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Y. Lyanda-Geller,4 and T. L. Reinecke1

1Naval Research Laboratory, Washington, D.C. 20375, USA
2Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel

3A. F. Ioffe Physical Technical Institute, St. Petersburg 194021, Russia
4Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA

(Received 21 June 2005; published 19 October 2005)

We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-
tunable InAs=GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure
arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the
axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are
understood from the spin character of the triplet states and a small amount of quantum dot asymmetry,
which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
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The spin state of a singly charged quantum dot (QD)
could act as a bit of quantum information that is controlled
and measured optically through the charged exciton (trion)
[1]. Because the optical control of spin information de-
pends profoundly on fine structure, selection rules, and
spin interactions, there is considerable interest in high-
resolution spectral studies of the trion [2]. The trion has
been investigated using nonresonant excitation in single
QDs [3–8], and, in particular, there have been many stud-
ies of the ‘‘singlet’’ trion, in which the two electrons are
spin paired. One result of these studies is the demonstration
that electron-hole exchange, which plays such an impor-
tant role in the neutral exciton [9,10], is absent in the
singlet trion [6,8]. However, in the trion’s excited state,
in which one of the electrons occupies the p shell, the two
electrons can also form a spin triplet. In this case electron-
electron (e-e) and electron-hole (e-h) interactions partly
remove the high (eightfold) spin degeneracy, leading to
fine structure in the excited state of the trion. Such structure
due to spin in quantum dots has been discussed theoreti-
cally [11] and invoked to explain nonresonant negative
photoluminescence (PL) polarization in InAs dots [12],
quantum beating in InP dots at zero field [13], and split-
tings in multiexciton and multicharge PL lines in CdSe [3]
and InAs [14] dots.

Here we measure resonantly the optical spectrum of a
single electron in individual charge-tunable InAs=GaAs
QDs for the first time using polarized PL excitation
(PLE) spectroscopy. In this spectrum we discover a well-
resolved doublet structure with a remarkable polarization
reversal that we will assign to trion triplet states.

The InAs QDs were grown by molecular beam epitaxy
using an indium flush technique [4,15]. The QDs were
embedded in a Schottky diode to control their electronic
charging [5,7]. The diode structure was grown on a �001�
n-type GaAs substrate covered with a 500 nm thick GaAs

buffer layer (Te doped at �5� 1017 cm�3), followed by
80 nm of GaAs, the InAs QDs, 230 nm GaAs, 40 nm
Al0:3Ga0:7As, and a 10 nm thick GaAs cap. The PL was
excited and detected at �10 K through aluminum shadow
masks with submicron apertures using a cw, Ti:sapphire
laser (<7 �eV linewidth) and a 0.5 m spectrometer with a
CCD. With voltage controlled retarders for polarization in
a strictly backscattering geometry, we obtained polariza-
tion fidelity greater than 95% at the single dot level.

The charge state of individual QDs was controlled by
adjusting the bias across the diode while monitoring the PL
spectra. Typical bias dependent PL spectra for nonresonant
excitation, Eexc � 2:3 eV, are displayed in Fig. 1(a). The
image shows the PL emission from both the s and p shells
with �50 meV energy separation between them. Elec-
tronic charging in discrete steps is clearly identifiable in
the higher resolution s-shell spectra in Fig. 1(b) with exci-
tation energy at Eexc � 1:44 eV, just below the wetting
layer energy. The bias at which the dot is charged with a
single electron is identified by the appearance of the nega-
tive trion, X� [4,14].

Low power PLE spectra in which the excitation energy
is scanned through the energy range of the p-shell emission
reveal intense resonances in the X� with strong polariza-
tion dependence (Fig. 2). It is seen (dot B) that the PLE
spectrum of the X� is shifted down in energy relative to the
X0 and becomes strongly polarized when the dot is charged
with a single electron. A future analysis of all features will
require concepts suggested previously to account for the
complex PLE spectrum of a neutral exciton [16,17], in-
cluding strong phonon coupling [18], excited state mixing
[19], forbidden transitions to the continuum [16,20,21],
and splitting of the p shells.

