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The spatial covariant gravities provide a natural way to including odd-order spatial derivative
terms into the gravitational action, which breaks the parity symmetry at gravitational sector. A
lot of parity-violating scalar-tensor theories can be mapped to the spatial covariant framework by
imposing the unitary gauge. This provides us with a general framework for exploring the parity-
violating effects in primordial gravitational waves (PGWs). The main purpose of this paper is to
investigate the polarization of PGWs in the spatial covariant gravities and their possible obser-
vational effects. To this end, we first construct the approximate analytical solution to the mode
function of the PGWs during the slow-roll inflation by using the uniform asymptotic approximation.
With the approximate solution, we calculate explicitly the power spectrum and the corresponding
circular polarization of the PGWs analytically. It is shown that the new contributions to power
spectrum from spatial covariant gravities contain two parts, one from the parity-preserving terms
and the other from the parity-violating terms. While the parity-preserving terms can only affect
the overall amplitudes of PGWs, the parity-violating terms induce nonzero circular polarization of
PGWs, i.e., the left-hand and right-hand polarization modes of GWs have different amplitudes. The
observational implications of this nonzero circular polarization is also briefly discussed.

I. INTRODUCTION

The inflation which took place at the early Universe
has become a dominant paradigm in the standard cos-
mology [1–6]. In this paradigm, primordial density and
gravitational-wave fluctuations are created from quan-
tum fluctuations during the inflation process. The for-
mer provides primordial seeds for the formation of ob-
served large-scale structure and creates the temperature
anisotropy in the cosmic microwave background (CMB),
which was already detected by various CMB experiments
[7–10]. The primordial gravitational waves (PGWs), on
the other hand, also produce distinguishable signatures
in both the spectra of the CMB [11–15] and the galaxy
shaped power spectrum [16–22]. In CMB, the PGWs can
produce the TT, EE, BB, and TE spectra, but the TB
and EB spectra vanish if the parity symmetry in gravity
is respected [11–15]. These signatures are important tar-
gets of future CMB experiments [23–26]. Similarly, the
PGWs also leave distinct imprints in the B-mode of the
galaxy shaped power spectrum but with vanishing E-B
correlation due to the parity conservation of the theory
[16–22]. It is therefore expected that the future galaxy
surveys could also provide invaluable information about
the physics of PGWs [22, 27, 28].

∗ zhut05@zjut.edu.cn; Corresponding author
† wzhao7@ustc.edu.cn
‡ anzhong wang@baylor.edu

In most of inflation models that produce PGWs, the
theory of general relativity (GR) is assumed to describe
the theory of gravity. Due to the parity symmetry of this
theory, the PGWs have two polarization modes which
share exactly the same statistical properties and the
corresponding inflationary power spectra take the same
form. If the parity symmetry is violated, however, the in-
flationary power spectra of right- and left-handed PGWs
can have different amplitudes. The corresponding rela-
tive difference between the power spectra of right- and
left-handed PGWs measures the level of the parity vi-
olation. In CMB, such parity violating effects can in-
duce nonvanishing TB and EB correlation in CMB at
large scales and thus the precise measurement of TB and
EB spectra could be an important evidence of the par-
ity violation of the gravitational interaction [29–33]. It
is also proposed that the future ground- and space-based
interferometers (such as LIGO/Virgo [34, 35], the Big
Bang Observer [38], LISA and Taiji/Tianqin [36, 37],
etc) are also able to detect or constrain the parity vi-
olating effects in the stochastic gravitational-wave back-
ground of primordial origin. In addition, parity-violating
PGWs also leaves imprints on the large scale structure
of the Universe [39] and sources nonzero E-B correlation
in the galaxy shape power spectrum [22]. Thus the fu-
ture galaxy surveys can provide an important approach
for testing or constraining the parity violating effects in
PGWs [22, 39].

Theoretically, gravitational parity violation has to
somehow modify the theory of GR. This can be achieved
by adding some parity-violating terms into the gravi-
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tational action of GR. In fact, the gravitational terms
with parity violation are ubiquitous in numerous can-
didates of quantum gravity, such as string theory, loop
quantum gravity, and Horava-Lifshitz gravity. One im-
portant example is the Chern-Simons modified gravity,
which modifies the GR by adding a gravitational Chern-
Simons term, arising from string theory and loop quan-
tum gravity [40, 41]. This theory has been extended to a
chiral scalar-tensor theory by including the higher deriva-
tives of the coupling scalar field [42]. On the other hand,
by breaking the time diffeomorphism (or Lorentz sym-
metry) of the gravitational theory, one can naturally add
parity-violating but spatial covariant terms into the grav-
itational action. This type of parity-violating theories
includes Horava-Lifshitz gravities with parity violations
[43–46] and more generally, the spatial covariant grav-
ities [47–49]. Other parity-violating theories, to men-
tion a few, include Nieh-Yan modified teleparallel grav-
ity [52, 53], parity-violating symmetric teleparallel gravi-
ties [54, 55], and standard model extension [56–60], Holst
gravity [61], etc.

