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Abstract: We consider QCD corrections to two loops for the polarized amplitudes of

qq̄ → Z+ Higgs boson. First we show how the polarized amplitudes of bb̄→ Zh associated

with a non-vanishing b-quark Yukawa coupling and a scalar or pseudoscalar Higgs boson h

can be built up solely from vector form factors (FF) of properly grouped classes of diagrams,

bypassing completely the need of explicitly manipulating γ5 in dimensional regularization

(up to a few “anomalous”, i.e., triangle diagrams). We determine the contributions of the

triangle diagrams in the heavy top limit. We present the analytic results of the vector

FF and the triangle-diagram contributions to the axial vector FF, which are sufficient

for deriving the two-loop QCD amplitudes for bb̄ → Zh with a CP-even and CP-odd

Higgs boson h. We derive the respective Ward identity for these amplitudes, which are

subsequently verified to two-loop order in QCD using these FF. In addition, the FF of

a class of corrections to qq̄ → ZH proportional to the top-Yukawa coupling are obtained

analytically to two-loop order in QCD in the heavy-top limit using the Higgs-gluon effective

Lagrangian where the top quark is integrated out. We address a pitfall that occurs when

applying the non-anticommutating γ5 prescription to this class of contributions that has

been overlooked so far in the literature. We attribute this issue to the fact that the

absence of certain heavy-mass expanded diagrams in the infinite-mass limit of a scattering

amplitude with an axial vector current depends on the particular γ5 prescription in use.
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1 Introduction

A detailed investigation of the kinematical and dynamical properties of the 125GeV Higgs

boson discovered at the Large Hadron Collider (LHC), i.e., its kinematic profile as well

as how it interacts with (other) known fundamental particles, remains among the major

research topics of the current and future physics programs. In particular, the production

of the Higgs boson in association with a massive electroweak vector boson, known as the

VH process, plays an important role in the exploration of Higgs physics at the LHC,

both for a precise study of the Higgs boson’s couplings to Standard Model particles and for

probing new physics. For instance, it supplies the main production channels behind a recent

experimental triumph, the direct observation of the Higgs-boson decay to a pair of bottom

quarks by the ATLAS and CMS experiments [1, 2]. This was largely possible owing to the

– 1 –



J
H
E
P
0
7
(
2
0
2
0
)
1
5
9

fact that the presence of the associated vector boson offers means to substantially reduce

the Standard Model backgrounds, for instance by requiring a large transverse momentum

of this vector boson [3]. Given foreseeable upgrades in experimental precision at future

collider experiments, e.g. the high luminosity LHC program, it is very desirable to have a

precise knowledge about the VH process at hadron colliders on the theoretical side as well.

In view of the aforementioned phenomenological importance of VH production, there

have been many computations available in the literature on this subject aiming to improve

theoretical predictions, including refs. [4–13].

In ref. [13] two of the authors of this article have presented the analytic results of

the two-loop massless QCD corrections to the b-quark-induced ZH process pertaining to

a non-vanishing b-quark Yukawa coupling λb. The amplitudes for the polarized Z-boson

states were constructed following the prescription of ref. [14]. For the treatment of the

axial vector current vertex in dimensional regularization the prescription of refs. [15, 16]

was used, where the γ5 no longer anticommutes with the Dirac matrices in D dimensions.

We consider, in this article, the QCD corrections to two loops for the polarized am-

plitudes of qq̄ → Z+ Higgs boson. First we determine the amplitudes for bb̄ → Zh at two

loops associated with a non-zero b-quark Yukawa coupling in analytic fashion, both for a

scalar (h = H) and a pseudoscalar (h = A) Higgs boson and for a polarized Z boson.

We use the well-known fact that an anticommuting γ5, denoted by γAC
5 in this article, can

be used in D-dimensional computations [17–22] that do not involve the Adler-Bell-Jackiw

(ABJ) anomaly [23, 24]. We show how the respective “non-anomalous” contributions that

correspond to diagrams where the Z boson couples to an open quark line, can be built up

solely from vector form factors of properly grouped classes of diagrams whose computation

does not involve the axial vector current from the outset. Furthermore, we derive and

verify explicitly the Ward identities for the QCD corrections to the b-quark Yukawa cou-

pling dependent contributions to bb̄ → Zh, h = H,A, using these vector form factors. In

addition, we determine the two-loop “anomalous” contributions to bb̄→ Zh corresponding

to diagrams that involve b- and t-quark triangles and the axial vector current.

The QCD corrections to the quark-annihilation induced process qq̄ → Zh include

a class of diagrams where the Higgs boson couples directly to a closed top-quark loop

that start to appear at the two-loop order in QCD. As the second topic of this work,

we calculate a subset of these contributions, the so-called class-I diagrams, to O(α3
s) at

the amplitude level in the heavy-top limit using the Higgs-gluon effective Lagrangian of

Higgs effective field theory (HEFT) where the top quark is integrated out. Our motivation

for presenting the discussion of these contributions here is that their computation within

HEFT led us to uncover a pitfall in the application of a non-anticommuting γ5 to this

class of contributions: we found that extra counterterms are needed in addition to those

that are known from the prescription of [15, 16] in order to get correct results that obey

respective Ward identities when the axial vector current is dimensionally regularized with

a non-anticommuting γ5. We stress that this is not to be regarded as a contradiction to the

prescription of refs. [15, 16], because after all this is a phenomenon that is associated with

the use of HEFT in the calculation of this class of diagrams. We attribute the need for

such additional counterterms to the fact that the absence of certain heavy-mass expanded
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diagrams in the infinite-mass limit of a scattering amplitude with an axial vector current

actually depends on the particular γ5 prescription in use.

The article is organized as follows. In section 2, we consider contributions to the po-

larized amplitude of bb̄ → Zh (h = H,A) that are proportional to the respective b-quark

Yukawa coupling. First, we determine the form factor (FF) decomposition of the amplitude

of bb̄ → ZH and show how in the case of non-anomalous contributions the axial vector

FF can be obtained from the FF associated with the vector current. The latter FF are

computed to two-loop order in QCD. Moreover, we determine the b- and t-quark contri-

butions to the axial FF from the “anomalous” diagrams with quark triangles in the limit

mt → ∞. Then we show how the vector and axial vector FF of the respective amplitude

associated with a pseudoscalar Higgs boson can be obtained from the FF associated with

a scalar Higgs. In section 3, we derive the respective Ward identity that the amplitude

of section 2 for h = H,A must satisfy and check these identities using the FF computed

before. In section 4, we consider a class of contributions, the so-called class-I contributions,

to qq̄ → ZH proportional to the top-Yukawa coupling within HEFT where the top quark

is integrated out. First, we determine the vector FF and non-anomalous axial vector FF

to two loops using an anticommuting γ5 in dimensional regularization and show that the

respective Ward identities are satisfied. In section 5, we recompute the non-anomalous

class-I axial FF and also the contributions from the anomalous diagrams in HEFT using

a non-anticommuting γ5 in D dimensions. We find that both for the non-anomalous and

anomalous axial vector FF, an additional counterterm is required in order to satisfy the re-

spective (non)anomalous Ward identity. Finally, we investigate the axial vector part of the

non-anomalous class-I diagrams with a non-anticommuting γ5 in the full theory without

taking the limit mt → ∞. We conclude in section 6.

2 Axial vector form factors from vector counterparts

2.1 Production of a scalar Higgs boson H

In this section, we consider first, for definiteness, the production of a scalar Higgs bo-

son, H, in association with a massive vector boson, Z, through bottom quark anti-quark

annihilation:

b(p1) + b̄(p2) → Z(q1) +H(q2) . (2.1)

The four-momenta of the particles in (2.1) satisfy the on-shell conditions p2i = 0, q21 =

m2
Z , q

2
2 = m2

H , where mZ and mH are the masses of the Z and Higgs boson, respectively.

The Mandelstam variables are

s ≡ (p1 + p2)
2 , t ≡ (p1 − q1)

2 and u ≡ (p2 − q1)
2 , (2.2)

satisfying s+ t+ u = q21 + q22 = m2
Z +m2

H .

We keep a non-zero Yukawa coupling only for the b quark, which otherwise is taken to

be massless, and for the top quark whose contributions are considered in the infinite mass

limit. By employing an elegant methodology, we recompute in this section the two-loop
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Figure 1. Leading order Feynman diagrams that involve the bottom-Higgs Yukawa coupling.

QCD corrections to the non-Drell-Yan type diagrams of the process (2.1), shown at tree

level in figure 1, that depend on the b-quark Yukawa coupling λb, in QCD for 5 massless

flavors and determine also the contribution of the top quark in the infinite mass limit.

These contributions form a gauge-invariant set. The amplitude of these contributions can

be parameterized, including QCD corrections to two loops, by

M = λbv̄(p2)Γ
µ u(p1) ε

∗

µ(q1)

= λb gV,bv̄(p2)Γ
µ
vec u(p1) ε

∗

µ(q1) + λb gA,bv̄(p2)Γ
µ
axi u(p1) ε

∗

µ(q1)

≡ λb gV,bMvec + λb gA,bMaxi . (2.3)

The symbol Γµ ≡ gV,bΓ
µ
vec+ gA,bΓ

µ
axi represents a matrix in the spinor space with one open

Lorentz index µ that may be carried by either the Dirac matrix γµ or one of the external

momenta involved. It is the sum of the contributions from the vector and axial vector

couplings of the Z boson. For purposes discussed below we have factored out λb and the

vector and axial vector couplings of the b quark to the Z boson, denoted by gV,b and gA,b,

respectively.

