 2. We shall prove that any fiber of ̟ is irreducible:

Let Σ be the set of points y ∈ A such that ̟−1(y) is reducible. Then ̟−1(y′) is

reducible for any y′ ∈ f−1
A (y), since ψ in the diagram (*) is surjective. Thus, f−1

A (Σ) ⊂ Σ,

and hence Σ = ∅ by Step 1.

Step 3. We shall prove that ̟ is flat:

Let L be an ample divisor on Z such that f ∗
ZL ∼ qL. Since OZ1

is a direct summand

of ψ∗OZ , we infer that ̟∗OZ(f ∗
ZL) = ̟∗OZ(qL) contains

p2∗OZ1
(p∗1L) ≃ f ∗

A (̟∗OZ(L))

as a direct summand. In particular, if ̟∗OZ(qL) is locally free at a point y ∈ A, then so

is ̟∗OZ(L) at fA(y). Let U be the set of points y ∈ A such that ̟ is flat along ̟−1(y).

Then U is a Zariski open dense subset. The argument above says that fA(U) ⊂ U , since

y ∈ U if and only if ̟∗OZ(mL) is free at y for m ≫ 0. Thus, for the complement Σ of

U in A, we have f−1
A (Σ) ⊂ Σ. Then Σ = ∅ by Step 1, and hence ̟ is flat.

Step 4. We shall prove that any fiber of ̟ is reduced:

Let Σ be the set of points y ∈ A such that the fiber Fy := ̟−1(y) is non-reduced.

Then LdFy,red < LdFy for d = dimZ−dimA. For a point y′ ∈ f−1
A (y), let δ be the degree

of the finite morphism fZ : Fy′,red → Fy,red. Then

qdLdFy′,red = (f ∗
ZL)dFy′,red = Ld(fZ∗Fy′,red) = δLdFy,red
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implies that δ = qd and

LdFy′,red = LdFy,red < LdFy = LdFy′ .

Thus, f−1
A (Σ) ⊂ Σ, and hence Σ = ∅ by Step 1.

Step 5. The remaining case: dimZ/A = 1.

Since a general fiber of ̟ is rationally connected, we infer that any fiber of ̟ is P1 by

Step 2–4. In particular, ̟ is smooth and is a holomorphic P1-bundle. �

Next, we shall prove Theorem 1.2.

Proof of Theorem 1.2. Most things are derived from Theorems 3.2, 3.3, Lemma 4.1, and

Proposition 4.4. Note that q♮(X) = q◦(Y ) ≤ dimY for Y in Lemma 4.1. If q◦(Y ) ≥
dimY − 3, then Y is Q-abelian by Proposition 3.5.

(1): If dimX ≤ 3 and q♮(X) = 0, then Y is a point by Proposition 3.5. Thus, X

is rationally connected, since W → Y is birational to a maximal rationally connected

fibration of a nonsingular model of W .

(2): If q♮(X) = q◦(Y ) = n, then W ≃ Y and Y is Q-abelian. Thus, X is not uniruled

and is Q-abelian by Theorem 3.2.

(3) and (4): Suppose that q♮(X) = q◦(Y ) ≥ n− 3. Then Y is Q-abelian. Let V → X,

Z → V , ̟ : Z → A, and A → Y be as in the proof of Theorem 1.1, where S is a point.

Then ̟ : Z → A is a flat morphism whose fibers are all irreducible and reduced rationally

connected varieties by Lemma 4.5. Then the assertion (3) follows.

Suppose that q♮(X) = n − 1. Then Z → A is a P1-bundle by Lemma 4.5. Hence, if

V ≃ Z, then this is the case of (4a). Assume that Z → V is not isomorphic. Let E ⊂ Z

be the exceptional locus. Then f−1
Z (E) = E and f−1

A (̟(E)) = ̟(E). Thus, ̟(E) = A

by Step 1 in the proof of Lemma 4.5. Let Σ ⊂ A be the set of points y ∈ A such that

̟−1(y) ⊂ E. Then f−1
A (Σ) ⊂ Σ. Hence, Σ = ∅ by Step 1 in the proof of Lemma 4.5.