In all these modified theories, a basic prediction of par-
ity violation is the circular polarization of PGWs, i.e.,
the left-hand and right-hand polarization modes of GWs
propagate with different behaviors. As we also mentioned
in the above, such asymmetry between the left- and right-
handed modes of PGWs can induce various observational
or experimental effects in CMB, stochastic gravitational-
wave background, and galaxy-shaped power spectrum.
These phenomenological effects have motivated a lot of
works in this directions (see Refs. [22, 43–45, 62–84] and
references therein for example). It is worth noting that
the gravitational-wave constraints on the parity violation
in gravity have also been extensively explored in the lit-
erature by using the gravitational-wave data realized by
LIGO/Virgo Collaboration [85–97].

Spatial covariant gravities is one of modified theory of
GR, which breaks the time diffeomorphism of the grav-
ity but respects spatial diffeomorphisms [47–50]. Such
spatial covariance provides a natural way to incorporate
the parity-violating terms into the theory [85]. With spa-
tial covariance, the parity violation can be achieved by
including the odd-order spatial derivatives into the grav-
itational action. It is shown in [47, 51] that the spa-
tial covariant gravities can provide a unified description
for a lot of scalar-tensor theory by imposing the unitary
gauge, including those with parity violation, such as the
Chern-Simons modified gravity, chiral scalar-tensor the-
ory, Horava-Lifshitz gravities, etc. Therefore, the spatial
covariant gravities can provide a general framework for us
to explore the parity violating effects in PGWs. For this
purpose, in this paper we study the circularly polarized
PGWs in this theory of gravity with parity violation, and
the possibility to detect the chirality of PGWs by future
potential CMB observations and galaxy surveys.

This paper is organized as follows. In the next sec-
tion, we present a brief introduction of the construction
of the spatial covariant gravities and then discuss the as-

sociated propagation of GWs in the a homogeneous and
isotropic cosmological background in Sec. III. In Sec.
IV, we first derive the master equation that describes the
propagation of GWs during inflation and construct the
approximate analytical solution to the PGWs by using
the uniform asymptotic approximation. With such ap-
proximate solution we then calculate explicitly the power
spectrum and the polarization of PGWs during the slow-
roll inflation. The effects of the parity violation in the
CMB spectra and galaxy shaped spectrum, and their de-
tectability have also been briefly discussed. The paper
is ended with Sec. V, in which we summarize our main
conclusions and provide some outlooks.

Throughout this paper, the metric convention is cho-
sen as (−,+,+,+), and greek indices (µ, ν, · · ·) run over
0, 1, 2, 3 and latin indices (i, j, k) run over 1, 2, 3.

II. SPATIAL COVARIANT GRAVITIES

In this section, we present a brief introduction of the
framework of the spatial covariant gravity, for details
about this theory, see [47, 48] and references therein.

We first start with the general action of the spatial
covariant gravity,

S =

∫
dtd3xN

√
gL(N, gij ,Kij , Rij ,∇i, εijk), (2.1)

where N is the lapse function, gij is the 3-dimensional
spatial metric, Kij is the extrinsic curvature of
t =constant hypersurfaces,

Kij =
1

2N
(∂tgij −∇iNj −∇jNi) , (2.2)

with Ni being the shift vector, Rij the intrinsic curvature
tensor, ∇i the spatial covariant derivative with respect
to gij , and εijk =

√
gεijk the spatial Levi-Civita tensor

with εijk being the total antisymmetric tensor. The most
important feature of the spatial covariant gravity is that
it is only invariant under the three-dimensional spatial
diffeomorphism, which breaks the time diffeomorphism.
Normally, the violation of the time diffeomorphism can
lead to an extra degree of freedom, in addition to the
two tensorial degree of freedom in GR. Indeed, it has
been verified that the spatial covariant gravity described
by the action (2.1) can propagate up to three dynamical
degrees of freedom [48]. In [49, 50], the above action has

also been extended by introducing Ṅ in the Lagrangian
through 1

N (Ṅ − N i∇iN). Since such terms does not
contribute to the gravitational waves at quadratic order,
we will not consider them in this paper.

There are a lot approaches to construct the gravita-
tional theories with spatial covariance. In this paper,
we adopt the approach used in [85] which constructs the
Lagrangians of the theory by using the linear combina-
tions of the extrinsic curvature Kij , intrinsic curvature
Rij , as well as their spatial derivatives and derivatives of
the spatial metric itself. Then, up to the fourth order in
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TABLE I. The building blocks of spatial covariant gravities up to the fourth order in derivatives of hij , where dt, ds are the
number of time and spatial derivative respectively, and d = dt + ds denotes the total numbers of time and spatial derivatives.
Here ω3(Γ) denotes the spatial gravitational Chern-Simons term, and ω3(Γ) = εijk(Γm

jl∂jΓ
l
km + 2

3
Γn
ilΓ

l
jmΓm

kn) with Γk
ij =

1
2
gkm(∂jgmj + ∂jgij − ∂mgij) being the spatial Christoffel symbols. The terms in this Table is the same as those of Table. I in

[85] except the two new terms ω3(Γ) and ω3(Γ)K.