At the end of this section, we consider the production of a pseudoscalar Higgs boson A

analogous to (2.1) and discuss how the respective scattering amplitude to two-loop order

in QCD analogous to (2.3) can be obtained from the vector form factors that determine

the amplitude (2.3) and which will be computed next.

2.2 The interplay between axial vector and vector form factors

Unlike ref. [13], where a non-anticommuting γ5 was used for the Z boson axial vector

coupling, we compute here all non-anomalous contributions to the amplitude (2.3) to two

loops using an anticommuting γAC
5 inD dimensions. First we consider all two-loop diagrams

where i) only the Higgs boson and ii) the Higgs and Z boson are radiated from a closed

massless quark loop, such as those shown in figure 2. These contributions vanish because

they involve a trace with an odd number of Dirac γ matrices. Thus, in all non-vanishing

non-anomalous contributions to two loop order in QCD, the Z boson couples to the open

b-quark line and γAC
5 contained in Γ

µ
axi can be anticommuted next to an external b-quark

spinor.

These non-anomalous diagrams can be further divided into two classes, denoted in

the following by class-ZH and class-HZ, which correspond to the QCD corrections to the
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Figure 2. Examples of diagrams where the Higgs boson or the Higgs and the Z boson are coupled

to a closed quark loop.

tree-level diagrams (A) and (B), respectively, of figure 1. The reason for this separation

is simply the fact that due to the presence of the chirality-flipping Yukawa interaction on

the b-quark line a relative minus sign is generated between these two contributions when

the anticommuting γAC
5 is pushed next to the same external b-quark spinor. This is also

the reason why here the non-anomalous axial vector form factors are not identical to the

vector ones, see below.

Let us turn off for a moment the axial vector coupling of the Z boson and consider

only Mvec in (2.3). We can decompose it in terms of form factors as follows:

Mvec = v̄(p2)Γ
µ
ZH u(p1) ε

∗

µ(q1) + v̄(p2)Γ
µ
HZ u(p1) ε

∗

µ(q1) ,

v̄(p2)Γ
µ
X u(p1) = F1,X v̄(p2)u(p1) p

µ
1 + F2,X v̄(p2)u(p1) p

µ
2

+ F3,X v̄(p2)u(p1) q
µ
1 + F4,X v̄(p2) γ

µ
/q1u(p1) , X = ZH,HZ. (2.4)

In this form factor decomposition, which reflects the chirality flip along the massless b-

quark line, we have taken into account the equations of motion for the on-shell massless

spinors v̄(p2) and u(p1), but have not confined ourselves to the physical polarization states

of the Z boson. The projectors for obtaining the vector form factors defined in (2.4) from

Γ
µ
X (X = ZH,HZ) are derived and explicitly given in ref. [13]. In the absence of the axial

current, the four basis structures in (2.4) are linearly complete in D dimensions for Mvec

in (2.3), regardless of the QCD loop order.

The projection of the two sets of vector form factors Fi,ZH and Fi,HZ encounters no

subtlety at all, and their renormalization is standard with the details given in ref. [13]. The

complete vector form factors, Fi,vec, defined by

Mµ
vec = F1,vec v̄(p2)u(p1) p

µ
1 + F2,vec v̄(p2)u(p1) p

µ
2

+ F3,vec v̄(p2)u(p1) q
µ
1 + F4,vec v̄(p2) γ

µ
/q1u(p1) , (2.5)

are given by

Fi,vec = Fi,ZH + Fi,HZ for i = 1, 2, 3, 4 . (2.6)

Restoring the axial vector couplings of the Z boson, the amplitude Maxi defined in eq. (2.3)

consists of a “non-anomalous” and “anomalous” contribution:

Maxi = Maxi(ns) +Maxi(s) . (2.7)

– 5 –
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These contributions can be decomposed into form factors, in analogy to eq. (2.5). Using

γAC
5 in D dimensions, the non-anomalous axial form factors Fi,axi(ns), defined by

Mµ

axi(ns) = F1,axi(ns) v̄(p2) γ5 u(p1) p
µ
1 + F2,axi(ns) v̄(p2) γ5 u(p1) p

µ
2

+ F3,axi(ns) v̄(p2) γ5 u(p1) q
µ
1 + F4,axi(ns) v̄(p2) γ

µ
/q1γ5u(p1) , (2.8)

are obtained by

Fi,axi(ns) = Fi,HZ − Fi,ZH . (2.9)

The appearance of the relative minus sign in (2.9) is explained above eq. (2.4).

We have checked that the unrenormalized, unsubtracted vector form factors Fi,vec

defined in (2.6) agree with those obtained in ref. [13] to two-loop order in D dimensions.

Without surprise, the axial form factors Fi,axi composed in (2.9) are indeed different from

those defined in ref. [13] in their bare form. However, after carrying out the ultraviolet (UV)

renormalizations and infrared (IR) subtractions, the finite remainders of these form factors

are identical to those given in ref. [13].1 Here we remark that the UV renormalization

needed for Fi,axi(ns) in (2.9) is identical to that of the vector form factors, which is different

from what was done in ref. [13] regarding the axial form factors. We have thus cross-

checked the previous computation of the non-anomalous axial part of ref. [13] (where a

non-anticommuting γ5 [15] was used). The UV renormalized results of the partial form

factors (FF), Fi,ZH and Fi,HZ , which are the building blocks for composing the complete

non-anomalous vector and axial matrix elements, are provided as supplementary material.

Details about conventions and variables of the analytic expressions can be found in

the ReadMe.txt submitted as supplementary material. We present the results to two-loop

order, more specifically, the first three coefficients of the partial FF in the expansion

Fi,X = λb(µ
2
R)

∞
∑

l=0

als(µ
2
R)F

(l)
i,X , (2.10)

where X ∈ {ZH,HZ}, as = αs/(4π) and µR is the renormalization scale.

2.3 Contributions from diagrams involving quark triangles

The two-loop “anomalous” contributions to the process (2.1) involving quark triangles

can be represented by six Feynman diagrams, shown in figure 3. Furry’s theorem tells us

that only the axial vector part is non-vanishing. The contributions of the massless u- and

d-type quarks circulating in the fermion triangle of figure 3 cancel; thus only the mass

non-degenerate b and t quark contribute. Therefore we have

Mµ

axi(s) = Mb,µ

axi(s) −Mt,µ

axi(s)(mt) (2.11)

where mt is the top quark mass. The relative minus sign is due to the definition of Maxi in

eq. (2.3) (where we pulled out an overall coupling factor gA,b from the contribution of the

1There is a relative minus sign between the fourth axial form factor defined by (2.9) and the corresponding

one defined by equation (3.19) in ref. [13], because the latter one corresponds to the Lorentz structure

v̄(p2) γ
µγ5/q1u(p1).

– 6 –
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Figure 3. The two-loop diagrams proportional to λb that involve quark triangles. We denote the

first four diagrams by box-triangles and the last two by pentagon-triangles.

axial vector) and the opposite weak isospins of the b and t quark. The amplitude Mµ

axi(s)

can be decomposed into form factors Fi,axi(s), in complete analogy to eq. (2.8).

The top-loop induced diagrams that contribute to the process (2.1), all starting at

O(α2
s), can be divided into a set which is independent of t-quark Yukawa coupling λt, i.e.

the diagrams of figure 3 with the t quark circulating in the triangle loop, and another set

dependent on the top Yukawa coupling that will be addressed in section 4. Concerning the

contributions to Mt,µ

axi(s)(mt), we show below that the last two pentagon-triangle diagrams

of figure 3 vanish in the limit mt → ∞. The contributions of the other four box-triangle

diagrams are not zero in this limit, but they can be captured by a decoupling matching

constant introduced for the effective bb̄Z interaction, resulting from integrating out the

virtual top quark in these diagrams.

Applying the expansion-by-graph procedure (see, e.g. ref. [25] and references therein)

to one representative pentagon-triangle diagram, as shown on the l.h.s. of figure 4, in the

heavy-top limit mt → ∞, one ends up with the sum of two classes of heavy-mass expanded

contributions, indicated by the two terms on the r.h.s. of this figure. They correspond

to the hard-hard loop momentum region with |k2| ∼ |k1| ∼ mt and the soft-hard loop

momentum region with2 |k2| < |k1| ∼ mt, respectively. Let us first look at the contribution

from the hard-hard momentum region, corresponding to the first term on the r.h.s. of

figure 4. The asymptotically irreducible graph [25] here is a two-loop “vacuum” graph that

has the mass-dimension −1, and after expansion in small ratios it depends only on mt in

the infinite mt limit and polynomially on the external momenta which can be set to zero.

This is sufficient to ensure that there is no non-vanishing contribution from this graph in

the limit mt → ∞.

2The regions where k1 is small do not contribute here because they lead to scaleless loop integrals from

the massive triangle subgraph.
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Figure 4. The heavy-mass expansion of a representative pentagon-triangle diagram with k1,2
denoting the two loop momenta. The solid thick lines represent the massive t-quark propagators.