Therefore, ̟|E : E → A is a finite surjective morphism. It is enough to show that E is

a section of ̟. Let Γ be a fiber of Z → V and M → ̟(Γ) a resolution of singularity.

Then ZM := Z ×AM →M is a P1-bundle. In order to show E to be a section of ̟, it is

enough to show that E ×A M is a section of ZM → M . An irreducible component B of

E×AM , which is a prime divisor of ZM , is contracted to a point by ZM → Z → V . Thus,

ZM ≃ PM(EM) for a locally free sheaf EM of rank two on M , and there is a surjection

EM → LM to an invertible sheaf LM such that the section corresponding to EM → LM
is B. Since B is contracted to a point, the kernel M of EM → LM is the maximal

destabilizing sheaf of EM for any ample divisor on M . Therefore, E ×A M has no other

irreducible component. Hence, E ×AM = B is a section of ZM →M . Therefore, E is a

section of ̟. Thus, (4) has been proved. �
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5. Endomorphisms of projective spaces

In this section, we shall prove Theorem 1.4. Let f be an endomorphism of Pn with

deg f > 1 for n ≥ 2. Then f ∗H ∼ qH for the hyperplane section H and deg f = qn for a

positive integer q > 1.

Lemma 5.1 (cf. [15], Proposition 4.2; [12], §3). Let V ⊂ Pn be a hypersurface such that

f−1(V ) = V . Then deg V ≤ n + 1 and every irreducible component of V is uniruled. If

deg(V ) = n+1, then f : Pn \V → Pn \V is étale. If V is irreducible and deg(V ) = n+1,

then V ∩ L has non-nodal singularities for a general plane L ⊂ Pn.

Proof. Replacing f with a positive power fk, we may assume that f−1(Vi) = Vi for every

irreducible component Vi of V . Thus f ∗Vi = qVi. Hence, the ramification formula for f

is written as

KPn = f ∗(KPn) + (q − 1)V + ∆

for an effective divisor ∆ not containing any irreducible component of V . Comparing the

degrees, we have

(q − 1) deg(V ) ≤ (1− q) degKPn = (q − 1)(n+ 1).

Thus, deg(V ) ≤ n+ 1. If deg(V ) = n+ 1, then ∆ = 0; hence f is étale outside V .

Suppose that V is irreducible. Let ν : Ṽ → V be the normalization. Then K
Ṽ

=

ν∗(KV )− C for the conductor C. Thus,

K
Ṽ
∼ (deg(V )− (n+ 1))ν∗H − C.

If deg(V ) < n + 1 or V is non-normal, then K
Ṽ

is not pseudo-effective, and hence V is

uniruled by [40]. Assume that deg(V ) = n+ 1. Then V ∩ L is neither smooth nor nodal

for a general plane L ⊂ Pn by Theorem 5.2 below, since the degree (deg f)k of the étale

covering fk : Pn \ V → Pn \ V is not bounded. �

In the proof of Lemma 5.1, we use the following result related to a conjecture of Zariski.

Theorem 5.2 ([21], [13], [27]). Let V ⊂ Pn be a hypersurface of degree d for n ≥ 2. If V

has only normal crossing singularities in codimension one, then the fundamental group

π1(P
n \ V ) is abelian. In particular, if V is irreducible, then π1(P

n \ V ) ≃ Z/dZ.

Proof. The assertion for n = 2 is just [13], Théorèm 1. In case n ≥ 3, let L ⊂ Pn be

a general plane. Then V ∩ L is a nodal curve. Here, π1(L \ V ) ≃ π1(P
n \ V ) by [27],

Corollarie (0.1.2) (cf. [13], §1). Thus, we are done. �

The following result gives a property of ramification divisors of endomorphisms, which

is originally proved in the case of curves in [47].
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Lemma 5.3. Let f : X → X be a finite surjective endomorphism of a normal algebraic

variety X with deg f = d > 1. Let D and ∆ be effective divisors such that the ramification

divisor Rf of f is expressed as f ∗D −D + ∆, i.e., KX + D = f ∗(KX + D) + ∆. Then

D and ∆ have no common irreducible components, and f−1(D) = D. Moreover, there

is a positive integer k such that (fk)−1Γ = Γ for any irreducible component Γ of D. In

particular,

D =
∑

1≤a | dk
Da

for effective divisors Da such that

(1) (fk)∗Da = aDa for any a,

(2) Da is reduced or zero for a > 1,

(3) Da and D −Da have no common irreducible components for any a.