d (dt, ds) operators
0 (0, 0) 1

1
(1,0) K
(0, 1) -

2
(2, 0) Kij , K

2

(1, 1) -
(0, 2) R

3

(3, 0) KijK
jkKi

k, KijK
ijK, K3

(2, 1) εijkK
i
l∇jKkl

(1, 2) ∇i∇jKij , ∇2K, RijKij , RK
(0, 3) ω3(Γ)

4

(4, 0) KijK
jkKi

kK,
(
KijK

ij
)2

, KijK
ijK2, K4

(3, 1) εijk∇mKi
nK

jmKkn, εijk∇iKj
mKk

nK
mn, εijk∇iKj

l K
klK

(2, 2) ∇kKij∇kKij , ∇iKjk∇kKij , ∇iK
ij∇kK

k
j , ∇iK

ij∇jK, ∇iK∇iK, RijK
i
kK

jk, RKijK
ij , RijK

ijK, RK2

(1, 3) εijkR
il∇jKk

l , εijk∇iRj
lK

kl, ω3(Γ)K
(0, 4) ∇i∇jRij , ∇2R, RijR

ij , R2

derivatives of hij , we have the building blocks as shown
in Table. I that are all scalars under transformation of
spatial diffeomorphisms. Then the general action of the
gravitational part will be given by [85]

Sg =

∫
dtd3x

√
gN
(
L(0) + L(1) + L(2) + L(3) + L(4)

+ L̃(3) + L̃(4)
)
, (2.3)

where L(0), L(1), L(2), L(3), and L(4) are the parity-
preserving terms, which are given by

L(0) = c
(0,0)
1 , (2.4)

L(1) = c
(1,0)
1 K, (2.5)

L(2) = c
(2,0)
1 KijK

ij + c
(2,0)
2 K2 + c

(0,2)
1 R, (2.6)

L(3) = c
(3,0)
1 KijK

jkKi
k + c

(3,0)
2 KijK

ijK + c
(3,0)
3 K3

+c
(1,2)
1 ∇i∇jKij + c

(1,2)
2 ∇2K + c

(1,2)
3 RijKij

+c
(1,2)
4 RK, (2.7)

L(4) = c
(4,0)
1 KijK

jkKi
kK + c

(4,0)
2

(
KijK

ij
)2

+c
(4,0)
3 KijK

ijK2 + c
(4,0)
4 K4

+c
(2,2)
1 ∇kKij∇kKij + c

(2,2)
2 ∇iKjk∇kKij

+c
(2,2)
3 ∇iKij∇kKk

j + c
(2,2)
4 ∇iKij∇jK

+c
(2,2)
5 ∇iK∇iK + c

(2,2)
6 RijK

i
kK

jk

+c
(2,2)
7 RKijK

ij + c
(2,2)
8 RijK

ijK + c
(2,2)
9 RK2

+c
(0,4)
1 ∇i∇jRij + c

(0,4)
2 ∇2R+ c

(0,4)
3 RijR

ij

+c
(0,4)
4 R2, (2.8)

and L̃(3) and L̃(4) are parity-violating terms which are

given by

L̃(3) = c
(2,1)
1 εijkK

i
l∇jKkl + c

(0,3)
1 ω3(Γ), (2.9)

L̃(4) = c
(3,1)
1 εijk∇mKi

nK
jmKkn + c

(3,1)
2 εijk∇iKj

mK
k
nK

mn

+c
(3,1)
3 εijk∇iKj

lK
klK + c

(1,3)
1 εijkR

il∇jKk
l

+c
(1,3)
2 εijk∇iRjlK

kl + c
(1,3)
3 ω3(Γ)K. (2.10)

All the coefficients like c
(dt,ds)
i are functions of t and N .

Note that in Table. I and Eqs. (2.9) and (2.10), we add
the spatial Chern-Simons term ω3(Γ) and its coupling to
K, which are absent in the original action in [85]. It is
interesting to note that the above action reduces to GR
if one imposes

c
(2,0)
1 = c

(0,2)
1 = −c(2,0)2 =

M2
Pl

2
, (2.11)

with all other coefficients c
(dt,ds)
i being setting to zero.

The spatial covariant gravity described in the above
action can represent a very general framework for de-
scribing the propagations of GWs in the low-energy ef-
fective gravities with Lorentz or parity violation. To our
knowledge, a lot of modified gravities can be casted in the
framework of the spatial covariant gravity. In addition, it
is shown that one in general can relate the spatial covari-
ant gravity to the scalar-tensor theories in the unitary
gauge [47, 51].

