
PolarMask: Single Shot Instance Segmentation with Polar Representation

Enze Xie 1,2 , Peize Sun3∗, Xiaoge Song4∗, Wenhai Wang4,

Xuebo Liu2, Ding Liang2, Chunhua Shen5, Ping Luo1

1The University of Hong Kong 2Sensetime Group Ltd
3Xi’an Jiaotong University 4Nanjing University 5The University of Adelaide

xieenze@hku.hk, peizesun@gmail.com, {wangwenhai362,xgs514}@163.com

liuxuebo,liangding@sensetime.com, chunhua.shen@adelaide.edu.au, pluo@cs.hku.hk

Abstract

In this paper, we introduce an anchor-box free and sin-

gle shot instance segmentation method, which is concep-

tually simple, fully convolutional and can be used by eas-

ily embedding it into most off-the-shelf detection methods.

Our method, termed PolarMask, formulates the instance

segmentation problem as predicting contour of instance

through instance center classification and dense distance

regression in a polar coordinate. Moreover, we propose

two effective approaches to deal with sampling high-quality

center examples and optimization for dense distance regres-

sion, respectively, which can significantly improve the per-

formance and simplify the training process. Without any

bells and whistles, PolarMask achieves 32.9% in mask mAP

with single-model and single-scale training/testing on the

challenging COCO dataset.

For the first time, we show that the complexity of in-

stance segmentation, in terms of both design and com-

putation complexity, can be the same as bounding box

object detection and this much simpler and flexible in-

stance segmentation framework can achieve competitive ac-

curacy. We hope that the proposed PolarMask framework

can serve as a fundamental and strong baseline for sin-

gle shot instance segmentation task. Code is available at:

github.com/xieenze/PolarMask.

1. Introduction

Instance segmentation is one of the fundamental tasks in

computer vision, which enables numerous downstream vi-

sion applications. It is challenging as it requires to predict

both the location and the semantic mask of each instance in

an image. Therefore intuitively instance segmentation can

be solved by bounding box detection then semantic segmen-

tation within each box, adopted by two-stage methods, such

∗indicates equal contribution.
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Figure 1 – Instance segmentation with different mask representations.

(a) is the original image. (b) is the pixel-wise mask representation. (c)

and (d) represent a mask by its contour, in the Cartesian and Polar coor-

dinates, respectively.

as Mask R-CNN [15]. Recent trends in the vision commu-

nity have spent more effort in designing simpler pipelines of

bounding box detectors [17, 23, 29, 31, 33, 10, 19] and sub-

sequent instance-wise recognition tasks including instance

segmentation [2, 4, 34], which is also the main focus of our

work here. Thus, our aim is to design a conceptually sim-

ple mask prediction module that can be easily plugged into

many off-the-shelf detectors, enabling instance segmenta-

tion.

Instance segmentation is usually solved by binary classi-

fication in a spatial layout surrounded by bounding boxes,
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Figure 2 – The overall pipeline of PolarMask. The left part contains the backbone and feature pyramid to extract features of different levels. The middle

part is the two heads for classification and polar mask regression. H,W,C are the height, width, channels of feature maps, respectively, and k is the

number of categories (e.g., k = 80 on the COCO dataset), n is the number of rays (e.g., n = 36)

.

shown in Figure 1(b). Such pixel-to-pixel correspondence

prediction is luxurious, especially in the single-shot meth-

ods. Instead, we point out that masks can be recovered suc-

cessfully and effectively if the contour is obtained. An in-

tuitive method to locate contours is shown in Figure 1(c),

which predicts the Cartesian coordinates of the point com-

posing the contour. Here we term it as Cartesian Represen-

tation. The second approach is Polar Representation, which

applies the angle and the distance as the coordinate to locate

points, shown in Figure 1(d).