Proof. Let Γ be an irreducible component ofD and Θ an irreducible component of f−1(Γ).

We set a := multΘ(f ∗Γ). Since multΘ(Rf ) = a− 1, we have

(**) multΘ(D)− 1 = a(multΓ(D)− 1) + multΘ(∆) ≥ a(multΓ(D)− 1).

In particular, multΘ(D) ≥ 1. Let S(D) be the set of irreducible components of D. Then

we have the inclusion S(f−1D) ⊂ S(D) of finite sets. Since the map

S(f−1D) ∋ Θ 7→ f(Θ) ∈ S(D)

is surjective, we have ♯S(f−1D) = ♯S(D). Thus, S(f−1D) = S(D), f−1(D) = D, and

Γ 7→ f−1(Γ) gives a permutation of S(D). In particular, f ∗Γ = aΘ. Hence a | d. Let k

be a positive integer such that f−k induces the identity on S(D). Then (fk)∗Γ = akΓ for

an integer ak, where a | ak | dk. Since KX +D = (fk)∗(KX +D) + ∆k for

∆k = (fk−1)∗∆ + · · ·+ f ∗∆ + ∆,

one of the following two cases occurs by the same inequality for fk as (**):

(i) ak = 1 and multΓ(∆k) = 0.

(ii) multΓ(D) = 1 and multΓ(∆k) = 0.

In both cases, we have Γ 6⊂ Supp ∆k. Hence, D and ∆ have no common irreducible

components. In Case (i), fk : X → X is not branched along Γ, and fk∗ Γ = dkΓ. In Case

(ii), fk∗ Γ = dk/akΓ. We set Da =
∑
ak=a Γ for a > 1 and D1 = D −∑

a>1Da. Then all

the required conditions are satisfied. �

Proposition 5.4. Let f : Pn → Pn be a non-isomorphic surjective endomorphism, and

V a hypersurface. Assume that V is not normal and f−1(Vi) = Vi for any irreducible

component Vi of V . Then V has only normal crossing singularities in codimension one,
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and f−1(Σ) = Σ for the non-normal locus Σ of V . In particular, V ∩ L is nodal for a

general plane L ⊂ Pn.

Proof. The ramification divisor Rf is expressed as (q−1)V +∆ for q = (deg f)1/n and an

effective divisor ∆ as before. For the normalization Ṽi → Vi, we have the normalization

map ν : Ṽ =
⊔
Ṽi → V of V and an effective divisor C = ν∗KV −KṼ

called the conductor

of V . There is an endomorphism h : Ṽ → Ṽ such that ν ◦ h = f ◦ ν and h−1(Ṽi) = Ṽi for

any i. Moreover, we have the same formula

K
Ṽ

+ C = h∗(K
Ṽ

+ C) + ν∗(∆|V )

as in the proof of Lemma 5.1. Applying Lemma 5.3 to every connected component Ṽi

of Ṽ , we infer that h−1(C) = C and that C and ν∗(∆|V ) have no common irreducible

components. In particular, f−1(Σ) = Σ for Σ = ν(C). Since h is also a polarized

endomorphism with deg h = qn−1, we infer by Lemma 2.1 that if (hk)−1(Γ) = Γ for a

prime divisor Γ and a positive integer k, then (hk)∗Γ = qkΓ. Hence, C is reduced and

(hk)∗C = qkC for some k > 0 by Lemma 5.3. If a plane curve has a reduced conductor

over a singular point, then the singularity is nodal. Hence, V has only normal crossing

singularities in codimension one. �

By Lemma 5.1 and Proposition 5.4, we have:

Corollary 5.5. Let f : Pn → Pn be a non-isomorphic surjective endomorphism. If V is

an irreducible hypersurface of degree n+ 1, then f−1(V ) 6= V .

Proposition 5.6. Let f : Pn → Pn be a non-isomorphic surjective endomorphism and let

V be a union of hyperplanes such that f−1(V ) = V . Then V is normal crossing.

