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Because of their inherently high flux allowing the detection of clear signals, black hole 

X-ray binaries are interesting candidates for polarization studies, even if no 

polarization signals have been observed from them before. Such measurements would 

provide further detailed insight into these sources' emission mechanisms. We 

measured the polarization of the gamma-ray emission from the black hole binary 

system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe 

data reveals two emission mechanisms: The 250-400 keY data are consistent with 

emission dominated by Compton scattering on thermal electrons and are weakly 
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polarized. The second spectral component seen in the 400keV-2MeV band is by 

contrast strongly polarized, revealing that the MeV emission is probably related to the 

jet first detected in the radio band. 

Cygnus X-I is probably the best known black hole (BH) X-ray binary in our Galaxy. 

It has been widely observed with many telescopes over the whole electromagnetic band (I-

10). The BH is located around 2.1 kpc away from Earth (11), and forms a binary system 

with a high mass blue 0 star (12). It radiates mainly in the X -ray and soft gamma-ray 

domains; the X-ray luminosity is thought to be produced by accretion of the companion's 

matter onto the BH (1,2). The well-studied X-ray spectrum is a combination of a thermal 

spectrum with temperature around 130 e V (13) and a cutoff power law spectrum, due to the 

Compton-scattering of the disk photons off high temperature thermal electrons located in a 

corona close to the BH (2). Recently, an additional spectral component of unknown origin 

was observed (10) by the spectrometer on INTEGRAL (SPI) telescope (14). Finally, a 

compact radio jet is ejected from the vicinity of the BH, with a kinetic power similar to the 

source's bolometric X-ray luminosity (3,4). 

The IBIS telescope (15) onboard the INTEGRAL satellite (16), can be used as a 

Compton polarimeter (17-21). Spectral measurements of Cygnus X-I (Fig. 1) reveal two 

high energy components: a cutoff power law component between 20 and 400 keV, 

reminiscent of a Compton-scattering induced spectrum, already observed by many satellites 

(2,6,7,9,10), and a power law spectrum at higher energies of up to 2 MeV, already observed 

(10) by the SPI telescope on board INTEGRAL. These two components are signatures of 



two different high energy emission processes from the source, whose locations have not 

been previously constrained. 

We measured the polarization signal between 250 and 400 keY (Figure 2). As 

expected from a zone where Compton scattering on thermal clectrons dominates (22), the 

emission in this band is weakly polarized with an upper limit of 20% for the polarization 

fraction Pf. 

In contrast, the signal from the 400-2000keV band, in which the hard tail dominates, 

is highly polarized (Pf= 67 ± 30 %, see Figure 3). This result is no longer consistent with 

Compton scattering on thermal electrons (22), and such a high polarization fraction is 

probably the signature of synchrotron or inverse Compton emission from the jet already 

observed in the radio band (23). Unfortunately, current knowledge of the jet at radio 

wavelengths does not allow discriminating between the two processes. 
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In order to have such a clear polarimetric signal, the magnetic field has to be coherent 

over a large fraction of the emission site (5). Such a coherent magnetic field structure may 

indicate a jet origin for the gamma-rays above 400 keY (24). In addition, because the 

gamma-rays emitted in BH X-ray binaries are generally thought to be emitted close to the 

BH horizon (7,25), and because the synchrotron photons we observed in the hard tail are 

too energetic to be effectively self-Comptonized, these observations might be evidence that 

the jet structure is formed in the BH vicinity, possibly in the Compton corona itself. 

Another possibility is that the gamma-rays are produced in the initial acceleration region in 
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the jet, as observed at higher energies by FermilLAT from the micro quasar Cygnus X-3 

(26). 

The spectrum observed above 400 ke V is consistent with a power law of photon 

index 1.6 ± 0.2. This means that this spectrum, if due to synchrotron or inverse Compton 

emission, is caused by electrons whose energy distribution is also a power law with an 

index p of2.2 ± 0.4 (27), consistent with the canonical value for shock-accelerated particles 

p = 2. Synchrotron radiation at MeV energies implies also that the electron energy, for a 

magnetic field of 10 mG, which is reasonable for this kind of system (28), would be around 

a few TeV (27,29). Inverse Compton scattering of photons off these high energy TeV 

electrons, whose lifetime due to synchrotron energy loss is around one month (27), could 

also be the origin of the TeV photons detected from Cygnus X-I with the MAGIC 

experiment (30) and possibly also the gamma-rays claimed by AGILE (31). 

The position angle (PA) of the electric vector, which gives the direction of the 

electric field lines projected onto the sky, is 140 ± 15°. This is at least 100° away from the 

compact radio jet, which is observed at a PA of21-24° (32). Such deviations between the 

electric field vector and jet direction are also found in other jet sources, such as Active 

Galactic Nuclei (33) or the galactic source SS433 (34). 
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Fig. 1. Cygnus X-1 energy spectrum as measured by the Integral/IBIS 

telescope, and obtained with the standard IBIS spectral analysis pipeline. 

Two components are clearly seen: a "Comptonisation" spectrum caused by 

photons upscattered by Compton scattering off thermally distributed 

electrons in a hot plasma (dashed line), and an higher energy component 

(dash dot line) whose origin is not known. 

Fig. 2. Cygnus X-1 polarization signal measured in two adjacent energy 

bands. This distribution gives the source count rate by azimuthal angle of 

the Compton scattering. In the 250-400 keV energy band (panel a), the signal 

is consistent with a flat signal indicating that the observed gamma-rays are 

weakly or even not polarized. In the 400-2000 keV energy band (panel b), the 

signal is now highly modulated, indicating that the observed gamma-rays are 

highly polarized. 
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