In this work, we design an instance segmentation method

based on the Polar Representation since its inherent advan-

tages are as follows: (1) The origin point of the polar coor-

dinate can be seen as the center of object. (2) Starting from

the origin point, the point in contour is determined by the

distance and angle. (3) The angle is naturally directional

and makes it very convenient to connect the points into a

whole contour. We claim that Cartesian Representation may

exhibit first two properties similarly. However, it lacks the

advantage of the third property.

We instantiate such an instance segmentation method by

using the recent object detector FCOS [29], mainly for its

simplicity. Note that, it is possible to use other detectors

such as RetinaNet [23], YOLO [27] with minimal modifi-

cation to our framework. Specifically, we propose Polar-

Mask, formulating instance segmentation as instance center

classification and dense distance regression in a polar coor-

dinate, shown in Figure 2. The model takes an input image

and predicts the distance from a sampled positive location

(candidates of the instance center) to the instance contour

at each angle, and after assembling, outputs the final mask.

The overall pipeline of PolarMask is almost as simple and

clean as FCOS. It introduces negligible computation over-

head. Simplicity and efficiency are the two key factors for

single-shot instance segmentation, and PolarMask achieves

them successfully.

Furthermore, PolarMask can be viewed as a generaliza-

tion of FCOS. In other words, FCOS is a special case of

PolarMask since bounding boxes can be viewed as the sim-

plest mask with only 4 directions. Thus, one is suggested to

use PolarMask over FCOS for instance recognition wher-

ever mask annotation is available [5, 24, 11, 20].

In order to maximize the advantages of Polar Represen-

tation, we propose Polar Centerness and Polar IoU Loss

to deal with sampling high-quality center examples and

optimization for dense distance regression, respectively.

They improve the mask accuracy by about 15% relatively,

showing considerable gains under stricter localization met-

rics. Without bells and whistles, PolarMask achieves 32.9%

in mask mAP with single-model and single-scale train-

ing/testing on the challenging COCO dataset [24].

The main contributions of this work are three-fold:

• We introduce a brand new framework for instance

segmentation, termed PolarMask, to model instance

masks in the polar coordinate, which converts instance

segmentation to two parallel tasks: instance center

classification and dense distance regression. The main

desirable characteristics of PolarMask is being simple

and effective.

• We propose the Polar IoU Loss and Polar Centerness,

tailored for our framework. We show that the pro-

posed Polar IoU loss can largely ease the optimiza-

tion and considerably improve the accuracy, compared

with standard loss such as the smooth-l1 loss. In par-

allel, Polar Centerness improves the original idea of

“Centreness” in FCOS, leading to further performance

boost.
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• For the first time, we show that the complexity of

instance segmentation, in terms of both design and

computation complexity, can be the same as bound-

ing box object detection. We further demonstrate

this much simpler and flexible instance segmentation

framework achieves competitive performance com-

pared with more complex one-stage methods, which

typically involve multi-scale training and longer train-

ing time.

2. Related Work

Two-Stage Instance Segmentation. Two-stage instance

segmentation often formulates this task as the paradigm of

“Detect then Segment” [21, 15, 25, 18]. They often detect

bounding boxes then perform segmentation in the area of

each bounding box. The main idea of FCIS [21] is to pre-

dict a set of position-sensitive output channels fully con-

volutionally. These channels simultaneously address ob-

ject classes, boxes, and masks, making the system fast.

Mask R-CNN [15], built upon Faster R-CNN, simply adds

an additional mask branch and use RoI-Align to replace

RoI-Pooling [12] for improved accuracy. Following Mask

R-CNN, PANet [25] introduces bottom-up path augmenta-

tion, adaptive feature pooling, and fully-connected fusion to

boost up the performance of instance segmentation. Mask

Scoring R-CNN [18] re-scores the confidence of mask from

classification score by adding a mask-IoU branch, which

makes the network to predict the IoU of mask and ground-

truth.

In summary, the above methods typically consist of two

steps, first detecting bounding box and then segmenting in

each bounding box. They can achieve state-of-the-art per-

formance but are often slow.