III. GWS IN SPATIAL COVARIANT
GRAVITIES

Let us investigate the propagation of GWs in the spa-
tial covariant gravities with the action given by (2.3).
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We consider the GWs propagating on a homogeneous
and isotropic background. The spatial metric in the flat
Friedmann- Robertson-Walker universe is written as

gij = a(τ)(δij + hij(τ, x
i)), (3.1)

where τ denotes the conformal time, which relates to the
cosmic time t by dt = adτ , and a is the scale factor of the
universe. Throughout this paper, we set the present scale

factor a0 = 1. hij denotes the GWs, which represents the
transverse and traceless metric perturbations, i.e,

∂ihij = 0 = hii. (3.2)

To proceed one can substitute the above spatial metric
into the action (2.3) and expand it to the second order
in hij . Here we write the quadratic action in the form as
shown in [85],

S(2) =

∫
dtd3x

a3

2

[
G0(t)ḣij ḣ

ij + G1(t)εijkḣli
1

a
∂j ḣ

l
k − G2(t)ḣij

∆

a2
ḣij

+W0(t)hij
∆

a2
hij +W1(t)εijkhli

1

a

∆

a2
∂jh

l
k −W2(t)hij

∆2

a4
hij
]
,

(3.3)

where Gn and Wn are given by [85] 1

G0 =
1

2

[
c
(2,0)
1 + 3(c

(3,0)
1 + c

(3,0)
2 )H + 3(3c

(4,0)
1 + 2c

(4,0)
2 + 3c

(4,0)
3 )H2

]
, (3.4)

G1 =
1

2

[
c
(2,1)
1 − (c

(3,1)
1 − 2c

(3,1)
2 − 3c

(3,1)
3 )H

]
, (3.5)

G2 =
1

2
c
(2,2)
1 , (3.6)

W0 =
1

2

[
c
(0,2)
1 +

1

2
ċ
(1,2)
3 +

1

2

(
3c

(1,2)
3 + 6c

(1,2)
4 + 2ċ

(2,2)
6 + 3ċ

(2,2)
8

)
H

+
1

2

(
4c

(2,2)
6 + 6c

(2,2)
7 + 9c

(2,2)
8 + 18c

(2,2)
9

)
H2 +

1

2

(
2c

(2,2)
6 + 3c

(2,2)
8

)
Ḣ
]
, (3.7)

W1 =
1

4

(
ċ
(1,3)
1 + ċ

(1,3)
2

)
+ c

(0,3)
1 − 3c

(1,3)
3 H, (3.8)

W2 = −1

2
c
(0,4)
3 . (3.9)

In above a dot denotes the derivative with respect to the
cosmic time t and H = ȧ/a is the Hubble parameter. We
consider the GWs propagating in the vacuum, and ignore
the source term. Varying the action with respect to hij ,
one can derive the equation of motion for hij as(

G0 − G2
∂2

a2

)
h′′ij +

[
2HG0 + G′0 − G′2

∂2

a2

]
h′ij

−
[
W0 −W2

∂2

a2

]
∂2hij

+εilk
∂l

a

[
G1∂2τ + (HG1 + G′1)∂τ −W1∂

2
]
hkj = 0,

(3.10)

where H ≡ a′/a and a prime denotes the derivative with
respect to the conformal time τ .

1 In W1 we add the contributions from the two new terms ω3(Γ)
and ω3(Γ)K.

IV. POLARIZATION OF PGWS

A. Equation of motion for GWs

In order to study the propagation of GWs in the spa-
tial covariant gravities, it is convenient to decompose the
GWs into the circular polarization modes. To study the
evolution of hij , we expand it over spatial Fourier har-
monics,

hij(τ, x
i) =

∑
A=R,L

∫
d3k

(2π)3
hA(τ, ki)eikix

i

eAij(k
i),

(4.1)

where eAij denotes the circular polarization tensors and
satisfy the relation

εijknie
A
kl = iρAe

jA
l , (4.2)

with ρR = 1 and ρL = −1. We find that the propagation
equations of these two modes are decoupled, which can
be casted into the form [85]

h′′A + (2 + ΓA)Hh′A + ω2
AhA = 0, (4.3)
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where

HΓA =

[
ln

(
G0 + ρAG1

k

a
+ G2

k2

a2

)]′
, (4.4)

ω2
A

k2
=
W0 + ρAW1

k
a +W2

k2

a2

G0 + ρAG1 ka + G2 k
2

a2

. (4.5)

With this equation, the propagation properties of GWs
in the cosmological background have been explored in
details in [85]. Some conditions to make the two polar-
ization modes propagate in the same speed have been
considered and a lot of parity-violating gravities with
both of polarization modes propagating in the speed of
light have been also identified in [85]. In the above equa-
tion, the derivations of the spatial covariant gravities
from GR are fully characterized by the quantities ΓA and
ω2
A. The former represents the corrections to the damp-

ing rate which modifies the amplitude damping rate of
the GWs during their propagations in the cosmological
background, and the latter is the modified dispersion re-
lation of GWs which leads to a phase shifting of GWs
from distant sources.

For later convenience of calculating the primordial
power spectra of GWs, let us introduce a new variable

uA =
√

2zhA, (4.6)

with

z = a

√
G0 + ρAG1

k

a
+ G2

k2

a2
. (4.7)

Then the equation of motion (4.3) can be rewritten in
the form

u′′A +

(
ω2
A −

z′′

z

)
uA = 0, (4.8)

and we expect the derivations from GR are small such
that

ΓA � 1,

∣∣∣∣ω2
A

k2
− 1

∣∣∣∣� 1. (4.9)

Thus we can consider all the new effects on GWs beyond
GR as small corrections to the standard GR result. In
this way, we are able to expand ωA and z′′

z as

ω2
A

k2
' W0

G0
+ ρA

W1 − G1
G0

k

a
+
W2 − G2
G0

k2

a2
, (4.10)

z′′

z
'
(

1− 1

2
ρA
G1
G0
k

a
− G2
G0
k2

a2

)
a′′

a

+
1

2

(
G′′0
G0

+ ρA
G′′1
G0

k

a
+
G′′2
G0

k2

a2

)
+

(
G′0
G0
− G

′
2

G0
k2

a2

)
a′

a
+
G2
G0
k2

a2
a′2

a2
. (4.11)

Note that in the above expansion, we only consider the
first-order terms of each coefficients, i..e, 1−W0/G0,W1,
G1, W2, G2, G′0, and G′′0 .