The dotted lines in the asymptotic irreducible graphs [25] on the left of “⊗” indicate external

momenta which can all be set to zero if only the leading contribution in the limit mt → ∞ is to

be kept. The graphs on the right of “⊗” denote the corresponding co-graphs in the heavy-mass

expanded result.

Figure 5. The VVA triangle diagrams appearing as subgraphs in the heavy-mass expansion of

figure 4.

We then move on to the second term, originating from the soft-hard momentum region.

Here the subgraph that is to be expanded is a triangle t-quark loop that has the same

topology as the VVA triangle diagrams drawn in figure 5. Here, counting of the mass

dimension alone is no longer sufficient to tell us whether or not this subgraph has a non-

vanishing limit whenmt goes to infinity. Therefore we compute this subgraph explicitly and

take the analytic expressions of all one-loop integrals involved from their implementations

in PackageX [26].

Leaving all Lorentz indices from the three gauge vertices open in the diagrams of

figure 5, a rank-3 Lorentz tensor amplitude Γµ1µ2µ(l1, l2,mt) is thus introduced for the

sum of these two one-loop diagrams. The tensor Γµ1µ2µ(l1, l2,mt) can be further split into

a vector (spin-1) part and a scalar (spin-0) part with respect to its axial-vector current

index µ:

Γµ1µ2µ(l1, l2,mt) = Γµ1µ2ν(l1, l2,mt)

(

gµν −
qµqν
q2

)

+ Γµ1µ2ν(l1, l2,mt)
qµqν
q2

,

≡ −Γµ1µ2µ
v (l1, l2,mt) + Γµ1µ2 q

s (l1, l2,mt)
qµ

q2
, (2.12)

where q ≡ l1 + l2 , Γ
µ1µ2 q
s (l1, l2,mt) ≡ Γµ1µ2ν(l1, l2,mt) qν , and the physical polarisation

projector gµν −
qµqν
q2

projects Γµ1µ2µ(l1, l2,mt) onto the space of vector polarisations (indi-

– 8 –
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cated by the subscript v). We refrain from going into the technical details of the one-loop

computation involved, e.g. via the form factor decomposition approach, but merely point

out the following explicitly verified fact: keeping the momenta l1 and l2 fixed, the rank-3

Lorentz tensor amplitude Γµ1µ2µ(l1, l2,mt) vanishes in the limit mt → ∞. This holds true

for Γµ1µ2µ
v (l1, l2,mt) and Γµ1µ2 q

s (l1, l2,mt), respectively. This implies that the second term

on the r.h.s. of figure 4 associated with the soft-hard region vanishes in the limit mt → ∞.

Therefore the two pentagon-triangle diagrams do not contribute in this limit.

As an aside we briefly comment on an interesting implication related to the above

statement about the triangular one-loop subgraph, which, albeit not new, does not seem

to be common knowledge. At the on-shell kinematic configuration l21 = l22 = 0, the term

Γµ1µ2µ
v (l1, l2,mt) vanishes completely in four dimensions, owing to the Landau-Yang the-

orem (because the color factor here is trivial), regardless of the mass of the top quark.

The only non-vanishing piece at this configuration is Γµ1µ2 q
s (l1, l2,mt), associated with

the scalar polarisation state. For mt = 0, Γµ1µ2 q
s (l1, l2,mt) is given precisely by the ABJ

anomaly. What we would like to emphasize here is that Γµ1µ2 q
s (l1, l2,mt) from the one-

loop diagrams of figure 5 vanishes in the heavy top limit mt → ∞, as a consequence of

a non-trivial cancellation between the pure mt-independent quantum anomalous contri-

bution (i.e. the ABJ anomaly) and the non-vanishing limit of the mt-dependent “classi-

cal” contribution at mt → ∞. In other words, the non-vanishing mt → ∞ limit of the

non-decoupling mt-dependent “classical” contribution to Γµ1µ2 q
s (l1, l2,mt) is exactly oppo-

site to the mt-independent ABJ anomaly contribution. Indeed, this point can be checked

straightforwardly by a direct projection, because Γµ1µ2 q
s (l1, l2,mt) contains just one Lorentz

covariant structure. The corresponding unique projector is indifferent to whether the con-

tribution comes from the mt-independent quantum anomalous part or the mt-dependent

“classical” part, and both will be projected out on the same footing.

Let us come back to the discussion of the heavy-top limit of the remaining four box-

triangle diagrams of figure 3 where the results about the triangle subgraphs given above

will be used again. Applying the expansion-by-graph procedure to one representative

diagram of this topology, as shown on the l.h.s. of figure 6, in the heavy-top limit, one

ends up with the sum of two classes of heavy-mass expanded contributions, similar to

the case of the pentagon-triangle diagrams. Note that here the b-quark tree-propagator is

amputated before applying the heavy-mass expansion procedure, resulting in an off-shell

b-quark leg (indicated by the double-thick line in figure 6) whose momentum is considered

small compared to mt. The second term on the r.h.s. of figure 6 associated with the

soft-hard loop-momentum region vanishes in the limit of infinitely heavy top quark due

to the same reason as mentioned above. However, the first term that originates from the

hard-hard momentum region has an asymptotic irreducible graph that is a two-loop box-

triangle “vacuum” graph with zero mass-dimension and turns out to have a non-vanishing

limit at mt → ∞. As should be clear from the diagrammatic illustration of the heavy-

mass expansion result given in figure 6, this contribution can be presented by a set of local

composite operators determined by the co-graph, an effective bbZ-vertex, and the “vacuum”

graph in front of it. One key feature of the expanded “vacuum” graph (associated with the

hard-hard momentum region) is that its dependence on the external momenta {p1, p2, q1, q2}
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Figure 6. The heavy-mass expansion of a representative box-triangle diagram with k1,2 denoting

the two loop momenta, drawn in a similar fashion as in figure 5, albeit, with a difference: the

double-thick line represents the amputated b-quark tree propagator, not to be confused with the

solid thick triangle representing top quark loop.

is purely polynomial. In other words, this special vacuum loop amplitude has a regular limit

for vanishing external momenta. Since we are only interested in the leading contribution

in 1/mt at mt → ∞ where all external momenta in this expanded “vacuum” graph can be

put to zero, it is then not hard to see that this expanded box-triangle “vacuum” graph will

lead to the same expression regardless of whether or not the b-quark line is on-shell. This

non-vanishing infinite-mt limit of the (properly renormalized) r.h.s. of figure 6 can thus be

captured by introducing an effective bb̄Z interaction with a decoupling matching constant

C
(s)
bbZ (being independent of the kinematics), denoted by

C
(s)
bbZ(mt) b̄ γ

µγ5 bZµ ,

accounting for integrating out the top-loop from these diagrams at the leading power in

the heavy-top expansion.3 Based on the information above, C
(s)
bbZ(mt) can be extracted

from the heavy-top limit of the two-loop anomalous QCD corrections to the renormalized

(on-shell) quark form factors computed in ref. [27], and is given by

C
(s)
bbZ(mt) = gA, t a

2
s 4CFTR

(

3

2
− 3 ln

(

µ2R
m2

t

))

(2.13)

where gA,t denotes the axial coupling between the top quark and Z boson, CF = (N2
c −

1)/(2Nc) and TR = 1/2. We note in passing that this expression is equal to twice the order

a2s Wilson coefficient in front of the effective interaction qq̄A between a pair of light quarks

and a pseudoscalar Higgs boson A resulting from integrating out the heavy top quark,

computed in ref. [28].

In summary, the non-vanishing infinite-mt limit of Mt
axi(s)(mt) of the diagrams of fig-

ure 3 with a t-quark triangle is given by the axial part of the tree-level amplitude of the

3Note that there will be additional effective operators involving the space-time derivative acting on fields

starting from sub-leading power corrections in the 1/mt expansion.
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process (2.1) multiplied by the coefficient (2.13). We attach the analytic results of the

properly renormalized axial form factors of the complete contribution Maxi(s) of (2.11),

defined in complete analogy to (2.8), as supplementary material in Mathematica format.

(See ref. [13] for the renormalization constants used.) Finally, we remark that after incor-

porating the non-vanishing contribution Mt
axi(s)(mt), the explicit µR dependence cancels

in the amplitude Maxi(s) = Mb
axi(s) −Mt

axi(s)(mt) at the two-loop order.

2.4 Production of a pseudoscalar Higgs boson A

Now let us discuss the production of a CP-odd Higgs boson A in association with a Z

boson by bb̄ annihilation,

b(p1) + b̄(p2) → Z(q1) +A(q2) . (2.14)

We remark that in this case the two diagrams of figure 1 represent the complete tree-level

amplitude (because a tree-level ZZA vertex does not exist). Using γAC
5 in D dimensions

the amplitude

MA = λ̃b gV,bM
A
vec + λ̃b gA,bM

A
axi (2.15)

proportional to the pseudoscalar b-quark Yukawa coupling λ̃b can be constructed to two-

loop order QCD with the above vector form factors Fi,HZ and Fi,ZH . Notice that the sub-

scripts, vec and axi, of the amplitudes in (2.15) refer to the respective coupling between

the Z boson and the b quark. It is straightforward to see that the set of Lorentz basis

structures, and consequently the corresponding form factor projectors previously used, in

the form factor decomposition for the amplitude involving the CP-even Higgs boson H ex-

change their roles in the current process (2.14). For instance, the set of Lorentz structures

for decomposing Mvec appearing in (2.5) is now the one needed for the form factor decom-

position of MA
axi defined in (2.15). Consequently the corresponding “vector” projectors

will project out the axial form factors of the production amplitude of a pseudoscalar Higgs

boson A in association with a Z boson.