One Stage Instance Segmentation. Deep Watershed

Transform [1] uses fully convolutional networks to predict

the energy map of the whole image and use the water-

shed algorithm to yield connected components correspond-

ing to object instances. InstanceFCN [6] uses instance-

sensitive score maps for generating proposals. It first pro-

duces a set of instance-sensitive score maps, then an as-

sembling module is used to generate object instances in a

sliding window. The recent YOLACT [2] first generates a

set of prototype masks, the linear combination coefficients

for each instance, and bounding boxes, then linearly com-

bines the prototypes using the corresponding predicted co-

efficients and then crops with a predicted bounding box.

TensorMask [4] investigates the paradigm of dense sliding-

window instance segmentation, using structured 4D tensors

to represent masks over a spatial domain. ExtremeNet [34]

uses keypoint detection to predict 8 extreme points of one

instance and generates an octagon mask, achieving rela-

tively reasonable object mask prediction. The backbone of

ExtremeNet is HourGlass [26], which is very heavy and of-

ten needs longer training time.

Polar representation was firstly used in [28] to detect

cells in microscopic images, where the problem is much

simpler as there are only two categories. Concurrent to

our work is the work of ESESeg [30], which also employs

the polar coordinate to model instances. However, our Po-

larMask achieves significantly better performance than ES-

ESeg due to very different designs other than the polar rep-

resentation. Note that most of these methods do not model

instances directly and they can sometimes be hard to op-

timize (e.g., longer training time, more data augmentation

and extra labels). Our PolarMask directly models instance

segmentation with a much simpler and flexible way of two

paralleled branches: classifying each pixel of mass-center

of instance and regressing the dense distance of rays be-

tween mass-center and contours. The most significant ad-

vantage of PolarMask is being simple and efficient com-

pared with the above methods.

3. Our Method

In this section, we first briefly introduce the overall archi-

tecture of the proposed PolarMask. Then, we reformulate

instance segmentation with the proposed Polar Representa-

tion. Next, we introduce a novel concept of Polar Center-

ness to ease the procedure of choosing high-quality center

samples. Finally, we introduce a new Polar IoU Loss to op-

timize the dense regression problem.

3.1. Architecture

PolarMask is a simple, unified network composed of a

backbone network [16], a feature pyramid network [22],

and two or three task-specific heads, depending on whether

predicting bounding boxes.1 The settings of the backbone

and feature pyramid network are the same as FCOS [29].

While there exist many stronger candidates for those com-

ponents, we align these settings with FCOS to show the sim-

plicity and effectiveness of our instance modeling method.

3.2. Polar Mask Segmentation

In this section, we will describe how to model instances

in the polar coordinate in detail.

Polar Representation. Given an instance mask, we

firstly sample a candidate center (xc, yc) of the instance and

the point located on the contour (xi, yi), i = 1, 2, ..., N .

Then, starting from the center, n rays are emitted uniformly

with the same angle interval ∆θ (e.g., n = 36, ∆θ = 10◦),

whose length is determined from the center to the contour.

In this way, we model the instance mask in the polar co-

ordinate as one center and n rays. Since the angle interval

1It is optional to have the box prediction branch or not. As we empiri-

cally show, the box prediction branch has little impact on mask prediction.
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Figure 3 – Mask Assembling. Polar Representation provides a direc-

tional angle. The contour points are connected one by one start from

0◦ (bold line) and assemble the whole contour and mask.

is pre-defined, only the length of the ray needs to be pre-

dicted. Therefore, we formulate the instance segmentation

as instance center classification and dense distance regres-

sion in a polar coordinate.

Mass Center. There are many choices for the center of

the instance, such as box center or mass-center. How to

choose a better center depends on its effect on mask pre-

diction performance. Here we verify the upper bound of

box center and mass-center and conclude that mass-center is

more advantageous. Details are in Figure 7. We explain that

the mass-center has a greater probability of falling inside the

instance, compared with the box center. Although for some

extreme cases, such as a donut, neither mass-center nor box

center lies inside the instance. We leave it for further re-

search.