In this article, we consider the PGWs during the infla-
tionary stage, and assume that the background evolution
during the inflation is slowly varying. With this consider-
ation, we can treat all the coefficients G0, G1, G2,W0,W1,
and W2 as slowly varying quantities. Then one is able
to expand the modified dispersion relation ω2

A in (4.10)
and effective time-dependent mass term z′′/z in (4.15) in
terms of the slow-roll quantities as

ω2
A

k2
' W0

G0
− ρA

W1 − G1
G0

Hkτ

+
W2 − G2
G0

H2k2τ2, (4.12)

and

z′′

z
' 1

τ2

(
2 + 3ε1 +

3HĠ0 + G̈0
2H2G0

)

+
k

τ
ρA

2H2G1 −HĠ1 − G̈1
2HG0

−k2 2H2G2 +HĠ2 − G̈2
2G0

. (4.13)

It is worth noting that, in order to obtain the above ex-
pansions, we have used the relation

a ' −1 + ε1
τH

, (4.14)

with ε1 = −Ḣ/H2.
With the expressions of z′′/z and ω2

A/k
2, one observes

that the equation of motion in Eq.(4.8) can be casted
into the form

u′′A +

{
−
v2t − 1

4

k2τ2
− ρA

d−1
kτ

+ d0

− ρAd1kτ + d2k
2τ2

}
k2uA = 0, (4.15)

where

ν2t ≡
9

4
+ 3ε1 +

3HĠ0 + G̈0
2H2G0

, (4.16)

d−1 ≡
2H2G1 −HĠ1 − G̈1

2HG0
, (4.17)

d0 ≡
W0

G0
+

2H2G2 +HĠ2 − G̈2
2G0

, (4.18)

d1 ≡
W1 − G1
G0

H, (4.19)

d2 ≡
W2 − G2
G0

H2, (4.20)

and all these coefficients are slowly varying and dimen-
sionless. Obviously, this equation does not have analyt-
ical solutions even if one treats all the slowly varying
quantities as constants. In order to obtain its solution,
we have to consider some approximations. In this paper,
we will consider the uniform asymptotic approximation,
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which is developed in a series of papers for a better treat-
ment to equations with turning points and poles. This
approximation has been widely applied in calculating pri-
mordial spectra for various inflation models [99–103] and
applications in studying the reheating process [104] and
quantum mechanics [105]. In the following subsections,
we apply this approximation to construct the approxi-
mate solution of (4.15) and calculate the corresponding
primordial tensor power spectra in the spatial covariant
gravities.

B. Uniform asymptotic approximation

In this subsection, we employ the uniform asymp-
totic approximation method to construct the approxi-
mate asymptotic solutions. Most of the expressions and
results used here can be found in [84, 99, 100, 102, 103].

In the uniform asymptotic approximation, it is conve-
nient to write the equation of motion (4.15) in the fol-
lowing standard form [98, 99, 103],

d2uA(y)

dy2
= [g(y) + q(y)]uA(y), (4.21)

where y ≡ −kτ is a dimensionless variable and

g(y) + q(y) ≡
v2t − 1

4

y2
+
ρAd−1
y
− d0 + ρAd1y − d2y2.

(4.22)

In general, g(y) and q(y) have two poles (singularities):
one is at y = 0+ and the other is at y = +∞. In the uni-
form asymptotic approximation, in order to make the ap-
proximate solution being valid around the poles, one has
to ensure that the error control function associated with
the approximate solution to be convergent. For the equa-
tion of motion in (4.21) with g(y) + q(y) given by (4.22),
it is shown in [99] that in order to make its error control
function to be convergent around the second-order pole
at y = 0+, one has to choose,

q(y) = − 1

4y2
. (4.23)

Then g(y) is given by

g(y) =
ν2t
y2

+ ρA
d−1
y
− d0 + ρAd1y − d2y2. (4.24)

Except for the two poles at y = 0+ and y = +∞, g(y)
may also have a single zero in the range y ∈ (0,+∞),
which called a single turning point of g(y). Since in GR
limit, we have ν2t ' 9

4 + 3ε1, d0 = 1, and d−1 = 0 = d1 =
d2, we expect all the new terms with coefficients d−1,
d1, and d2 can be considered as small corrections. With
this consideration and solving the equation g(y) = 0, we
obtain the turning point,

yA0 '
νt√
d0

+
ρAd−1 + ρAd1ν

2
t − d2ν3t

2
. (4.25)

In deriving the above expression, we have directly used
d0 = 1 in the second term since d0 − 1 ' W0

G0 − 1 +
2H2G2+HĠ2−G̈2

2G0 is a small corrections as well. In the uni-
form asymptotic approximation, the approximate solu-
tion depends on the type of turning point. The turning
point y0 is a single root of the equation g(y) = 0, which
also called single turning point as well. Thus, in the fol-
lowing discussion, we will discuss the solution around this
single turning point in details.