It can be verified to two-loop order, conveniently using γAC
5 , that the following rela-

tionships hold among the form factors:

FA
i,vec = Fi,vec = Fi,HZ + Fi,ZH ,

FA
i,axi(ns) = Fi,axi(ns) = Fi,HZ − Fi,ZH , i = 1, 2, 3, 4, (2.16)

(up to an overall phase factor depending on the parameterization of the general Yukawa

couplings. For our choice (3.1) it is an overall factor i. It is suppressed here for simplic-

ity). The results of Fi,ZH and Fi,HZ were obtained in section 2.2. Furthermore, for the

contribution from the triangle diagrams analogous to figure 3, we have

FA
i,axi(s) = Fi,axi(s) , i = 1, 2, 3, 4, (2.17)

and the computation of Fi,axi(s) of Maxi was discussed in section 2.3.
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3 The Ward identities for bb̄ → ZH,ZA

In this section we derive and subsequently check, using the form factors Fi,HZ and Fi,HZ

obtained above, the Ward identity for the QCD virtual corrections to two loops to the

process (2.1) and (2.14) with a CP-even and CP-odd Higgs boson, respectively, keeping a

non-vanishing Yukawa coupling only for the b quark. Let us emphasize again that no Higgs

bremsstrahlung from the Z boson is considered here.

3.1 Derivation of the Ward identity

The classical Lagrangian that encodes all the aforementioned information reads as

Lc = −1
4G

a
µνG

aµν + biγµDµb− Jµ
ZZµ − λbbbH − λ̃bbiγ5bA , (3.1)

where Ga
µν denotes the gluon field strength tensor,

Dµ = ∂µ − igsT
aGa

µ, Jµ
Z = gV,bJ

µ + gA,bJ
µ
5 , Jµ = bγµb , Jµ

5 = bγµγ5b , (3.2)

and H,A denotes a CP-even and CP-odd Higgs boson, respectively. The kinetic terms of

the Higgs bosons and of the Z boson are not listed in (3.1).

Performing a continuous global U(1) transformation and applying the Noether theorem

to the classical Lagrangian (3.1),

b(x) → eiαb(x) and b(x) → e−iαb(x) ,

leads to the well known conservation law for the vector current

∂µJµ = 0 , (3.3)

which holds exactly also at the quantum level. Performing the continuous global UA(1)

transformation

b(x) → eiαγ5b(x) and b(x) → b(x)eiαγ5 (3.4)

gives rise, at the classical level, to the following equation:

∂µJ5µ = −2λbbiγ5bH + 2λ̃bbbA . (3.5)

If one had kept the b quark massive, then there will be also a b-quark mass-dependent term

appearing on the right-hand side of (3.5). At the quantum level the current Jµ
5 suffers

from the ABJ anomaly [23, 24], i.e., the term −asǫ
µνρσGa

µνG
a
ρσ/2 appears4 in addition on

the right-hand side of (3.5). Proper renormalization of fields and interactions involved are

understood wherever needed. We will come back to this later.

Next we derive a relation between the S-matrix element of the process (2.1), and

likewise for (2.14), and a respective S-matrix element where the Z boson has been removed.

We call this relation a Ward identity, although the axial vector current involved in this

relation is not even partially conserved (cf. eq. (3.5)).

4We use the convention ε0123 = −ε0123 = +1.
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CP-even Higgs boson. The corresponding S-matrix element is

〈Z(q1)H(q2) | b(p1)b(p2)〉 = (2π)4δ(4)(q1 + q2 − p1 − p2)Mµǫ
∗µ
Z , (3.6)

where ǫµZ denotes the polarization vector of the Z boson. We consider here only the so-

called non-anomalous QCD contributions to the S-matrix element (3.6), namely eq. (3.5)

will be used without the ABJ anomaly term.

Applying the LSZ reduction formalism [29] to the S-matrix element (3.6) one obtains5

〈Z(q1)H(q2)|b(p1)b(p2)〉 = disc.− i

∫

d4x eiq1·x〈H(q2)|J
µ
Z (x)|b(p1)b(p2)〉 ǫ

∗

Z,µ , (3.7)

where disc. denotes disconnected terms that do not contribute here. Let us further denote

Mµ ≡ −i

∫

d4x eiq1·x〈H(q2)|J
µ
Z (x)|b(p1)b(p2)〉 . (3.8)

Contracting Mµ with the four-momentum of the Z boson we obtain

q1,µM
µ =

∫

d4x eiq1·x〈H(q2)|∂µJ
µ
Z (x)|b(p1)b(p2)〉

= −2gA,bλb(2π)
4δ(4)(q1 + q2 − p1 − p2)〈H(q2)|b(0)iγ5b(0)H(0)|b(p1)b(p2)〉 ,

(3.9)

where we used the conservation of the vector current, the divergence of the axial vector

current, eq. (3.5) (in the absence of ABJ anomaly), and translation invariance. From

eqs. (3.6)–(3.9) we obtain the following relation which we call a Ward identity:

qµ1Mµ = −2gA,bλb〈H(q2)|b(0)iγ5b(0)H(0)|b(p1)b(p2)〉 . (3.10)

This relation holds to all orders in the QCD coupling (in the absence of the anomalous

diagrams) with the dynamics specified by the Lagrangian (3.1) in its renormalised form.

Notice that the kinematics of the matrix element on the right-hand side of this equation

obeys p1 + p2 − q2 = q1, where q
2
1 = m2

Z . This is due to the external momentum insertion

qµ1 introduced by the local composite operator b(0)iγ5b(0)H(0) (which is understood to be

normal-ordered). To lowest order in perturbation theory one gets

〈H(q2)|b(0)iγ5b(0)H(0)|b(p1)b(p2)〉 = v(p2)iγ5u(p1) . (3.11)

We remark that the overall sign of the right-hand side follows from the definition of the

initial two-fermion state. The three-point pseudoscalar vertex (3.11) represents an incoming

b and b quark with four-momenta p1 and p2, respectively, and an outgoing Higgs boson

with four-momentum q2. It is depicted in figure 7.

5With the sign convention for the neutral current interaction chosen in (3.1) the free field equation for

the Z-boson field is
(

gµν(∂2 +m2
Z)− ∂µ∂ν

)

Zν = Jµ

Z .
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Figure 7. Example diagrams at tree level, one-loop and two-loop corresponding to the right hand

side of the Ward identity (3.10). The solid arrow indicates the insertion of the external momentum

−q1 into the vertex.

CP-odd Higgs boson. The corresponding S-matrix element is

〈Z(q1)A(q2) | b(p1)b(p2)〉 = (2π)4δ(4)(q1 + q2 − p1 − p2)M
A
µ ǫ

∗µ
Z . (3.12)

The respective Ward identity for (3.12) can be derived in completely analogous fashion

using (3.5). We obtain

qµ1M
A
µ = 2gA,bλ̃b〈A(q2)|b(0)b(0)A(0)|b(p1)b(p2)〉 . (3.13)

Evaluating the right-hand side of (3.13) to lowest order we get

〈A(q2)|b(0)b(0)H(0)|b(p1)b(p2)〉 = v(p2)u(p1) . (3.14)

The remarks made below (3.10) and (3.11) apply also here.

3.2 Checking the Ward identity

Next we verify the Ward identity (3.10) for a CP-even Higgs boson H at the level of the UV

renormalized and IR subtracted finite remainders in four dimensions. From the discussion

of section 2.2 we see that the virtual (non-anomalous) two-loop QCD corrections to the

amplitude of the process (2.1) are given by

Mµ
vec = (F1,HZ + F1,ZH) v̄(p2)u(p1) p

µ
1 + (F2,HZ + F2,ZH) v̄(p2)u(p1) p

µ
2

+ (F3,HZ + F3,ZH) v̄(p2)u(p1) q
µ
1 + (F4,HZ + F4,ZH) v̄(p2) γ

µ
/q1u(p1) , (3.15)

Mµ

axi(ns) = (F1,HZ − F1,ZH) v̄(p2) γ5 u(p1) p
µ
1 + (F2,HZ − F2,ZH) v̄(p2) γ5 u(p1) p

µ
2

+ (F3,HZ − F3,ZH) v̄(p2) γ5 u(p1) q
µ
1 + (F4,HZ − F4,ZH) v̄(p2) γ

µ
/q1γ5u(p1) ,

(3.16)

where the previously calculated analytic expressions of the vector form factors Fi,ZH and

Fi,HZ will be inserted and all spinor products are to be evaluated in four dimensions.
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The left-hand side of the Ward identity (3.10) is obtained by contracting the ampli-

tudes (3.15) with the four-momentum of the Z boson. We get

q1 · Mvec = v̄(p2)u(p1)

(

(F1,HZ + F1,ZH)
m2

Z − t

2
+ (F2,HZ + F2,ZH)

m2
Z − u

2

+ (F3,HZ + F3,ZH) m2
Z + (F4,HZ + F4,ZH) m2

Z

)

, (3.17)

q1 · Maxi(ns) = v̄(p2) γ5 u(p1)

(

(F1,HZ − F1,ZH)
m2

Z − t

2
+ (F2,HZ − F2,ZH)

m2
Z − u

2

+ (F3,HZ − F3,ZH) m2
Z + (F4,HZ − F4,ZH) m2

Z

)

. (3.18)

The form factors Fi,ZH and Fi,HZ can be UV-renormalized and IR-subtracted as outlined

in detail in ref. [13], which subsequently leads to their respective finite remainders in four

dimensions. Inserting these finite remainders of Fi,ZH and Fi,HZ into (3.17) and (3.18),

respectively, we obtain the finite remainders of the left-hand side (3.10) in four dimensions.