Center Samples. Location (x, y) is considered as a cen-

ter sample if it falls into areas around the mass-center of any

instance. Otherwise, it is a negative sample. We define the

region for sampling positive pixels to be 1.5× strides [29]

of the feature map from the mass-center to left, top, right

and bottom. Thus each instance has about 9∼16 pixels near

the mass-center as center examples. It has two advantages:

(1) Increasing the number of positive samples from 1 to

9∼16 can largely avoid imbalance of positive and negative

samples. Nevertheless, focal loss [23] is still needed when

training the classification branch. (2) Mass-center may not

be the best center sample of an instance. More candidate

points make it possible to automatically find the best center

of one instance. We will discuss it in detail in Section 3.3.

Distance Regression. Given a center sample (xc, yc)
and the contour point of an instance, the length of n rays

{d1, d2, . . . , dn} can be computed easily. More details are

in supplementary materials. Here we mainly discuss some

corner cases:

• If one ray has multiple intersection points with the con-

tour of instance, we directly choose the one with the

maximum length.

Figure 4 – Polar Centerness. Polar Centerness is used to down-weight

such regression tasks as the high diversity of rays’ lengths as shown in

red lines in the middle plot. These examples are always hard to optimize

and produce low-quality masks. During inference, the polar centerness

predicted by the network is multiplied to the classification score, thus

can down-weight the low-quality masks.

• If one ray, which starts from the center outside of the

mask, does not have intersection points with the con-

tour of an instance at some certain angles, we set its

regression target as the minimum value ǫ (e.g., ǫ =
10−6).

We argue that these corner cases are the main obstacles

of restricting the upper bound of Polar Representation from

reaching 100% AP. However, it is not supposed to be seen as

Polar Representation being inferior to the non-parametric

Pixel-wise Representation. The evidence is two-fold. First,

even the Pixel-wise Representation still has certain gap with

the upper bound of 100% AP in practice, since some opera-

tion, such as down-sampling, is indispensable. Second, cur-

rent performance is far away from the upper bound regard-

less of the Pixel-wise Representation or Polar Representa-

tion. Therefore, the research effort is suggested to better

spend on improving the practical performance of models,

rather than the theoretical upper bound.

The training of the regression branch is non-trivial. First,

the mask branch in PolarMask is actually a dense distance

regression task since every training example has n rays

(e.g., n = 36). It may cause an imbalance between the

regression loss and classification loss. Second, for one in-

stance, its n rays are relevant and should be trained as a

whole, rather than being seen as a set of independent re-

gression examples. Therefore, we put forward the Polar IoU

Loss, discussed in detail in Section 3.4.

Mask Assembling. During inference, the network out-

puts the classification and centerness, we multiply center-

ness with classification and obtain final confidence scores.

We only assemble masks from at most 1k top-scoring

predictions per FPN level, after thresholding the confi-

dence scores at 0.05. The top predictions from all levels

are merged and non-maximum suppression (NMS) with a

threshold of 0.5 is applied to yield the final results. Here we
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introduce the mask assembling process and a simple NMS

process.

Given a center sample (xc, yc) and n ray’s length

{d1, d2, . . . , dn}, we can calculate the position of each cor-

responding contour point with the following formula:

xi = cos θi × di + xc (1)

yi = sin θi × di + yc. (2)

Starting from 0◦, the contour points are connected one by

one, shown in Figure 3 and finally assembles a whole con-

tour as well as the mask.

We apply NMS to remove redundant masks. To simplify

the process, We calculate the smallest bounding boxes of

masks and then apply NMS based on the IoU of generated

boxes.

3.3. Polar Centerness

Centerness [29] is introduced to suppress these low-

quality detected objects without introducing any hyper-

parameters and it is proven to be effective in object bound-

ing box detection. However, directly transferring it to our

system can be sub-optimal since its centerness is designed

for bounding boxes and we care about mask prediction.