For the single turning point y0, the approximate solu-
tion of equation of motion around this turning point can
be expressed in terms of Airy-type functions as [99]

uA = α0

(
ξ

g(y)

)1/4

Ai(ξ) + β0

(
ξ

g(y)

)1/4

Bi(ξ),

(4.26)

where Ai(ξ) and Bi(ξ) are the Airy functions, α0 and β0
are two integration constants, ξ is the function of y and
the form of ξ(y) is given by [99]

ξ(y) =


(
− 3

2

∫ y
y0

√
g(y′)dy′

)2/3
, y ≤ y0,

−
(

3
2

∫ y
y0

√
−g(y′)dy′

)2/3
, y ≥ y0.

(4.27)

As shown in [98, 99], the above solution is not only valid
around the turning point, but valid in the while domain
y ∈ (0,+∞). It is shown in [98, 99] that with the choice
of q(y) given in (4.23), the error control function of the
approximate solution of (4.26) is convergent even around
the two poles y = 0+ and y = +∞. With this solution,
we need to determine the coefficients α0 and β0 by match-
ing it with the two boundary conditions. One requires
the mode function uA satisfies the following normaliza-
tion condition, i.e.,

i

~
(u∗Au

′
A − u∗A′uA) = 1, (4.28)

where u∗A denotes the complex conjugate of the mode
function uA. The second boundary condition that fixes
the mode function uA completely comes from the initial
condition in the limit y → +∞, which corresponds to the
assumption that the universe was initially in an adiabatic
vacuum,

lim
y→+∞

uk(y) ' 1√
2ωA

e−i
∫
ωkdτ

=

√
1

2k

(
1

−g

)1/4

exp

(
−i
∫ y

yi

√
−gdy

)
.

(4.29)

When y → +∞, we note that ξ(y) is very large and
negative. In this limit, the asymptotic form of the Ariy
functions read

Ai(−x) =
1

π1/2x1/4
cos

(
2

3
x3/2 − π

4

)
, (4.30)
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Bi(−x) = − 1

π1/2x1/4
sin

(
2

3
x3/2 − π

4

)
. (4.31)

Combining the initial condition and the approximate an-
alytical solution, we obtain

α0 =

√
π

2k
ei
π
4 , β0 = i

√
π

2k
ei
π
4 . (4.32)

In Fig. 1, we plotted the time evolution of the power
spectra |k3/2uA/(ztH)|2 for both the uniform asymptotic
solutions and numerical solutions of the right-handed and
the left hand modes respectively. We also displayed the
cases in GR for comparison. From this figure, one can see
clearly that our analytical solutions are extremely close
to the numerical ones, and even are not distinguishable
from the numerical ones.

C. Power spectra and circular polarization of
PGWs

With the above approximate solutions of the PGWs,
we are able to calculate the corresponding primordial
power spectra for each polarization modes of the PGWs
in the limit y → 0. Their power spectra is normally
computed via

PL
T =

2k3

π2

∣∣∣∣uL(y)

z

∣∣∣∣2 ,
PR
T =

2k3

π2

∣∣∣∣uR(y)

z

∣∣∣∣2 . (4.33)

In the limit y → 0+, the variable ξ(y), which is the argu-
ment of the Airy function, becomes very large and posi-
tive, allowing the use of the following asymptotic forms

Ai(x) =
1

2π1/2x1/4
exp

(
−2

3
x3/2

)
, (4.34)

Bi(x) = − 1

π1/2x1/4
exp

(
2

3
x3/2

)
. (4.35)

These asymptotic forms indicate that only the growing
mode of uA(y) is relevant in the limit y → 0. Thus
the approximate solution near the pole y = 0+ can be
expressed in the form

uA(y) ≈ β0
(

1

π2g(y)

)1/4

exp

(∫ y0

y

dy
√
g(y)

)
= i

1√
2k

(
1

g(y)

)1/4

exp

(∫ y0

y

dy
√
g(y)

)
.

(4.36)

The power spectra of PGWs are then given by

PAT =
k2

π2

1

z2
y

νt
exp

(
2

∫ y0

y

dy
√
g(y)

)
' H2

18π2e3G0

[
1 +

(
2 ln 2− 8

3

)
ε1 +

(3 ln 2− 1)Ġ0
3HG0

+
πρA(9d1 + 8d−1)

16
− 9

4
d2

]
. (4.37)

Note that in estimation the above integral, we take the
limit y → 0+ and the detail calculation of the integral
of
√
g is presented in Appendix A. Obviously, the power

spectra can be modified due to the presence of both the
parity-preserving terms and parity-violating terms in the
gravitational action (2.3). It is easy to check that when
one takes G0 = M2