In particular we have verified that q1 · Mvec = 0. (This holds, of course, already before

renormalization and subtraction.)

The right-hand side of (3.10) consists, up to the factor −2gA,bλb, of the tree-level three-

point pseudoscalar vertex (3.11) and its one-loop and two-loop QCD virtual corrections,

albeit with a special kinematic configuration as explained above. Example diagrams are

shown in figure 7. All contributions are proportional to the Lorentz structure v̄(p2) γ5 u(p1).

We used here an anticommuting γAC
5 for the pseudoscalar vertex. After carrying out the

UV renormalization and IR subtraction of these QCD virtual corrections, we obtained an

expression that agrees analytically with the aforementioned finite remainder of the left-

hand side of (3.18).

In the case of a CP-odd Higgs boson, where the vector and axial form factors, i.e.

FA
i,vec and FA

i,axi(ns), are given by (2.16) in terms of Fi,ZH and Fi,HZ , it is straightforward

to verify the Ward identity (3.13) in completely analogous fashion. To be more specific,

with the parameterization of the Yukawa couplings as in (3.1), we have FA
j,vec = i Fj,vec

and FA
j,axi(ns) = i Fj,axi(ns). The two sets of form factor-factor decomposition bases of

the amplitudes involving H and A differ just by an additional γ5 sandwiched between

spinors. Likewise, the r.h.s. of the Ward identities (3.10) and (3.13) differ by the factor iγ5
sandwiched between spinors, as far as the Lorentz structure is concerned. Thus the form

factors (2.16) fulfill the Ward identity (3.13).

4 Top-Yukawa coupling dependent top-loop contributions to qq̄ → ZH

in Higgs effective theory

Starting from O(α2
s) in QCD, a new class of two-loop diagrams contributes to the quark

antiquark annihilation initiated Zh process where the Higgs boson couples directly to a

closed top-quark loop, and hence the top-quark Yukawa coupling gets involved. This was
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Figure 8. The two-loop class-I diagrams of the top contributions to qq̄ → ZH proportional to λt.

The thick solid lines denote the massive top quark.

studied for h = H for instance in refs. [4, 5] by making use of asymptotic expansions in

the heavy-top limit. In ref. [5], the two-loop virtual top-quark contributions to qq̄ → ZH

proportional to λt were classified into two sets: class-I (with examples shown in figure 8)

and class-II, depending on whether the Z boson couples to the external light quark in the

initial state or to the virtual top-quark loop (from which the Higgs boson is radiated),

giving rise to different electroweak coupling factors.

These contributions were not covered in ref. [13] where the computations were made

in nf = 5 massless QCD with a non-vanishing Yukawa coupling for the b quark only

(as discussed in the preceding sections except for the section 2.3 where the top-induced

triangle diagrams are included in addition). As the second part of the work presented in

this article, we compute the contributions of the class-I diagrams to O(α3
s) in the heavy-top

limit using the Higgs effective field theory (HEFT) to two-loop order. We confine ourselves

in the following to a scalar Higgs boson h = H. Our motivation for presenting these

contributions here in some detail is a problem in applying a non-anticommuting γ5 that

we encountered in the computation of this class of contributions.

We parameterize in the following the general Yukawa coupling λt of a CP-even Higgs

boson to the top quark by

λt = −ct
mt

v
, (4.1)

where −mt/v with v = 246GeV is the SM top-Yukawa coupling and the dimensionless

parameter ct depends on the specific Higgs model.

4.1 HEFT and UV renormalization

In ref. [5] it was pointed out that applying the heavy-mass expansion procedure to the class-

I diagrams of figure 8 that leads to terms similar to those depicted in figure 4, albeit with Z

andH exchanged, the expanded terms featuring the effective qq̄ZH or qq̄H vertex vanish to

leading power in 1/mt. Only the terms that involve the effective Higgs-gluon-gluon (Hgg)

vertex contribute in the infinite mt limit. Thus, the leading approximation in powers of

1/mt of the diagrams figure 8 can be described with the Higgs effective Lagrangian (see

e.g. ref. [30]) where the top quark is integrated out. The diagrams of figure 8 are then

reduced to the one-loop diagrams shown in figure 9.
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Figure 9. The class-I diagrams of the top-quark contributions to qq̄ → ZH in the limit mt → ∞

in the leading power approximation. The black blob indicates the effective Hgg vertex.

However, as will become clear at the end of the next section, it turns out that the

validity of this point depends on the particular γ5 prescription in use. To be more specific,

it is not true for the axial current regularized using a non-anticommuting γ5, which can be

deduced from our computations described below. This is one of the key results conveyed

through the remaining sections.

In the Higgs effective theory, where the top-quark degrees of freedom are integrated

out, the Lagrangian density that encapsulates the interaction between the scalar Higgs

boson and gluons is given by (neglecting terms that are not relevant here)

Lheff = −
1

4
ct CH

H

v
Ga

µνG
a,µν , (4.2)

where ct and v are defined in and below eq. (4.1), respectively, and CH denotes the Wilson

coefficient that is determined for a Standard Model Higgs boson by matching the effective

nf = 5 flavor theory to the full (nf +1)-flavor theory order-by-order in the QCD coupling.

To second order in as(µ
2
R) it is given by [31, 32]

CH

(

as(µ
2
R)
)

=−
4as
3

(

1 + as

{

5CA − 3CF

}

)

, (4.3)

where µR is the renormalization scale and CA, CF denote the quadratic Casimir oper-

ators of the SU(Nc) color gauge group in the adjoint and fundamental representations,

respectively.

The effective operator (4.2) must be renormalized, in addition to performing the QCD

coupling renormalization (done in the MS scheme), in order to get rid of all the UV poles

appearing in the scattering amplitudes. This is achieved by
[

Lheff

]

R
= ZHLheff (4.4)

with the operator renormalization constant [33–35]

ZH = 1− as

(

1

ǫ
β0

)

+ a2s

(

β20
ǫ2

−
β1
ǫ

)

. (4.5)

The coefficients of the QCD β-function are given by

β0 =
11

3
CA −

2

3
nf ,

β1 =
34

3
C2
A − 2CFnf −

10

3
CAnf . (4.6)
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Figure 10. Examples of the class-I two-loop diagrams proportional to λt involving only an open

massless quark line q for qq̄ → ZH in HEFT.

Figure 11. The two-loop diagrams proportional to λt for qq̄ → ZH with an open massless quark

line q and a quark loop in HEFT. The first four diagrams vanish because of color conservation.

4.2 Form factors of the class-I contributions using an anticommuting γ5

We consider now the class-I λt-dependent contributions to qq̄ → ZH in HEFT. The leading-

order contributions are depicted in figure 9. Examples of the two-loop non-anomalous QCD

corrections that involve only an open massless quark line q where the Z boson couples

to are shown in figure 10, and the two-loop QCD corrections that involve in addition a

closed quark loop where the Z boson couples to are displayed in figure 11. We denote

the corresponding contributions to the amplitude by A in order to distinguish it from the

contributions discussed in section 2:

A = ct v̄(p2)Γ
µ
E u(p1) ε

∗

µ(q1)

= ct gV,q v̄(p2)Γ
µ
vec,E u(p1) ε

∗

µ(q1) + ct v̄(p2)Γ
µ
axi,E u(p1) ε

∗

µ(q1)

≡ ct gV,q Avec + ct Aaxi , (4.7)
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where the suffix E indicates the use of the Higgs effective Lagrangian (4.2), and we have

factored out ct defined in (4.1) and the vector coupling gV,q of the light quark q to the Z

boson. As to the dependence on axial vector couplings see eq. (4.12) below.