Given a set {d1, d2, . . . , dn} for the length of n rays of

one instance. We propose Polar Centerness:

Polar Centerness =

√

min({d1, d2, . . . , dn})

max({d1, d2, . . . , dn})
(3)

It is a simple yet effective strategy to re-weight the points so

that the closer dmin and dmax are, higher weight the point

is assigned.

We add a single layer branch, in parallel with the classi-

fication branch to predict Polar Centerness of a location, as

shown in Figure 2. Polar Centerness predicted by the net-

work is multiplied to the classification score, thus can down-

weight the low-quality masks. Experiments show that Polar

Centerness improves accuracy especially under stricter lo-

calization metrics, such as AP75.

3.4. Polar IoU Loss

As discussed above, the method of polar segmentation

converts the task of instance segmentation into a set of re-

gression problems. In most cases in the field of object

detection and segmentation, smooth-l1 loss [13] and IoU

loss [32] are the two effective ways to supervise the regres-

sion problems. Smooth-l1 loss overlooks the correlation be-

tween samples of the same objects, thus, resulting in less

accurate localization. IoU loss, however, considers the op-

timization as a whole, and directly optimizes the metric of

interest, IoU. Nevertheless, computing the IoU of the pre-

dicted mask and its ground-truth is tricky and very difficult

Ground Truth

Prediction

D= {𝑑1, 𝑑2, … 𝑑𝑛}෩𝐷 = {෪𝑑1, ෪𝑑2, … ෪𝑑𝑛}
𝑑𝜃
෩𝑑𝑖

𝑑𝑖

𝐼𝑜𝑈 = 02𝜋 12min(𝑑𝑖, ෪𝑑𝑖)2 𝑑𝜃02𝜋 12m𝑎𝑥(𝑑𝑖 , ෪𝑑𝑖)2 𝑑𝜃
Figure 5 – Mask IoU in Polar Representation. Mask IoU (interac-

tion area over union area) in the polar coordinate can be calculated by

integrating the differential IoU area in terms of differential angles.

to implement parallel computations. In this work, we derive

an easy and effective algorithm to compute mask IoU based

on the polar vector representation and achieve competitive

performance.

We introduce Polar IoU Loss starting from the definition

of IoU, which is the ratio of interaction area over union area

between the predicted mask and ground-truth. As shown in

Figure 5, in the polar coordinate system, for one instance,

mask IoU is calculated as follows:

IoU =

∫

2π

0

1

2
min(d, d∗)2dθ

∫

2π

0

1

2
max(d, d∗)2dθ

(4)

where regression target d and predicted d∗ are length of the

ray, angle is θ. Then we transform it to the discrete form2

IoU = lim
N→∞

∑N

i=1

1

2
d2
min

∆θi
∑N

i=1

1

2
d2
max

∆θi
(6)

When N approaches infinity, the discrete form is equal to

continuous form. We assume that the rays are uniformly

emitted, so ∆θ = 2π

N
, which further simplifies the expres-

sion. We empirically observe that the power form has little

impact on the performance (±0.1 mAP difference) if it is

discarded and simplified into the following form:

Polar IoU =

∑n

i=1
dmin

∑n

i=1
dmax

(7)

Polar IoU Loss is the binary cross entropy (BCE) loss

of Polar IoU. Since the optimal IoU is always 1, the loss is

actually is negative logarithm of Polar IoU:

Polar IoU Loss = log

∑n

i=1
dmax

∑n

i=1
dmin

(8)

2For notation convenience, we define:

dmin = min(d, d∗), dmax = max(d, d∗). (5)
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rays AP AP50 AP75 APS APM APL

18 26.2 48.7 25.4 11.8 28.2 38.0

24 27.3 49.5 26.9 12.4 29.5 40.1

36 27.7 49.6 27.4 12.6 30.2 39.7

72 27.6 49.7 27.2 12.9 30.0 39.7

(a) Number of Rays: More rays bring a large gain, while too

many rays saturate since it already depicts the mask ground-truth

well.