Pl/4 and d−1 = d1 = d2 = 0, the stan-
dard GR result can be recovered. The parity-preserving
terms can only affect the overall amplitude of both the
left- and right-handed polarization modes of GW, which
are related to the quantities G0 and d2 in the above ex-
pression. The relevant terms in the gravitational action

are those with coefficients c
(2,0)
1 , c

(3,0)
1 , c

(3,0)
2 , c

(4,0)
1 , c

(4,0)
2 ,

c
(4,0)
3 , c

(2,2)
1 , and c

(0,4)
3 . The parity-violating terms, on

the other hand, affect the amplitudes of left- and right-
handed polarization modes of GW in different ways. For
positive value of 9d1 + 8d−1 in the above expression, the
parity violation trends to enhanced (suppress) the power
spectra of the right (left) -handed modes. This effect

is related to those terms with coefficients c
(2,1)
1 , c

(3,1)
1 ,

c
(3,1)
2 , c

(3,1)
3 , c

(1,3)
1 , c

(1,3)
2 , c

(1,3)
2 , c

(0,3)
1 , and c

(1,3)
3 in the

gravitational action (2.3).
Here we would like to mention that in the calculation

of the power spectra, we only consider the first-order ap-
proximation in the uniform asymptotic approximation.
The corresponding relative error of the overall amplitude

H2

18π2e3G0 of the power spectra in Eq. (4.37) is less than

10%, see the discussion about the relative error at each
order in ref. [102]. In principle, this calculation can be
significantly improved by considering high-order uniform
asymptotic approximation. For example, as shown in
[102], at the third-order uniform asymptotic approxima-
tion, the relative error of the the overall amplitude can
be improved to be less than 0.15%. However, the small
corrections presented in the square bracket in (4.37) can
be quit precise provided that these corrections are suf-
ficient small. As we will mentioned later, the resulted
circular polarization calculated from (4.37) can be ex-
actly reduced to the exact result in the Chern-Simons
gravity.

Now, we are in a position to calculate the degree of
the circular polarization of PGWs, which is defined by
the differences of the amplitudes between the two circular
polarization states of PGWs as

Π ≡ P
R
T − PL

T

PR
T + PL

T

' π(9d1 + 8d−1)

16
. (4.38)

As expected, the degree of the circular polarization Π
only depends on the parity-violating terms in the gravita-
tional action. It is not difficult to check that the above ex-
pression can exactly reduce to the cases of Chern-Simons
modified gravity [81], chiral scalar-tensor theory [84], and
Havara-Lifshitz gravity. It is important to mention here
that, in our treatment, we have assumed that all the new
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FIG. 1. The uniform asymptotic approximate solutions of mode functions |k3/2uA/(ztH)|2 (solid curves) and the corresponding
numerical solutions (dotted curves). Left panel presents the solution of the left hand mode while the right panel presents the
right hand mode. In each panel, the solid curves with blue color corresponds to the solution for case of general relativity,
and green and darker yellow colors correspond to the spatial covariant gravities with different values of the parity-violating
parameters. The numerical solution associated with each analytical solutions are presented by the red dotted curves.

effects from spatial covariant gravities are considered as
small corrections. In this sense, we observe that the de-
gree of the circular polarization Π is small due to the
suppressing parameter |d1|, |d−1| < O(1). In Fig. 2,
we plotted the the analytical expression of the circular
polarization Π in (4.38) (the solid and blue curves) and
the corresponding numerical results (the dotted and red
curves). From this figure, one can see clearly how well
the numerical results are approximated by our analytical
ones.

D. Detectability of the parity-violating effects

As we mentioned in the introduction, the parity-
violating effect in PGWs, which is measured by the ob-
servable Π, can produce a lot of observational informa-
tion in CMB and galaxy surveys.

In CMB, one important effect is the induction of
nonzero the TB and EB spectra in the CMB data. This
implies that one can probe the parity violation by mea-
suring the CMB EB and TB angular cross-correlators.
However, as analyzed in [43] (see also [106]), such pro-
posal is only optimistic when Π > O(0.5), especially
considering that the tensor-to-scalar ratio has been con-
strained to be r < 0.036 at 95% confidence level in
Ref. [107]. Note that a more stringent constraint has
been reported from a combined analysis of newly released
dataset including CMB and GW data [108]. Therefore,
it seems very difficult to detect these effects in the future
CMB experiments. According to the analysis in [39], the
main difficulty comes from the two-dimensional projec-
tion of CMB, which suppresses the parity-violating signal
due to approximate reflective symmetries, and confuses
the tensor modes with scalar ones, leading to additional
noise contributions. Possible ways for bypassing such
challenge are proposed. The first one is to consider the
three-points or even high-order correlators, such as the

primordial bispectra and trispectra and their signatures
in CMB [65, 69]. Another way is to search the tensor fos-
sil effects due to parity violation in the statistics of the
large-scale structure in future galaxy surveys [39]. These
two topics are obvious out the scope of then current pa-
per and we leave them for our future works.