In general, we find two very distinctive features. The
first is a set of lower energy resonances that are strongly
copolarized with the laser. In dot B this occurs at
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�1302 meV, which is 42 meV above the PL emission. We
tentatively assign this structure to nominally forbidden
transitions involving states with two s-shell electrons and
an excited hole [22]. The second feature is a higher energy
resonance (for dot B at�1313 or�53 meV above the PL)
that displays a fine structure doublet well resolved in
circular polarization. To date, we have investigated
9 QDs, all of which display this resonant doublet in the
range between�50–57 meV above the X� PL energy with
a splitting of �216–237 �eV. We will develop an under-
standing of this doublet in what follows.

High-resolution PLE spectra of the doublet for the two
circular PL polarizations are shown in the insets of Fig. 2.
For all dots, both lines exhibit extremely large polariza-
tions ranging from �65% to greater than 95% calculated
by P � �I� � I��=�I� � I��, with I� (I�) representing
the integrated intensity of the �� (��) polarized PLE
resonance under �� polarized excitation. The half-widths
of each of the lines are�50 �eV in the low power limit. In
all the QDs the low-energy component is positively polar-
ized, and the high-energy line is negatively polarized, i.e.,
parallel and antiparallel with the laser, respectively. In the
following we argue that this PLE resonance and its polar-
ized fine structure result from direct excitation into the
triplet states of the excited trion (see Fig. 2, left inset).

In Fig. 3 we consider in more detail the optical excitation
of an e-h pair directly into the p shell in the presence of an
unpolarized ‘‘resident’’ s-shell electron [11]. The electrons

will form symmetric spin triplets and an antisymmetric
spin singlet split by the e-e exchange of �ee � 6 meV [5].
The triplet states are further split by the axially symmetric
part of the e-h exchange interaction (�eh) into a set of three
degenerate doublets with the order given in Fig. 3. This
splitting is expected to be several hundred�eV as deduced
from the transverse magnetic field dependence of the X0

[6], and from the fine structure of the X2� [14] and 2X�

lines [3,14]. In Fig. 3 the trion states have been sorted into
two columns that show vertical optical transitions under
circularly polarized excitation. Only four of the six triplet
states are optically allowed. Thus, resonant�� light should
lead to excitation of two states split by �eh (wavy ‘‘up’’
arrows in Fig. 3), as observed. These two transitions differ
in the initial state by the spin projection of the resident
electron, and thus the laser frequency and polarization
provide a spin selective probe.

To understand the dramatic polarization reversal in the
fine structure doublet, we consider relaxation from the
excited trion triplet states (populated by �� light) to the
luminescing s-shell singlet. The relaxation of the low-
energy ms � �3=2 triplet state (left side of Fig. 3) con-
serves both the hole spin and the spin projection of the
electrons. The low-energy resonance should therefore re-
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FIG. 1 (color online). Bias dependent PL intensity maps.
(a) Emission from both the s and p shells of a single dot.
(b) Charging structure of the s-shell emission from another dot.
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tain its �� character during relaxation and recombination,
as observed. The ms � �1=2 high-energy state of the
excited trion triplet (right side of Fig. 3), however, requires
a change of momentum projection of �2 in order to relax
through a spin projection conserving channel. It is well
understood that single particle spin flips are strongly sup-
pressed in QDs [23]. However, the asymmetric part of the
e-h exchange interaction (�eh) has been shown to mix the
ms � 	1=2 states with the ms � 3=2 states by a small
amount [11]. This simultaneously flips the p-shell electron
and the hole spins leading to relaxation to the ground state
singlet from the ms � 	1=2 excited states [12]. (This is
necessary for relaxation, but not sufficient as will be dis-
cussed below.) With the hole now having opposite spin, the
emission is thus polarized antiparallel to the laser light (��

emission).
The absolute magnitudes of the polarizations allow us to

deduce the amount of wave function mixing (�), which in
turn determines �eh from the relation � � ��eh=�eh�

2 [11]
with �eh given by the splitting of the doublet. Because the
oscillator strengths of the transitions differ, the absolute
polarizations are different for each channel. The oscillator
strength of the��-polarized optical transition into the state
denoted by jms � �3=2i � j*i�j"#i � j#"i�=

���

2
p

from the
j"i electron state is 2 times smaller than that for excitation
into jms � �1=2i � j*ij##i from j#i. We find polarization
values of �70% for �� and �� 90% for �� PLE lines
which gives a value of � � 0:08, corresponding to �eh �
60 �eV, which is consistent with our measured neutral
exciton fine structure splittings in PL (�eh & 40 �eV)
[6,9]. Thus, the model provides a natural explanation of
the magnitude of the fine structure splitting, the signs and

values of the strong polarization, and the order of PLE
resonances observed in the resonant p-shell PLE spectra of
the negative trion.