loss α AP AP50 AP75 APS APM APL

Smooth-l1

0.05 24.7 47.1 23.7 11.3 26.7 36.8

0.30 25.1 46.4 24.5 10.6 27.3 37.3

1.00 20.2 37.9 19.6 8.6 20.6 31.1

Polar IoU 1.00 27.7 49.6 27.4 12.6 30.2 39.7

(b) Polar IoU Loss vs. Smooth-L1 Loss: Polar IoU Loss out-

performs Smooth-l1 loss, even the best variants of balancing re-

gression loss and classification loss.

centerness AP AP50 AP75 APS APM APL

Original 27.7 49.6 27.4 12.6 30.2 39.7

Polar 29.1 49.5 29.7 12.6 31.8 42.3

(c) Polar Centerness vs. Centerness: Polar Centerness bring a

large gain, especially high IoU AP75 and large instance APL.

box branch AP AP50 AP75 APS APM APL

w 27.7 49.6 27.4 12.6 30.2 39.7

w/o 27.5 49.8 27.0 13.0 30.0 40.0

(d) Box Branch: Box branch makes no difference to perfor-

mance of mask prediction.

backbone AP AP50 AP75 APS APM APL

ResNet-50 29.1 49.5 29.7 12.6 31.8 42.3

ResNet-101 30.4 51.1 31.2 13.5 33.5 43.9

ResNeXt-101 32.6 54.4 33.7 15.0 36.0 47.1

(e) Backbone Architecture: All models are based on FPN. Bet-

ter backbones bring expected gains: deeper networks do better,

and ResNeXt improves on ResNet.

scale AP AP50 AP75 APS APM APL FPS

400 22.9 39.8 23.2 4.5 24.4 41.7 26.3

600 27.6 47.5 28.3 9.8 30.1 43.1 21.7

800 29.1 49.5 29.7 12.6 31.8 42.3 17.2

(f) Accuracy/speed trade-off on ResNet-50: PolarMask perfor-

mance with different image scales. The FPS is reported on one

V100 GPU.

Table 1 – Ablation experiments for PolarMask. All models are trained on trainval35k and tested on minival, using ResNet50-FPN backbone unless

otherwise noted.

Our proposed Polar IoU Loss exhibits two advantageous

properties: (1) It is differentiable, enabling back propaga-

tion; and it is very easy to implement parallel computations,

thus facilitating a fast training process. (2) It predicts the

regression targets as a whole. It improves the overall per-

formance by a large margin compared with smooth-l1 loss,

shown in our experiments. (3) As a bonus, Polar IoU Loss

is able to automatically keep the balance between classifi-

cation loss and regression loss of dense distance prediction.

We will discuss it in detail in our experiments.

4. Experiments

We present results of instance segmentation on the chal-

lenging COCO benchmark [24]. Following common prac-

tice [15, 4], we train using the union of 80K train images

and a 35K subset of val images (trainval35k), and re-

port ablations on the remaining 5K val. images (minival).

We also compare results on test-dev. We adopt the 1×
training strategy [14, 3], single scale training and testing of

image short-edge as 800 unless otherwise noted.

Training Details. In ablation study, ResNet-50-

FPN [16, 22] is used as our backbone networks and the

same hyper-parameters with FCOS [29] are used. Specifi-

cally, our network is trained with stochastic gradient descent

(SGD) for 90K iterations with the initial learning rate being

0.01 and a mini-batch of 16 images. The learning rate is

reduced by a factor of 10 at iteration 60K and 80K, respec-

tively. Weight decay and momentum are set as 0.0001 and

0.9, respectively. We initialize our backbone networks with

the weights pre-trained on ImageNet [9]. The input images

are resized to have their shorter side being 800 and their

longer side less or equal to 1333.