Another proposal for detecting primordial parity-
violating effects is to consider the imprints of circular
polarization on the galaxy intrinsic alignments [69]. Sim-
ilar to CMB, the circular polarization Π can directly in-
duce a distinctive imprint in the galaxy shape spectrum,
i.e., the nonzero EB correlation in the shape spectrum.
Considering such signature can not be produced by the
scalar modes, any signature of EB correlation in the fu-
ture galaxy surveys would be a smoking gun for parity
violation in PGWs, as mentioned in [69].

V. CONCLUSION AND OUTLOOK

The spatial covariant gravities can provide a unified de-
scription for a lot of scalar-tensor theories in the unitary
gauge. Such framework breaks the time diffeomorphism
of the gravity but respects spatial diffeomorphisms, so
that one is able to to include the parity violating odd-
order spatial derivative terms but with spatial covariance
into the gravitational action. It is also shown in [47, 51]
that a lot of parity-violating theories in the unitary gauge
can be mapped to spatial covariant gravities. In this pa-
per, we study the circular polarization of PGWs in the
spatial covariant gravities and discuss its possible obser-
vational signatures. For this purpose we first solve the
evolution of PGWs during slow-roll inflation by apply-
ing the uniform asymptotic approximation to the equa-
tions of motion for the PGWs. Using this approximation,
we construct the approximate analytical solutions to the
PGWs during the slow-roll inflation, with which we cal-
culate explicitly both the power spectra for the two po-
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FIG. 2. The degree of circular polarization Π as a function of d1 for different values of d−1 = 0 (left panel) and d−1 = 0.02
(right panel), respectively. In both panels, the blue and solid curve represent the analytical results in Eq. (4.38) and the red
and dotted curves are the numerical results.

larization modes and the corresponding degree of circular
polarization of PGWs in the spatial covariant gravities.
It is shown that with the presence of the parity violation,
the power spectra of PGWs are slightly modified and
the degree of circular polarization becomes nonzero. The
magnitude of the degree circular polarization directly de-
pends on the parity-violating terms in the gravitational
action (2.3), which are expected to be quit small due to
the suppression of d−1, d1 < O(1). This implies very diffi-
cult to detect or effectively constrain the theories by using
the TE and EB power spectra of future CMB data. The
possible signatures of the circular polarization of PGWs
in non-Gaussianities, large-scale structure, and EB cor-
relation in the galaxy-shaped power spectrum are also
briefly discussed.

Our work can be improved in several aspects. First, in
the current study, we have not yet considered the effects
of parity violation arising from the spatial covariant grav-
ities in the non-Gaussianities of PGWs. According to the
analysis in [72], the parity-violating effects in the tensor-
tensor-scalar bispectrum could be large enough and de-
tectable in the future CMB data. Thus, it is interesting
to explore further whether the parity-violating terms in
spatial covariant gravities could lead to any possible ob-
servational signatures in the non-Gaussianity of PGWs.
Second, the parity-violating effects in primordial bispec-
trum and trispectrum of PGWs can also leave imprints
in the statistic large scale structure [39] as well as the
EB correlation in galaxy shape power spectrum [22]. We
would like to come back to these topics in our future
works.
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Appendix A: Calculation of integral of
√
g in eq.

(4.36)

In this appendix, we present the calculation of the fol-
lowing integral, ∫ y0

y

dy′
√
g(y′). (A.1)

For this purpose, we can write the function g(y) in the
following form

g(y) =
y0 − y
y2

(a0 + a1y + a2y
2 + a3y

3). (A.2)

Here the coefficients a0, a1, a2, and a3 are determined by
comparing the above form with (4.24), which leads to

a0 = d0y0 − d−1ρA − d1ρAy20 + d2y
3
0 , (A.3)

a1 = d0 − d1ρAy0 + d2y
2
0 , (A.4)

a2 = −d1ρA + d2y0, (A.5)

a3 = d2. (A.6)

It is evident that the magnitude of the coefficients a2 and
a3 are determined by O(d1, d2), which can be treated as
small corrections of the new terms beyond GR in spatial
covariant gravity. Thus we can expand

√
g(y) by treating

a2 and a3 as small perturbations. Then we have√
g(y) '

√
(y0 − y)(a0 + a1y)

y
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+
1

2
y(a2 + a3y)

√
y0 − y
a0 + a1y

. (A.7)

Thus the integral of
√
g can be split into two parts,

lim
y→0

∫ y0

y

dy′
√
g(y′) = I0 + I1, (A.8)

where

I0 =
√
a1y0 lim

x→0

∫ 1

x

√
(1− x′)(b0 + x′)

x′
dx′

=
√
a1y0

[
(1− b0)arccsc(

√
1 + b0)

+
√
b0ln

4b0
(1 + b0)x

−
√
b0

]
, (A.9)

I1 =
a3y

3
0

2
√
a1

lim
x→0

∫ 1

x

√
1− x′
b0 + x′

x′(c0 + x′)dx′

=
a3y

3
0

48
√
a1

[√
b0(3− 4b0 − 15b20 + 6c0 + 18b0c0)

+ 3(1− 2b0 + 5b20 + 2c0 − 6b0c0)

× (1 + b0)arccsc(
√

1 + b0)
]
, (A.10)

with x ≡ y/y0 and

b0 ≡
a0
a1y0

, (A.11)

c0 ≡
a2
a3y0

. (A.12)
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