Proof. If n = 2, then it follows from Proposition 5.4. Let V =
∑
Vi be the irreducible

decomposition. We may assume that f−1(Vi) = Vi by replacing f with a power fk. We

set V ′
i = Vi∩V1 for i ≥ 2. Then V ′

i is a hyperplane of V1 ≃ Pn−1, and V ′
i 6= V ′

j for i 6= j by

Proposition 5.4. Now f1 = f |V1
: V1 → V1 is a non-isomorphic surjective endomorphism

with f−1
1 (V ′

i ) = V ′
i for 2 ≤ i ≤ n. By induction on n, we may assume that

∑
i≥2 V

′
i is

normal crossing. Thus, V = V1 +
∑
i≥2 Vi is also normal crossing along V1. Therefore, V

is normal crossing. �

Theorem 5.7. Let f : Pn → Pn be a non-isomorphic surjective endomorphism for n ≥ 2.

If f−1(V ) = V for a smooth hypersurface V , then V is a hyperplane.

Proof. Assume that d := deg(V ) > 1. Then the following results are known:

• d ≤ 2 by [4].

• If n ≥ 4, then d 6= 2 by [49], Proposition 8.
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• (n, d) ∈ {(2, 2)} by [12].

• n > 2 by [23].

Thus, the assertion is proved by the results above. However, we shall give another proof

in the case where d = 2 and n ≥ 2, applying results in [38] and [49], Proposition 8.

Let τ : Y → Pn be the double cover totally branched over V , associated with the

relation V ∼ 2H for a hyperplane H. Then KY = τ ∗(KPn + H) = −nτ ∗H and Y is a

smooth quadric hypersurface in Pn+1. Let X be the normalization of the fibre product

Pn ×Pn Y of f : Pn → Pn and τ : Y → Pn.

Suppose that q = (deg f)1/n is odd. ThenX is also the double covering totally branched

along V . Hence, the second projection produces an endomorphism fY : Y → Y of degree

qn. Then n = 2 by [49], Proposition 8. Therefore, Y is isomorphic to P1 × P1 in which

the inverse image D = τ−1(V ) corresponds to the diagonal locus. Here, f−1
Y (D) = D. By

replacing f with f 2, we may assume that fY preserves each projection Y → P1. Then

fY = h×h for an endomorphism h of P1. However, f−1
Y (D) contains D as a proper subset

since deg h = q > 1. This is a contradiction.

Suppose next that q is even. Then X is a disjoint union of two copies of Pn. Thus,

we have a factorization Pn → Y → Pn of f . Then Y ≃ Pn by Lazarsfeld’s theorem [38],

absurd!

Therefore, the case d = 2 does not occur, and V is a hyperplane. �

Lemma 5.8. Let L ⊂ Pn a linear subspace of codimension m + 1 for m ≥ 1 and

π : Pn ···→Pm the projection from L. Then a surjective endomorphism f : Pn → Pn

satisfying f−1(L) = L defines a surjective endomorphism h : Pm → Pm satisfying the

following conditions :

(1) deg h = (deg f)m/n.

(2) If f−1(π−1(B1)) = π−1(B2) for two subvarieties B1, B2 ⊂ Pm, then h−1(B1) = B2.

Proof. Let (X0, . . . , Xn) be a homogeneous coordinate of Pn such that L = {X0 = · · · =
Xm = 0}. Then π is written as

(X0 : X1 : · · · : Xn) 7→ (X0 : X1 : · · · : Xm).

The endomorphism f is also expressed as

f ∗
Xi = Fi(X0, X1, . . . , Xn)

for a homogeneous polynomial Fi of degree q for any 0 ≤ i ≤ n, where deg f = qn. By

assumption,
⋂m
i=0{Fi = 0} = L. Thus, we can define an endomorphism h : Pm → Pm by

h∗Xi = Fi(X0, X1, . . . , Xm, 0, . . . , 0)
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for 0 ≤ i ≤ m. Here, deg h = qm = (deg f)m/n. For a point P = (a0 : a1 : · · · : am) ∈ Pm,

let FP be the linear subspace π−1(P ) and set

P0 := (a0 : a1 : · · · : am : 0 : · · · : 0) ∈ Pn.