The vector part of the amplitude can be decomposed in terms of linearly independent

and complete Lorentz structures in D dimensions as

v̄(p2)Γ
µ
vec,E u(p1) = F1,vec v̄(p2) /q1 u(p1) p

µ
1 + F2,vec v̄(p2) /q1 u(p1) p

µ
2

+ F3,vec v̄(p2) /q1 u(p1) q
µ
1 + F4,vec v̄(p2) γ

µu(p1) . (4.8)

The decomposition reflects the chiral conservation along the massless quark line. The Fi,vec

are the vector form factors which are computed by applying the corresponding projectors to

the respective Feynman diagrams. These vector formfactor projectors read in D dimensions:

P
µ
1 = ū(p1)

{

(2−D)(m2
z − u)2pµ1 +

(

m4
z(D − 4) + (D − 4)tu−m2

z(2s(D − 3)

+ (D − 4)(t+ u))
)

pµ2 + s(D − 2)(m2
z − u)qµ1

+ (m2
z − u)(m4

z + tu−m2
z(s+ t+ u))γµ

}

v(p2)
1

K2
,

P
µ
2 = ū(p1)

{(

m4
z(D − 4) + (D − 4)tu−m2

z(2(D − 3)s+ (D − 4)(t+ u))
)

pµ1

+ (2−D)(m2
z − t)2pµ2 + (D − 2)s(m2

z − t)qµ1

+
(

(m2
z − t)(m4

z + tu−m2
z(s+ t+ u))

)

γµ
}

v(p2)
1

K2
,

P
µ
3 = ū(p1)

{

(D − 2)(m2
z − u)pµ1 + (D − 2)(m2

z − t)pµ2 + (2−D)sqµ1

+
(

−m4
z − tu+m2

z(s+ t+ u)
)

γµ
}

v(p2)
1

K2
,

P
µ
4 = ū(p1)

{

(m2
z − u)pµ1 + (m2

z − t)pµ2 − sqµ1

+
(

−m4
z − tu+m2

z(s+ t+ u)
)

γµ
}

v(p2)
1

K
, (4.9)

where

K = 2s(D − 3)(m4
z + tu−m2

z(s+ t+ u)) . (4.10)

We note that, by construction, the index contraction between these projectors (4.9) and the

ε∗µ-stripped amplitude is to be done with the D-dimensional space-time metric tensor gµν .

The UV renormalization of the amplitude (4.8) proceeds as explained in section 4.1.

The technical aspects of the computation of the vector form factors closely follow the

steps as explained in detail in ref. [13]. We remark that the two-loop amplitudes (or form

factors) (4.8) involves 117 master integrals, for which we take the analytic expressions

computed in ref. [36] available in HepForge [37] in computer readable format. The UV

renormalized vector form factors Fi,vec at one as well as two loops were checked for ex-

hibiting the universal infrared structures [38–42]. This serves as a strong check of our

computations.
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The expansion of the UV renormalized form factors in powers of as is defined by

Fi,vec =

∞
∑

l=1

als(µR)F
(l)
i,vec . (4.11)

The analytic results of these UV renormalized vector form factors are too lengthy to be

presented here, but they can be provided upon demand from the authors.6

We decompose the amplitude Aaxi associated with the axial vector current as follows:

Aaxi = gA,q Aaxi(ns) + gA,b Aaxi(s) , (4.12)

where the contribution Aaxi(ns) covers the one- and two-loop diagrams of figures 9 and 10,

respectively, while the term Aaxi(s) results from the non-vanishing two-loop diagrams of

figure 11. The dependence of this term on gA,b only will be discussed in section 5.3 below.

The axial components of the form factors are defined by decomposing Aaxi in analogy

to (4.8) as follows (we drop here the additional subscript ‘ns’ or ‘s’ for ease of notation):

Aµ
axi ≡ F1,axi v̄(p2) /q1γ5 u(p1) p

µ
1 + F2,axi v̄(p2) /q1γ5 u(p1) p

µ
2

+ F3,axi v̄(p2) /q1γ5 u(p1) q
µ
1 + F4,axi v̄(p2) γ

µγ5 u(p1) , (4.13)

and these form factors are expanded in powers of as in analogy to the vector counterparts

in (4.11).

For the computation of the non-anomalous part Aaxi(ns), respectively the form factors

F2,axi(ns), we use an anticommuting γAC
5 in D dimensions. Then Aaxi(ns) respects chiral

invariance which implies that

F
(l)
i,axi(ns) = F

(l)
i,vec , i = 1, 2, 3, 4. (4.14)

In order to check eq. (4.14) we derive the projectors that correspond to the decomposi-

tion (4.13) (with an anticommuting γAC
5 ). With these projectors we computed the F

(l)
i,axi(ns)

at one and two loops (l = 1, 2) and confirm eq. (4.14).

For the anomalous two-loop diagrams, where only axial vector part survives, we employ

a non-anticommuting γ5 in dimensional regularization [15, 16, 43–45]. Our results will be

discussed in section 5.3. First we cross-check whether the correct non-anomalous axial

form factors (i.e., those given by eq. (4.14)) are obtained using a non-anticommuting γ5 as

employed in the literature. Here we found something quite intriguing, which we now turn

to in the following section.

5 A pitfall in applying a non-anticommuting γ5 to λt-dependent contri-

butions to qq̄ → ZH in HEFT

In our attempt to compute the two-loop QCD contributions to the class-I diagrams7 in

HEFT, shown in figure 9, we noticed a technical pitfall in applying a non-anticommuting

γ5. To our surprise, this γ5 issue manifests itself already in the LO (one-loop) contributions.

6In particular, the file containing the four UV renormalized two-loop amplitudes M[j],(2) is about 12MB.
7A comment about the class-II contributions will be given at the end of the following subsection.
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5.1 The class-I axial form factors computed using a non-anticommuting γ5

Our computation of the axial vector form factors, Fi,axi, as introduced in (4.13), using

a non-anticommuting γ5 follows closely ref. [13], especially with regard to the axial form

factor decomposition (although a new set of chirality-preserving form factor decomposition

basis is needed here). The non-anticommuting γ5 in dimensional regularisation is defined

by [43, 44]

γ5 = −
i

4!
εµνρσγ

µγνγργσ , (5.1)

where the Levi-Civita symbol εµνρσ is treated according to refs. [15, 45, 46]. The usage of

this definition has profound implications in higher-order computations involving an axial

vector current. One of the main messages conveyed through refs. [13, 14] is that even if

the loop amplitudes are not defined or regularized strictly in the ’t Hooft-Veltman scheme,

expressions for projectors derived in four dimensions are still sufficient and lead to correct

results (for physical observables), for projectors corresponding to form factors and to (lin-

early) polarised amplitudes alike. This is particularly helpful in evaluating loop amplitudes

that involve axial vector currents (if a non-anticommuting γ5 is used).

If we use an anticommuting γ5, then as just discussed in section 4.2, we get

Fi,vec = FAC
i,axi(ns) (5.2)

for i = 1, 2, 3, 4 to two loops (leaving the anomalous diagrams aside), where the superscript

AC indicates the use of an anticommuting γ5. Accordingly, conservation of the non-singlet

light-quark current implies

q1,µ v̄(p2)Γ
µ
vec,E u(p1) = 0 ,

q1,µA
µ

axi(ns) = 0 , (5.3)

where Aµ

axi(ns) is given by (4.13) with FAC
i,axi(ns) inserted. Alternatively, if we use the non-

anticommuting γ5 (NAC) (5.1), then the vector part does not change of course, but for the

axial FF we find at LO in the four-dimensional limit (ǫ = (4−D)/2 = 0):

FNAC
i,axi(ns) = Fi,vec , i = 1, 2, 3,

(5.4)

and

FNAC
4,axi(ns) 6= F4,vec . (5.5)

Consequently, this difference in the fourth form factor leads to the violation of the Ward

identity

q1,µA
µ,NAC
axi(ns) 6= 0 (5.6)

already at LO.
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Figure 12. The amendment term (5.7).

With the explicit analytic expressions of these form factors at hand, we find that the

expected relations (4.14) can be restored at LO if we introduce an additional amendment

term, i.e. subtraction term, that is to be added to Aµ,NAC
axi(ns). We denote this term by

J µ,NAC ≡ Zh
5(as)C

(

v̄(p2) [γ
µγ5]L u(p1)

)

, (5.7)

where the constant factor C ≡ as (−4CF )
CH

v
collects the overall perturbative power a2s

of the LO amplitude (and the effective coupling prefactors) and [γµγ5]L denotes the axial

vector current matrix renormalized according to the prescription [15, 16]. (At this order

no renormalization of refs. [15, 16] gets involved.) The additional renormalization con-

stant Zh
5(as) = 1 +O(as) has an expansion in as which we will determine explicitly to the

first order in as from our NLO computation to be presented later. Diagrammatically, this

amendment term can be viewed as introducing a four-point local composite operator corre-

sponding to the diagram in figure 12 with a multiplicative factor Zh
5(as) to be determined

order by order in as. With the extra amendment term (5.7), the desired properties are

restored: FNAC
i,axi(ns) = Fi,vec holds for all four form factors and q1,µA

µ,NAC
axi(ns) = 0 is then also

fulfilled.

The source of the inequality (5.5) can be traced at LO to be solely due to the one-loop

box diagram, i.e., the left-most one in figure 9, while the contributions of the two triangle

one-loop LO diagrams respect FNAC
i,axi(ns) = Fi,vec (i = 1, 2, 3, 4) in the four-dimensional

limit. We emphasize that each of the three LO diagrams of figure 9 is finite. However, the

Feynman amplitude of the finite one-loop box diagram contains terms that are separately

divergent. The expressions obtained using on the one hand an anticommuting γ5 and on

the other hand, a non-anticommuting one, lead to different D-dependent coefficients in

front of these divergent terms, with differences being suppressed by at least one power in

(D-4). The crucial point is that the (D-4) difference between these two expressions is not

an overall prefactor. It is then not hard to conceive that some non-vanishing evanescent

anti-commutators are generated when one shifts the non-anticommuting γ5 from inside the

loop correction of the axial vector vertex to the outside of the loop, which then leads to

the observed discrepancy.