Interestingly, the two PLE components are power-
broadened [24], but at substantially different rates, as
shown in Figs. 4(a) and 4(b). We analyze these data to
obtain estimates of the relative relaxation rates. Power
broadening arises from the saturation of the transition,
thus the �� PLE line, with its larger oscillator strength,
broadens faster than the �� line. The integrated area of
each of the PLE lines [Fig. 4(c)] reveals a similar trend.
Fits to the data in Figs. 4(b) and 4(c) are obtained using
density matrix equations and a ratio of 2 for the oscillator
strengths, thus allowing us to estimate the triplet to ground
state singlet relaxation rates as �� � �25 ps��1 and �� �
�310 ps��1 from the ms � 3=2 and ms � 1=2 states, re-
spectively. As we expect, because of the asymmetric e-h
exchange mixing, the ms � 1=2 state relaxes an order of
magnitude slower than the ms � 3=2 state. The PLE in-
tensities are comparable, because the rate limiting process
is the PL radiative rate, �R � �1 ns��1, which is the same
for both [12].

As discussed above, asymmetric e-h exchange mixes the
ms � 	1=2 with the ms � 
3=2 triplet states, conserving
the spin projection in relaxing to the ground state singlet,
and explaining the unique PL polarization we have ob-
served. However, this relaxation involves a change in the
total electron spin of one and should be forbidden. To
resolve this contradiction, we also consider a mixing of
thems � 	3=2 triplet states with the excited singlet states,
now through the asymmetric part of the e-e exchange
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(Fig. 3) [25]. The Dzyaloshinskii-Moriya form of this
exchange, given by �ee�s1 � s2�, arises from spin orbit
coupling [26,27] and can mix the triplet states of electrons
with the corresponding excited singlet states, which relax
quickly to the ground state singlets (within � � 1 ps).
Using �� � ��ee=�ee�

2��1 to estimate the relaxation
rate of the triplets, our results indicate that �ee=�ee �
1=5. We have obtained the asymmetric exchange for a
single dot within a Kane model calculation [27] and find
a term �ee�s1 � s2�z that mixes the excited singlet and the
triplet states if the potential has inversion asymmetries in
the lateral directions. We have evaluated �ee for dots with
modest cubic and fourth order terms added to the lateral
parabolic potentials. The value �ee=�ee � 1=5 is obtained
with an anharmonicity of & 12% as seen in the spacing of
the excited states. We believe this deviation from an ideal
potential to be reasonable [28] and thus conclude that
asymmetric e-e exchange can provide a channel for re-
laxation from triplet to ground state singlet.

Recently, negative PL polarization of the trion with
nonresonant circularly polarized excitation was explained
with two alternative models [12,29,30]. The first [29,30] is
based on the creation and accumulation of dark excitons
due to single spin flips of delocalized holes. Subsequent
capture by a negatively charged QD and recombination
leads to negative polarization. The second model [12] is
based on the mutual e-h flip-flop transition mediated by the
asymmetric e-h exchange in the triplet state. Recently, we
proved [30] that the first mechanism dominates under non-
resonant excitation in GaAs=AlxGa1�xAs QDs. Now, using
polarized resonant excitation of the triplet states in
InAs=GaAs QDs, where single carrier spin flips are sup-
pressed, we have demonstrated directly the second mecha-
nism for negative PL polarization.

In conclusion, we have discovered a fine structure
doublet in the polarized PLE spectra of the negative trion.
We show that the doublet arises from the resonant ex-
citation of triplet states of the trion with splitting due to
the symmetric e-h exchange interaction. Furthermore,
the asymmetric part of the e-h exchange mixes the triplet
states, while the asymmetric part of the e-e exchange
mixes the excited singlet with the triplet states. This
leads to two separate relaxation channels that are selected
by laser energy and recombine with both positive and
negative polarization. Finally, we note that because the
components of the doublet arise from opposite spin states
of the resident electron (Fig. 3), these polarized reso-
nant transitions provide an all optical PLE method of
selectively probing the spin state of a single electron con-
fined in a QD.
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