4.1. Ablation Study

Verification of Upper Bound. The first concern about

PolarMask is that it might not depict the mask precisely. In

this section, we prove that this concern may not be neces-

sary. Here we verify the upper bound of PolarMask as the

IoU of predicted mask and ground-truth when all of the rays

regress to the distance equal to ground-truth. The verifica-

tion results on different numbers of rays are shown in Fig-

ure 7. It can be seen that IoU is approaching to nearly per-

fect (above 90%) when the number of rays increases, which

shows that Polar Segmentation is able to model the mask

very well. Therefore, the concern about the upper bound of

PolarMask is not necessary. Also, it is more reasonable to

use mass-center than bounding box-center as the center of

an instance because the bounding box center is more likely

to fall out of the instance.

Number of Rays. It plays a fundamental role in the

whole system of PolarMask. From Table 1a and Figure 7,

more rays show higher upper bound and better AP. For ex-

ample, 36 rays improve by 1.5% AP compared to 18 rays.

Also, too many rays, 72 rays, saturate the performance since
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Figure 6 – Visualization of PolarMask with Smooth-l1 loss and Polar IoU loss. Polar IoU Loss achieves to regress more accurate contour of instance

while Smooth-l1 Loss exhibits systematic artifacts.
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Figure 7 – Upper Bound Analysis. More rays can model instance mask

with higher IoU with Ground Truth, and mass-center is more friendly

to represent an instance than box-center. With more rays , e.g. 90 rays

improve 0.4% compared to 72 rays; and result is saturated with 120 rays.

it already depicts the mask contours well and the number of

rays is no longer the main factor constraining the perfor-

mance.

Polar IoU Loss vs. Smooth-l1 Loss. We test both Polar

IoU Loss and Smooth-l1 Loss in our architecture. We note

that the regression loss of Smooth-l1 Loss is significantly

larger than the classification loss since our architecture is

a task of dense distance prediction. To cope with the im-

balance, we select different factor α to regression loss in

Smooth-l1 Loss. Experiment results are shown in Table 1b.

Our Polar IoU Loss achieves 27.7% AP without balanc-

ing regression loss and classification loss. In contrast, the

best setting for Smooth-l1 Loss achieves 25.1% AP, a gap

of 2.6% AP, showing that Polar IoU Loss is more effective

than Smooth-l1 loss for training the regression task of dis-

tances between mass-center and contours.

We hypothesize that the gap may come from two folds.

First, the Smooth-l1 Loss may need more hyper-parameter

search to achieve better performance, which can be time-

consuming compared to the Polar IoU Loss. Second, Polar

IoU Loss predicts all rays of one instance as a whole, which

is superior to Smooth-l1 Loss.

In Figure 6 we compare some results using the Smooth-

l1 Loss and Polar IoU Loss respectively. Smooth-l1 Loss

exhibits systematic artifacts, suggesting that it lacks super-

vision of the level of the whole object. PolarMask shows

more smooth and precise contours.

Polar Centerness vs. Centerness. Visualization results

can be found in the supplementary material. The compar-

ison experiments are shown in Table 1c. Polar Centerness

improves by 1.4% AP overall.

Particularly, AP75 and APL are raised considerably,

2.3% AP and 2.6% AP, respectively. We explain as follows.

On the one hand, low-quality masks make more negative

effect on high-IoU. On the other hand, large instances have

more possibility of large difference between maximum and

minimum lengths of rays, which is exactly the problem that

Polar Centerness is committed to solve.

Box Branch. Most of previous methods of instance seg-

mentation require the bounding box to locate area of object

and then segment the pixels inside the object. In contrast,

PolarMask is capable to directly output the mask without

bounding box.

In this section, we test whether the additional bounding

box branch can help improve the mask AP as follows. From

Table 1d, we can see that bounding box branch makes little

difference to performance of mask prediction. Thus, we do

not have the bounding box prediction head in PolarMask for

simplicity and faster speed.