5.2 The NLO QCD corrections

UV renormalization of the non-anomalous HEFT diagrams. We move on and

discuss the NLO QCD correction to the aforementioned LO diagrams using a non-an-
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ticommutating γ5 in HEFT where a similar phenomenon happens. Let us first consider

the NLO QCD corrections of the non-anomalous type to the leading order diagrams in

HEFT, shown in figure 9. These corrections correspond to the two-loop diagrams of order

α3
s shown in figure 10. There are also a few non-zero contributions of the anomalous type,

i.e., non-vanishing diagrams involving quark triangles, at this perturbative order, shown

in figure 11, which we will discuss separately. All the projectors used in computing these

non-anomalous NLO QCD corrections are still the same as those used for the LO diagrams,

and the only technical complication comes from performing the UV renormalization of the

axial form factors regularized with a non-anticommuting γ5. The renormalization procedure

described in section 4.1 is sufficient to renormalize the vector form factors which is verified

by checking the respective Ward identity.

We use now the prescription of refs. [15, 16] for the axial vector current, sometimes

referred to as Larin’s prescription for short, and therefore the corresponding axial vector

current renormalization constants in the MS scheme get involved non-trivially at this order

of perturbation theory, in addition to the QCD coupling and operator renormalization. For

the non-anomalous NLO QCD corrections to the diagrams of figure 9, the normal form of

the Ward identity should still hold for the axial vector current, exactly the same as for the

vector counterpart. However, to our surprise, if one just incorporates the usual UV counter-

terms arising from coupling constant, operator renormalization, and the compensation

terms dictated by Larin’s prescription, the results for the axial form factors are still wrong,

which manifests itself in the following checks.

• The remaining pole structures in the axial form factors renormalized in this way do

not match with the prediction according to Catani’s IR factorisation formula [38].

• The ǫ0-order terms of the, renormalized and subtracted, vector and respective axial

form factors differ, which subsequently implies the violation of the axial Ward identity

for the process at hand.

The solution we found, which is now not hard to guess based on the above exposition of

how to correct the LO result, is that one should also consistently compute the perturbative

contributions to the extra local composite operator given in (5.7) that include both i) the

perturbative expansion of Zh
5(as) in as and ii) the NLO (one-loop) corrections to this local

composite operator (where the axial vector current involved is again treated by Larin’s

prescription). Following this line, we determine the expression for Zh
5,ns(as) by imposing

the equality between the finite remainders of the vector and (non-anomalous) axial form

factors. We get

Zh
5,ns(as) = 1 + as

(

−β0
ǫ

+
107

18
CA − 7CF −

1

9
nf

)

+ O(a2s) . (5.8)

To summarize, the non-anomalous axial amplitude Aaxi(ns) computed at two loops in HEFT

using a non-anticommuting γ5 is renormalized according to8

Aµ,NAC
axi(ns)(as) = Zns

5,L(as)Z
ns
A,L(as)ZH(as)Â

µ,NAC
axi(ns)(âs) + J µ,NAC

ns . (5.9)

8We remark that the particular organization of the contributing terms as done in (5.9) is made here for

convenience. A systematic formulation of how the various pieces enter the computation can be made with

an “effective” Lagrangian. This will be done at the end of this subsection.
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In order to distinguish here bare and renormalized quantities we denote the unrenormalized

amplitude and QCD coupling with a hat. The counterterm vertex in (5.9) is given by

J µ,NAC
ns = Zh

5,ns(as)C
(

v̄(p2) [γ
µγ5]L u(p1)

)

= Zh
5,ns(as)Z

ns
5,L(as)Z

ns
A,L(as)C

(

v̄(p2) γ
µγ5 u(p1)

)

. (5.10)

The constant C is given below eq. (5.7). The quantity ZH is the operator renormalization

constant (4.5) in the effective Lagrangian in HEFT; Zns
5,L and Zns

A,L are the renormalization

constants for the non-singlet axial vector current in Larin’s prescription [15], which we list

here for convenience:

Zns
A,L = 1 + a2s

1

ǫ

(

22

3
CFCA −

4

3
CFnf

)

,

Zns
5,L = 1 + as (−4CF ) + a2s

(

22C2
F −

107

9
CFCA +

2

9
CFnf

)

. (5.11)

If one does not invoke the Larin counterterms (5.11) then, of course, only the product

Zh,T
5,ns(as) ≡ Zh

5,ns(as)Z
ns
5,L(as)Z

ns
A,L(as) as a whole can be determined in a chosen renormal-

ization scheme (e.g. in the MS scheme used here) by demanding that the correct physical

results (see above) are obtained.

5.3 UV renormalization of the anomalous diagrams in HEFT

Regarding the anomalous diagrams at this perturbative order, shown by the non-vanishing

ones in figure 11, a similar treatment as in the non-anomalous case can be applied, albeit

with a bit more complexity due to the ABJ anomaly [23, 24]. Let us first discuss the UV-

renormalized Ward identity that the non-vanishing four diagrams of figure 11, where only

the axial vector current contributes, must satisfy. Only the massless b-quark triangles make

a non-zero contribution to the last four diagrams of figure 11. The top quark contribution

is omitted as we work here in nf = 5 flavor HEFT. The contributions involve the coupling

factor gA,bct. The operator relation for the ABJ anomaly of the massless axial vector

b-quark current J5µ = b̄γµγ5b reads:

[

∂µJ5µ

]

R
= as

1

2

[

GG̃
]

R
, (5.12)

where GG̃ = −ǫµνρσGa
µνG

a
ρσ. The subscript R indicates that these composite local oper-

ators need to be properly renormalized in order that this operator relation holds. Let us

denote the renormalized contribution to Aaxi(s) as defined in (4.12) from the anomalous

Feynman diagrams of figure 11 by

Aaxi(s) = v̄(p2)Γ
µ

(s) u(p1) ε
∗

µ . (5.13)

Taking the divergence of J5µ amounts to substituting ε∗µ → q1,µ. By restoring the ABJ

anomaly term on the right-hand side of (3.5) and repeating steps similar to eqs. (3.7)–(3.9),

we obtain for the anomalous contributions to qq̄ → ZH in HEFT the relation:

v̄(p2)Γ
µ

(s) u(p1) q1,µ =
as
2

〈

H(q2)
∣

∣

[

GG̃(0)
]

R

∣

∣q(p1)q(p2)
〉

, (5.14)
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Figure 13. Feynman diagrams contributing to the right-hand side of (5.14). The blob associated

with H denotes the effective Hgg vertex while the blob associated with the auxiliary pseudoscalar

A results from the local operator GG̃.

where the kinematics of the matrix element on the r.h.s. obeys p1+ p2− q2 = q1. As in the

case of eq. (3.10) there is an external momentum insertion qµ1 by the composite operator
[

GG̃(0)
]

R
. Note that, at the two-loop order considered here, both sides of (5.14) are finite

upon proper UV renormalization to be determined below.

The matrix element on the r.h.s. of (5.14) can be computed in perturbation theory

order by order in as. The first non-vanishing term corresponds to the one-loop diagrams

depicted in figure 13.

However, the relation (5.14) does not hold with the expressions we get for both sides.

At the order we are considering, i.e. NLO in as w.r.t. the LO diagrams of figure 9, none

of the flavor-singlet axial current Z5 factors of ref. [16] (e.g. listed in eq. (4.10) in ref. [13])

contributes, because their non-vanishing perturbative terms start at order a2s relative to

the leading terms. In view of our treatment of the non-anomalous contributions discussed

previously, we therefore introduce for the renormalization of the anomalous two-loop contri-

butions of figure 11 the local composite operator given in (5.7) as additional counterterm

into the game, albeit with a new undetermined coefficient Zh
5,s(as). The expression of

Zh
5,s(as) given in (5.15) was determined such that the properly UV renormalized singlet

axial current has a finite anomaly that does obey (5.12) and the Ward identity (5.14).

With the concrete analytic expressions at hand, we obtain

Zh
5,s(as) = 1 + as

(

−
3

2

1

ǫ
−

3

4

)

+ O(a2s) . (5.15)

We remark that the renormalization of the right-hand side of (5.14) at the perturbative

order in question involves the following mixed counterterm:

Zh
GJ(as)

(

v̄(p2) γµγ5 u(p1) q
µ
1

)

(5.16)

where Zh
GJ(as) = as

(

24
ǫ
CF

)

+ O(a2s) is determined by the requirement of minimally sub-

tracting all poles of the Feynman diagrams in figure 13 (under the convention of setting

the coupling factors associated with the effective Hgg vertex and the local operator GG̃ to

be one).

To summarize, our explicit computation of the class-I contributions to qq̄ → ZH

and their QCD corrections in HEFT, as presented in the preceding sections, shows that

if one uses a non-anticommuting γ5 in dimensional regularization one has to introduce an

additional counterterm Zh
5(as)C

(

q̄R [γµγ5]L qR

)

ZµH into the final properly renormalized
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effective Lagrangian. To be more specific, the complete form of the properly renormalized

effective Lagrangian with a non-anticommuting γ5 that one should use in computing the

QCD corrections to O(α3
s) to the class-I contributions to qq̄ → ZH in HEFT reads as

LR =
[

Lc + Lheff

]

R
+ κ Zh

5(as)C
(

q̄R(x) [γ
µγ5]L qR(x)

)

Zµ(x)H(x) , (5.17)

where
[

Lc + Lheff

]

R
denotes the renormalized form of Lc + Lheff given by (3.1) and (4.2).