Then FP ⊃ L, FP ∋ P0, and π ◦ f(P0) = h(P ). If P ∈ B2, then P0 ∈ FP ⊂ π−1(B2) =

f−1(π−1(B1)), f(P0) ∈ f(FP ) ⊂ π−1(B1), and hence h(P ) ∈ B1. Conversely, if h(P ) ∈
B1, then f(P0) ∈ Fh(P ) ⊂ π−1(B1), P0 ∈ f−1(π−1(B1)) = π−1(B2), and hence P ∈ B2.

Therefore, h−1(B1) = B2. �

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4.

(1) and (2) are consequences of Lemma 5.1, Proposition 5.4, Corollary 5.5 and Theo-

rem 5.7 above. The assertion (3) is proved as Proposition 5.6. The assertion (4) follows

from (1) and (2). Thus, it remains to prove (5). Here, we may assume that V is irre-

ducible by replacing f with a power fk. Then deg(V ) ≤ 3 by Corollary 5.5. It remains

to consider the cases of deg(V ) = 2 and deg(V ) = 3.

Case deg(V ) = 3: If V is not normal, then V is a rational surface by [50], Theorem 1.1,

or [1], Theorem 1.5. Thus, we assume that V is normal. Then V is either a rational

Gorenstein del Pezzo surface or a cubic cone over an elliptic curve by [25]. Therefore,

we have to consider the latter case, where the cubic cone V is obtained from a relatively

minimal elliptic ruled surface by contracting the unique negative section. Here, f−1(P ) =

P for the vertex P of the cone, since (V, P ) is not a germ of quotient singularity. Let

π : P3 ···→P2 be the projection from P . Then C = π(V ) is a smooth cubic curve. By

Lemma 5.8, there is a non-isomorphic surjective endomorphism h : P2 → P2 such that

h−1(C) = C. This contradicts Theorem 5.7.

Case deg(V ) = 2: Then V is a singular quadric cone by Theorem 5.7. Thus, V ≃
{Z2

0+Z
2
1+Z

2
2 = 0} ⊂ P3 for a homogeneous coordinate (Z0, Z1, Z2, Z3) of P3. Let τ : Y → P3

be the double cover branched along V . Then Y is isomorphic to a singular quadric cone

{X2
0 +X

2
1 +X

2
2 +X

2
3 = 0} ⊂ P4 for a homogeneous coordinate (X0, X1, X2, X3, X4) of P4, where

τ is given by

(X0 : X1 : X2 : X3 : X4) 7→ (X0 : X1 : X2 : X4).

For the vertices PV = (0 : 0 : 0 : 1) ∈ P3 and PY = (0 : 0 : 0 : 0 : 1) ∈ P4 of the cones V and

Y , respectively, we have τ−1(PV ) = {PY }. Now, PY is a unique singular point of Y , and

(Y, PY ) is not a Q-factorial singularity, since it has a small resolution, whose exceptional

locus is P1 with the normal bundle O(−1)⊕O(−1).

We shall construct a surjective endomorphism fY : Y → Y such that τ ◦fY = f ◦τ . Let

Z be the normalization of the fiber product P3 ×P3 Y of f : P3 → P3 and τ : Y → P3. If
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deg(f) is odd, then Z is irreducible and is isomorphic to Y ; thus the natural composition

fY : Y
≃−→ Z → Y is an expected endomorphism. If deg(f) is even, then Z is a disjoint

union of two copies of P3 and f = τ ◦ θ for a surjective morphism θ : P3 → Y ; thus the

composition fY = θ ◦ τ is an expected endomorphism.

For the endomorphism fY , we have f−1
Y (PY ) = {PY }; otherwise PY is dominated by a

non-singular point of Y , which implies that (Y, PY ) is Q-factorial. Hence, f−1(PV ) = PV

for τ−1(PV ) = PY . Now applying Lemma 5.8, we have an non-isomorphic surjective

endomorphism h : P2 → P2 such that h−1(C) = C for the smooth conic C = {Z2
0+Z

2
1+Z

2
2 =

0} ⊂ P2. This contradicts Theorem 5.7.

The proof of Theorem 1.4 is completed. �
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