Backbone Architecture. Table 1e shows the results of

PolarMask on different backbones. It can be seen that better

feature extracted by deeper and advanced design networks

improve the performance as expected.

Speed vs. Accuracy. Larger image sizes yield higher

accuracy, in slower inference speeds. Table 1f shows

the speed and accuracy trade-off for different input image

scales, defined by the shorter image side. The FPS is re-

ported on one V100 GPU. Note that here we report the en-

tire inference time, all post-processing included. It shows

that PolarMask has a strong potentiality to be developed

as a real-time instance segmentation application with sim-

ple modification. We also report more results in different

benchmarks in the supplementary material.

4.2. Comparison against stateoftheart

We evaluate PolarMask on the COCO dataset and com-

pare test-dev results to state-of-the-art methods including
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Figure 8 – Results of PolarMask on COCO test-dev images with ResNet-101-FPN, achieving 30.4% mask AP (Table 2).

method backbone epochs aug AP AP50 AP75 APS APM APL

two-stage

MNC [7] ResNet-101-C4 12 ◦ 24.6 44.3 24.8 4.7 25.9 43.6

FCIS [21] ResNet-101-C5-dilated 12 ◦ 29.2 49.5 - 7.1 31.3 50.0

Mask R-CNN [15] ResNeXt-101-FPN 12 ◦ 37.1 60.0 39.4 16.9 39.9 53.5

one-stage

ExtremeNet [34] Hourglass-104 100 X 18.9 44.5 13.7 10.4 20.4 28.3

TensorMask [4] ResNet-101-FPN 72 X 37.1 59.3 39.4 17.1 39.1 51.6

YOLACT [2] ResNet-101-FPN 48 X 31.2 50.6 32.8 12.1 33.3 47.1

PolarMask ResNet-101-FPN 12 ◦ 30.4 51.9 31.0 13.4 32.4 42.8

PolarMask ResNet-101-FPN 24 X 32.1 53.7 33.1 14.7 33.8 45.3

PolarMask ResNeXt-101-FPN 12 ◦ 32.9 55.4 33.8 15.5 35.1 46.3

PolarMask ResNeXt-101-FPN-DCN 24 X 36.2 59.4 37.7 17.8 37.7 51.5

Table 2 – Instance segmentation mask AP on the COCO test-dev. The standard training strategy [14] is training by 12 epochs; and ‘aug’ means data

augmentation, including multi-scale and random crop. X is training with ‘aug’, ◦ is without ‘aug’.

both one-stage and two-stage models, shown in Table 2. Po-

larMask outputs are visualized in Figure 8. For data aug-

mentation, we randomly scale the shorter side of images in

the range from 640 to 800 during the training.

Without any bells and whistles, PolarMask is able to

achieve competitive performance with more complex one-

stage methods. With a simpler pipeline and half training

epochs, PolarMask outperforms YOLACT with 0.9 mAP.

Moreover, the best PolarMask with deformable convolu-

tional layers [8] can achieve 36.2 mAP, which is comparable

with state-of-the-art methods.

In the supplementary material, we compare the FPS be-

tween TensorMask and PolarMask with the same image

size and device. PolarMask can run at 12.3 FPS with the

ResNet-101 backbone, which is 4.7 times faster than Ten-

sorMask. Even when equipped with DCN [8], PolarMask

can still be three times faster than TensorMask.

5. Conclusion

PolarMask is a single shot anchor-box free instance seg-

mentation method. Different from previous works that typ-

ically solve mask prediction as binary classification in a

spatial layout, PolarMask puts forward to represent a mask

by its contour and model the contour by one center and

rays emitted from the center to the contour in polar coordi-

nate. PolarMask is designed almost as simple and clean as

single-shot object detectors, introducing negligible comput-

ing overhead. We hope that the proposed PolarMask frame-

work can serve as a fundamental and strong baseline for

single-shot instance segmentation tasks.
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