The explicit perturbative expressions for Zh
5,ns(as) and Zh

5,s(as) were determined in (5.8)

and (5.15) to the first order in as. Furthermore, κns = ctgA,q and κs = ctgA,b.

We conclude this subsection with a short comment on another class of non-vanishing

top-loop contributions to the amplitude of qq̄ → ZH proportional to λt. In these contribu-

tions, which are called class-II in ref. [5] and start at two loops, i.e. order a2s, the Z boson

couples to a virtual top-quark loop, from which the Higgs boson is also radiated. Charge

conjugation invariance dictates that only the axial vector current contributes at order a2s.

Thus these contributions are proportional to the product of couplings λt gA,t. It was shown

in ref. [5], where the axial vector current was regularized according to Larin’s prescription,

that in the limit mt → ∞ the non-vanishing part of the class-II contributions involves only

one structure, namely q̄γµγ5qZ
µH. The investigation of the NLO QCD corrections to these

two-loop class-II contributions in the limit mt → ∞ is beyond the scope of this work and

will be deferred to a future investigation.

5.4 The class-I Feynman diagrams at two loops without taking the heavy-top

limit

Our investigations above of the class-I type contributions with HEFT show that correct

results (i.e., results that obey chiral invariance and the correct Ward identity) are ob-

tained for both the vector part and the (non-anomalous) axial part with an anticommuting

γ5. But when employing a non-anticommuting γ5 in the computation of the same set

of (non-anomalous) Feynman diagrams in HEFT, it seems that there are some missing

pieces, which calls for additional amendment terms as explicitly determined above. In or-

der to have a better understanding of this issue, we would like to know how these class-I

Feynman diagrams behave in the full six-flavor theory without taking heavy-top limit. In

particular, we want to check whether the equality (5.2) holds in a computation with a

non-anticommuting γ5, which then implies that the Ward identity (5.3) is satisfied without

the need of additional amendment terms (at two-loop order).

There are in total 6 Feynman diagrams for the class-I type contributions at two-loop

order with a finite top-quark mass, with samples depicted in figure 8. We generate the

(unreduced) symbolic expressions using an extension of GoSam [47, 48]. After applying

the integration-by-parts (IBP) [49, 50] relations obtained with Kira [51], they are reduced

into linear combinations of 55 master loop integrals. The hardest one is a 7-propagator

loop integral that depends on 5 scales (2 Mandelstam variables and 3 physical masses),

corresponding to the topology of the first diagram in figure 8, for which no analytic results

are known yet. For our purpose of a numerical verification of (5.2), all 55 master integrals

are computed using pySecdec [52] at one chosen kinematic point.
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Both the vector and axial vector form factors of the two-loop class-I diagrams in the

full theory, defined in complete analogy to (4.8) and (4.13), respectively, and projected

out using the same projectors as employed in the previous computations done in HEFT,

are finite without renormalization or infrared subtraction, because they are the Born level

contributions of this type. However, the master integrals involved could and indeed contain

spurious poles which all cancel in their final linear combinations making up the form

factors. In this numerical check, we tried three different sets of master bases: i) loop

integrals without irreducible numerators, ii) loop integrals where irreducible numerators

are favoured over denominators raised to powers, and also iii) quasi-finite loop integrals [53],

each of which is not unique in general and partially depends on the integral-ordering in

use. Concerning the particular choice we take, the quasi-finite master basis exhibits the

least spurious poles, albeit still starting from 1/ǫ2, while the master basis with numerators

performs the worst in the numerical evaluation with pySecdec [52]. We note that the

master basis without irreducible numerators determined by Kira [51] for our integral family

exhibits automatically the feature where their rational coefficients in the IBP table, and

hence the reduced amplitudes, have their denominators’ D-dependence factorized from

the external kinematics [54, 55]. Furthermore, we observe that vector and axial form

factors not only share exactly the same master basis, but also their respective rational

coefficients agree, albeit, only to the leading term in their Laurent expansions around

D=4 dimensions,9 just as in their one-loop counterparts in HEFT discussed at the end of

section 5.1. Under this condition, if one is only interested in checking the difference between

these two sets of form factors, then all pieces needed to this end are in fact those that are

used for demonstrating the cancellation of all spurious poles in these finite form factors.

This property can be exploited to greatly improve the level of numerical accuracy of the

comparison without increasing the computational cost, as the most complicated parts of

master integrals required to obtain the form factors or amplitudes to ǫ0 are not needed for

this purpose. Eventually, we obtain agreement between the vector and axial form factors

of the two-loop class-I diagrams in the full six-flavor theory (i.e., without the effective

Higgs-gluon vertex) at the chosen kinematic point within the numerical uncertainty. In

particular, taking advantage of the aforementioned insight, the suspicious 4-th vector and

axial vector form factor agree with each other to the fourth significant digit, which we deem

to be quite sufficient for our purpose.10

With the outcome of this critical check we conclude the following. If one naively

computes the class-I diagrams in HEFT with a non-anticommuting γ5, some terms are

missing, namely terms that involve the effective vertex qγµγ5q̄Z
µH. We have restored

and determined these additional counterterms by enforcing the respective Ward identities

as discussed in section 5.1 and 5.2. Computing analytically this particular missing piece

9If the “basis of loop integrals” in use is not truly minimal, or there are hidden zeros among them, then

this structure is not necessarily observed.
10The two numbers for this comparison are obtained after running pySecdec for about 10 hours on a

desk-top computer with 6 CPUs using the Vegas integrator [56], whose errors are estimated conservatively

by the addition-in-quadrature formula to be a few per mille. If one compares at the level of the complete

finite ǫ0-order, the numerical uncertainty will be roughly 10 times larger and the agreement can be seen

only in the first 2 or 3 significant digits.
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directly by applying the heavy top-mass expansion procedure to these two-loop class-I

diagrams and confirming the result deduced above would also be an interesting thing to

do, which we however defer to future work.

Our investigations conducted above show that the presence or absence of diagrams

with the effective vertex qγµγ5q̄Z
µH in the heavy top-mass expansion of the class-I di-

agrams depends on the specific γ5 prescription in use. When the axial vector current is

regularized using a non-anticommuting γ5 these are apparently needed. This observation

further strengthens the common lore that one should be very careful with taking claims (or

assuming conditions) which were established with an anticommuting γ5 in a computation

where a non-anticommuting γ5 is employed instead in dimensional regularization.

6 Conclusions

In the first part of this article (sections 2 and 3), we considered first the vector current

and non-anomalous axial vector current amplitudes bb̄ → Zh proportional to the b-quark

Yukawa coupling at two loops for a CP-even and CP-odd Higgs boson h = H,A, respec-

tively. We showed that these polarized amplitudes can be obtained, when the b quark is

taken to be kinematically massless, solely from the vector form factors of properly grouped

classes of diagrams for ZH production. The computation of these form factors does not

involve the axial vector current and hence γ5. Subsequently, we have compared with the

previous results on bb̄ → ZH of ref. [13] to two-loop order (where different projectors

were used with a non-anticommuting γ5). As expected, agreement of the axial part of the

amplitudes can only be obtained at the level of properly defined finite remainders in four

dimensions. Furthermore, the Ward identities for the QCD corrections to these b-quark

Yukawa coupling-dependent contributions to bb̄ → Zh, h = H,A, are derived and verified

explicitly in section 3.

In addition, we determined the two-loop contributions to bb̄ → Zh corresponding to

diagrams that involve b- and t-quark triangles and the axial vector current in the heavy-top

limit (cf. figure 3). For mt → ∞ the top-loop induced triangle diagrams are not vanishing.

The explicit dependence on the renormalization scale µR cancels in the total two-loop

triangle contribution.

In the second part of this article (sections 4 and 5), we considered a class of top-Yukawa

coupling dependent contributions to the amplitude of qq̄ → ZH, namely the so-called class-

I diagrams. Here the Higgs boson is radiated from the internal top-quark loop while the

Z boson is emitted from the external light quark line. We computed these contributions

to O(α3
s) in the heavy-top limit using the Higgs-gluon effective Lagrangian (HEFT). We

obtained the analytical expressions of the UV renormalized vector form factors to two-

loop order and verified their infrared poles by comparing to Catani’s infrared factorization

formula. For computing the axial vector form factors of the non-anomalous diagrams, an

anticommuting γ5 can be employed, which results in exactly the same UV renormalized

expressions as their vector counterparts.

In an attempt to re-compute the QCD corrections to the same class-I Feynman di-

agrams in HEFT, but with a non-anticommuting γ5, a technical pitfall was noticed and

– 28 –
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discussed in detail in section 5. One may look at this issue from two perspectives. If

one limits the scope to be within HEFT, then there are some additional local composite

operators that one has to include when using a non-anticommuting γ5 in the computation

of class-I contributions to qq̄ → ZH, as summarized in (5.17). On the other hand, if one

looks at it from the point of view of the original full six-flavor theory, then our analysis

in section 5.4 implies the following. If a non-anticommuting γ5 is used in the axial vector

current, then in the infinite top-mass limit certain heavy-mass expanded diagrams survive

that are absent in a respective computation where an anticommuting γ5 is used. Therefore,

our results show that the presence or absence of certain heavy-mass expanded diagrams

in the infinite-mass limit of a scattering amplitude with an axial vector current actually

depends on the particular γ5 prescription in use.
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